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A THEORY OF OPTICAL COHERENCE TOMOGRAPHY 

L. S. D o H n  UDC 535.36 

Analytical models of optical eoherence tomogrophy (OCT) of strongly turbid media of the type 
of biological tissues are developed on the basis of the theory of wave scattering in random 
inhomogeneous media. Similarity relations for signals of coherent and pulsed sounding are 
established, and general e.zpressions .for random realizations and statistical characteristics of 
tomograms are obtained. It is shown that after the appropriate modification the theory of 
image transfer in turbid media can be used ,for analysis of their informative properties. Simple 
.formulas for estimating the visibility depth into the internal structure of biological tissues are 
proposed. 

1. INTRODUCTION 

The development of the methods of optical diagnostics of human body tissues and organs in the 
therapeutic transmittance window (0.6 to 1.3 pro) has approached the stage of their practical implemen- 
tation and the creation of medical instruments [1]. The most impressive progress [2-5] was made in the 
optical coherence tomography (OCT), i.e., the formation of images of the internal structure of biologi- 
cal tissues using a lidar based on a continuous radiation source with femtosecond coherence times and a 
Michelson interferometer in whose object arm the observation object is placed. In this case, reflections 
from the tissue layers with thickness of the order of half the length of the coherent traiaq comprising the 
continuous illumination beam are observed separately. The light signals of the OCT system are emitted 
and received by the end of the single-mode light fiber, which is projected onto the studied region of tissue 
with the help of an optical system. Therefore, the confocal observation pattern is re~li~od, allowing us to 
obtain a certain gain in the Ptn c'111~tr resolution. 

The holographic and interferometric methods of the layer-by-layer visualization of the internal struc- 
ture of scattering objects [6] has long since been studied (H. S. Caufield, 1968; A.P.  Ivanov, I.M. Gurskii, 
A. P. Chaikovskii, A.A. Kumeisha, and V.N. ShcherbAknv, 1976-1981; I.L. Katsev, 1985). Although the 
theoretical models of the OCT have not been developed in detail, one can find some interesting publi- 
cations in this field [7, 8]. In this paper, we attempt to ~n.qwer two questions: 1. To which extent and 
in what way can the results of the theory of instrumented vision in turbid media [6, 9] that refer to the 
observation systems with direct photodetection of the signal be used for solving the problems of OCT? 
2. What are the specific features of the OCT methods and how can they be allowed for when developing 
models of tomographic images? 

To make the presentation of the material more perspicuous (and, at the same time, introduce the 
necessary terms and notations), in Sections 2.2 and 4 we give a schematic description of the process 
of formation of informative and noise video signals in the heterodyne receiver of the OCT system. A 
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more in-depth study of these problems is proposed in [10], which was written under the guidance of 
V. M. Gelikonov. 

2. FORMULATION OF THE PROBLEM 

2.1.  M o d e l  o f  t h e  m e d i u m  

As an optical model of the observation object, we consider a medium with random inhomogeneous distri- 
bution of complex permittivity 

Its average value (E) is assumed to be constant, the term el describes the fluctuations of e with 
spatial scale Ii >> A, and e2 are the fluctuations with scale 12 < :k. The distributions ~1,2(~ form the 
locally homogeneous isotropic random fields with the space-correlation functions 

and the space spectra 

= + (2)  

O0 

r = (21r) - 3 / / /B~ , . 2 (~ ,P )e -~pd3p ,  = I~1- (3) 
- - 0 0  

The fluctuations of e are assumed to be small (Be~,2 (~, 0) << 1). 
It is also assumed that along with the continuously distributed i-homogeneities in the medium 

there exist some local scatterers the distance between which exceeds the size of the resolution element 
of a lidar. These  inhomogeneities are characterized by their differential scattering cross section ]~'~'diff o r  
effective scattering area ESA = 41r~di ft. 

2.2. T h e  p r o c e s s  o f  i m a g e  f o r m a t i o n  

In the OCT system, the separate observation of reflections from tissue elements that are located at different 
depths (z) is performed by measuring the cross-correlation function of the reflected signal and the reference 
signal that  is a copy of the sounding signal (as in the case of matched reception of complex signals). 
The reference signal is formed by branching the source fight to the reference arm of the fight- fiber 
Michelson interferometer. The scattered and reference waves are added on the receiver photodetector. 
The tomographic signal is obtained as a result of the detection of Doppler beats, which emerge in the 
photodetector current in response to variation of the length of the interferometer reference arm. The 
image in the plane z = coust is formed due to the shift of the transceiving aperture of the lidar along the 
tissue surface (Fig. I). 

The end of the fiber-optical single-mode waveguide is assumed to be the aperture (the presence of 
the focusing system between the aperture and the tissue will be allowed for later). The emitted (u0) and 
received (us) fields inside the waveguide (between its end and the signal splitter) are written as 

uO,S(r177 z, t) = M(~• vo,sCt T z/c), (4) 

where ~'• is the radius vector of a point in the waveguide cross section ~w, z is the coordinate along its 
axis, c is the phase velocity of the wave, the function M ch~aracterizes the transverse structure of the mode 
and satisfies the norma|ization condition 

/ = I ,  (5 )  
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Fig. 1. OCT flow chart. 0 is the optical system of the illumination- 
beam formation, RS is the radiation source and heterodyne photore- 
ceiver with units for delay of the reference signal and transverse scan- 
ning, F is the band-pass filter with amplifier, D is the videosignal 
detector, and ~0• and zo are the coordinates of the detected tissue 
element. 

v0 is the stationary normal quasimonochromatic process with zero mean ~-~ = O, center frequency wo, and 
the autocorrelation function 

BoCr) = voCt + r) ~oCt) = Po boCv) coswor, (s) 

P0 is the average power of the emitted signal, bo(0) = 1, and the bar denotes averaging over the realization 
ensemble of the random process vo. * This process is also characterized by the energy spectrum 

O0 i /  
SoCw) = ~ BoCr) coswr dr. (7) 

The time scale of the process correlation vc (coherence time) and the characteristic width of its energy 
spectrum A f0 are determined by the expressions 

OO 

rc---- / b~(r)dr, A.fo = I/To. (8a, b) 
- - O O  

Assuming that the interferometer splitter is symmetric (half of the power of the incident light beam 
is branched off to the adjacent arm), we write the fields of the received (us) and reference (Ur) signals on 
the receiver photodetector in the form 

us  = MC~'• Ur ---- ~MCr177 - to), 

.=PolP , 

"Note that in accordance with Eqs. (4)-(6), ~ can be considered to be an instantaneous value of the energy flux density. 
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Here n is the ratio between the average powers of the emitted (Po) and reference (Pr) signals, and to is 
the delay time of the reference signal with respect to the sounding signal; the delay, which is common for 
the signals v0 and vs  and emerges as light is transported to the photodetector, is omitted. 

At the detector output,  the field Cur + us)  creates the photocurrent 

i---~ f (Ur "I- US)2 d'2r*_l. -l- ish ~ 17"'-~ q-~n2--'I/S(t)~30(~- to)-l- {sh ~UO 
r~ 

(9) 

where ~7 is the photodetector sensitivity [A/W],/sh is the shot current, the double bar denotes the smoothing 
of short- period pulsations of the signal power due to the photodetector inertia; the term ,.~ v~ on the 
right-hand side of Eq. (11) is rejected in accordance with the condition vs  << v0. 

The first term in Eq. (11) contains the constant component 

ir = .Po/n (io) 

(ii) 

and the fluctuation component 

The second term also has the noise component; however, for vs  << v0 it is small compared with is. 
Therefore, the final expression for i is approximately written as the sum of the constant (iv), useful (iu), 
and noise (in) currents 

i = i t  +iu +iu ,  (12) 

assuming that /.---- 
iu = ~l~/2/nvs(t)  vo(t -- t0), in = ish -I- is. (15a, b) 

In the case of fixed time of the reference signal delay, the currents ir and iu are indistinguishable. 
However, as to varies, the current iu also becomes a function of time and can be separated from the average 
current of the reference signal (it) using the band-pass filter, which is also a means of noise suppression. 
Let us clarify it, using a simple example. 

Let a point reflector located in a homogeneous medium at a distance z from the lidar be the 
observation object. Then vs( t )  ~ v o ( t - 2 z / c )  and in accordance with Eq. (15a) and (6) iu ,~ Bo(to - 2 z / c ) .  

If in Eq. (6) we assume that 

bo(~) -- exp - , wo -- 27rfo, (16) 

and the delay time of the reference signal varies as to = ~t, then 

(17a - d) 

As is obvious from Eq. (17), the useful signal iu(t) has the form of a pulse with carrier frequency fl  
and duration 2tl. The arrival time of its m&Timum is determined by the distance to the scatterer: t m =  
2z/[3c. The spectrum of this pulse is a Gaussian curve with center frequency f l  and width 

A f l  = ~ A fo = fl/'rc, (18) 

such that the relative width of the pulse spectrum coincides with the relative width of the energy spectrum 
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of the source (Aft/ft = Afo/.fo). 
Below, it is assumed that the signal i passes through the filter with passband fl - A.ft/2 < f < 

ft +Aft/2 and is transformed into the signal Ai = iu +Ain (Ai. is the noise current at the filter output), 
which goes to the linear or quadratic detector.* The image is formed by vis,,M;-.ing the video signal St 
or $2, which is taken from the linear or quadratic detector, as a function of the variable zo = cto/2 and 
coordinates of the point of intersection between the axis of the light beam and the boundary of the medium 
(Foj_). To simplify the subsequent formulas, we use the dimensionless signAlS of the type 

&, = l i .I /  i=v~,  (19a, b) 

Su2 .2 .2 = *u/gr n , (20a, b) 

St(eo• = I A i l /  i . v ~  = S., + S., , 

s=(eo.,=o) = ( = i ) = /  i2 .  = s. ,  + so,, 

where the double bar denotes the smoothing of oscillations with frequency 2ft, Su t,2 is the useful signal at 
the output of the linear or quadratic detector, and Sn t~ is the noise signal. The signal St,2(zo) with fixed 
F0• is called the image line, and the maximum value of zo is called the line length (zl). As is obvious from 
the relations zo = ct0/2 and to =/3t,  the parameter/3 is expressed via the line length and its formation 
time (tl) in the form 

13 = 2 z l / c t l  . (21) 

3. SIMILARITY RELATIONS FOR SIGNALS OF PULSED AND C O H E R E N T  OPTICAL SOUIND- 
ING 

The signal u s  that results from l i gh t  scattering by the "frozen" inhomogeneities of the permittivity 
of the medium is related to the sounding sign~| vo by the linear relation 

O0 

..~ ! # 

, ~ s ( ~ ' o . , t )  = ~0(t- t')HCr0.,t )dr 
0 

(22) 

(previously, to simplify the formulas, the dependence of v s  on ~'0_L was not given explicitly). 
In accordance with Eqs. (6), (15a), and (22), the useful current (iu) from the photodetector of the 

OCT system is presented in terms of the function H (the pulsed response of the medium) in the form 

CO 

iu(~o., to) = i~r f bo(to - t) cos ~oCto - t) H(~'0., t) dr, (23) 

and the useful signal at the output of a quadratic detector is determined by the relations 

-2 Su,(r177 to) = ' u / ' r  n = (b~ + b22), (24) 

{}i { } bl b2 = b0(to-t) H(r cosw0t dt 
sinwot 

0 

which result from Eqs. (20b) and (23). 
Let us write the sounding signal in the form of the regular quasimonochromatic pulse 

(2s) 

uo(t) = Ao bo(t) cos wot, ( 2 6 )  

"In actual tomogr-~phic systems a more complicated detection is used. However, comparing the results of linear and 
quadratic detection, we already obtain su~cient information on the dependence of tomogram properties on the.paxameters 
of a videosignal detector. 
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which is similar to the autocorrelation function (6) of a continuous signal. 

As is obvious from Eqs. (26) and (22), in this case the scattered signal vs(s177 t) in the waveguide 
channel of the lidar repeats the dependence iu(F0• t), and its power 

---- ~ (27) 

reproduces the dependence Su= it) (the double bar in Eq. (27) denotes the averaging of oscillations of the 
power with frequency 2w0). 

Consequently, it turns out that if we know the energy response of the medium Ps(~0• t) to the 
pulsed signal with power 

Po(t) = v~ ----- P0(0) b~(t), (28) 

then the signal Su= at the output of the OCT system with quadratic detector of video signal is determlned 
from the relation 

Su2 (Fox, to) = ps(~'o• to) ,  (29) 
where 

ps( 0• = es( 0• t)/P0(0) (30) 

is the coefficient of signal transfer (the inverse of the attenuation coefficient of the power of a signal arriving 
from the medium in time t after the sounding pulse was sent (28)). 

The useful signal taken from the linear detector is expressed in terms of Ps in the form 

(3i) 

Therefore, in the OCT system, after the correlation processing of a continuous scattered signal one 
can observe the formation of a copy of the signal formed at the output  of an ideal energy receiver (with 
the passband A.f > l/Tc) in the case of sounding of the medium by a light pulse with power (28). The 
pulsed response of the medium is reproduced by a correlation meter as a function of the delay time (to) 
of the reference signal. Therefore, to determiue the distance to the scatterer (z), we can use the relation 
z = ct0/2. The pulse duration (28) 

/ = f PoCt)d  Po(0) Ca2) 
--O3 

is equal to the coherence time of the continuous signal (rp ---- rc). Therefore, in the case of continuous 
sounding, the size of the resolution element with respect to distance (Aze) is related to the coherence time 
of the field (rc) by the relation Aze = crc/2. 

4. INTERNAL NOISES IN SYSTEMS OF C O H E R E N T  AND PULSED SOUNDING 

An hnage formed by the system of coherent soundin~ h~.q a random component, which is created by 
internal noises and fluctuations of the useful signal Su~,2. The latter are due to the random distortions of 
the light-wave field in the process of its propagation and the random structure of sounded inhomogeneities. 
Skipping the problem of fluctuations of the useful signal, let us first estimate the level of internal noises 
with respect to a statistically average useful signal (Suu=~, i.e., the signal averaged over the ensemble of 
realizations of the fields ~1,2. 

In accordance with Eq. (15), the noise current from the photodetector of the OCT system is equal 
to the sum of the shot current (isb) and the current ie, which reproduces the power fluctuations of the 
reference light beam (excess noise). At the output of the filter with passband fl  - A f t / 2  < f < fl + Af l /2  
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(see Eq. (18)), the dispersion of the shot current is 

',h'2 = 2eirAfl = 2eir/3/Tc. (33) 

If the current is is assumed to be a normal random process, then, ignoring the photodetector inertia, 
its autocorrelation function can be written in the form 

Bfl ( 'r)  = idt(t + T)ifl(t) = It.2 b~)(T)2 (34) 

in terms of the autocorrelation function of the sounding (reference) signal vo. As is obvious from Fxl. (34), 
the power spectrum of the signal is has characteristic width ,.~ A f0, and its value at the zero frequency is 
determined from the expression 

O0 

= = f = =,:to. 
- - 0 0  

Therefore,-for ft  << Afo the cm'rent dispersion/i] at the output of the band-pass filter is 

(35) 

(36) 

The ratio between the average powers of the useful signal and noise at the Falter output 

(S/N) = (q) (37) 

with allowance for Eqs. (33) and (36) and relation i2u = ni2rPS (see Eqs. (20b) and (29)) is written as 

xO~s) 
(S/N) = fl(1 + 6 ) '  (38) 

..-y- = 10-re x=~Po%/(2e), 6=,~/,,h 2 nX  (e = 1.6- K). (39a, b) 

If the signal (iu + Ain) arrives at the quadratic detector (see Eq. (20a,b)), the signal-to-noise 
ratio with respect to voltage at the detector output 

(S/N)2 = (S.,) (40) 
~/(s.,- :s'ZD2 

is related to (S/N) via the relation [II] 

(S/N) (SIN), (S/N) << I, 

(SIN)2 = ql + 2(S/N) = v~IN)12, (S/N) >> I. 

The signal-to-noise ratio at the linear detector output is estimated using the formula 

(S~,) = { (S/N), (S/N) << I, 

(sin, = (s/N)>> i. 

(41) 

(42) 

Let us consider similar relations for a lidar with ideal energy receiver (without reference beam). 
The trarLqceiving apertures of the lidar and the OCT system are assumed to be equal, and the power of 
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the sounding pulse is given in the form (28) such that the statistically average current of the useful lidar 
signal 

(iu(t)) = t / (Ps)  = t/Po(O) (Ps(~o• t)) (43) 

would reproduce the dependence Su2 (~0• 7.o) ~, i2u for t = to. Then, taking into account that the dispersion 
of the shot current in the lidar signal band Alp = 1/Tp is equal to 

tsh -- 2e( iu) /rp ,  (44) 

the signal-to-noise ratio in the lidar image of the medium is written as 

(i.) 
( S / N ) p  = - -  V ' (45) 

where Wo = P0(0)Tp is the soundlng-pulse energy. Comparing Eqs. (38) to (42) and Eq. (45), we draw the 
following conclusions: 

1. The dependence of the parameters (S/N) and (S/N)p on the attenuation coefficient of the 
useful signal is substantially different: the former varies in proportion with (Ps), while the latter varies 
in proportion with v / ~ .  This is explained by the fact that in the case of coherent sounding, noises are 
generated by the reference light beam, whereas in the case of pulsed sounding they are generated by the 
reflected signal. In the former case they are additive, and in the latter case they are multiplicative. 

2. Since in the process of detection of the signal (iu + Ain) additive noise is transformed into 
mutiplicative interference, for (S/N) > 2 (see Eq. (41)) the parameter (S/N)1,2 varies in proportion with 
vr0-  similar to (S/N)p. 

3. In the case in which excess noises in the OCT system are small compared with shot noises 
(5 << 1) and (S/N) > 2, the parameters (S/N)I3 and (S/N)p depend on the power of the radiation source 
in a similar manner. However, the contribution from the excess noises increases with ir and becomes 
governing for ir >> e/%. In this case, the signal-to-noise ratio in the OCT system no longer depends on 
the illumination-beam power. * 

4. In the case 5<< 1, (S/N)> 2, the signal-to-noise ratio in the systems of coherent sounding (with 
a quadratic detector of the video signal) and pulsed sounding (with an ideal energy receiver and without 
a reference beam) is the same ((S/N)2 = (S/N)p) ff 2f~W0 --- P0~'c. With allowance for Eq. (21), the 
condition of equivalence of coherent and pulsed sounding is written as 

w0 = P0Crctc/(4 c) (46) 

o r  

V0 = P0/(2N,),  Zr = zcl, z,, (47) 

where Po = Wo/tc is the average power of the pulsed radiation source, zc and tc are the length and 
formation time of an image line, respectively, Ne is the number of expansion elements in a line, and 
Az+ = crc/2 is the element size. If we assume that P0 is the hMf-power of a continuous light source, then, 
according to Eq. (47), in the case of coherent sounding the energy spent on the formation of an image line 
is a factor of 4-Ne greater than that spent on the formation of an image line in the case of pulsed sounding. 

5. A MODEL OF RANDOM REALIZATIONS OF A REFLECTED SIGNAL 

It is assumed that large-scale inhomogeneities of the medium scatter light only forward, while the 
reflected signal results from the light scattering by small-scale fluctuations of permittivity (the volume- 

*In principle, mmess noises can be compensated by creating a special channel for checking the reference-beam power. In 
operatin 8 devices they are suppressed in a simple~ m~mne~, i.e., at tenuating the re~erence beam. 
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scattering signal) and local inhomogeneities (objects) with a given scattering cross section. 

In the scalar formulation, the problem of the light-wave field u(~', t) in a medium with inhomogeneous 
distribution e of the type (1) is reduced to solving the equation 

[A + k2(l + r + e2)] V = 0 (48) 

for the complex amplitude of the harmonic component of the field 

oo 1/ 
- - 0 0  

(49) 

for k = w v ~ / c o  and the appropriate boundary conditions (co is the velocity of light in Y a C U l ! m ) .  

Let us use f0 and fs  to denote the spectra of random realizations of the sounding and scattered 
siffnah 

oo 

and present V in the form 

1/ lo,s(w) = ~ vo,s(t) e-i~tdt 
--OO 

v = 1o(~) ~(~, o~) + Vs(~,o~), 

where V0 is the solution of Eq. (48) for r --= 0 and the boundary condition on the lidar aperture 

(50) 

(51) 

Vo = M(~'• (52) 

and Vs is the field scattered by the small-scale inhomogeneities. In the linear approximation with respect 
to e2, Vs satisfies the equation 

L A + k2(1 + vs = -4 ps, (53) 

which differs from the equation for Vo only by the presence of sources with the density 

k 2 
ps  = ~ I o ( , , , )  e2(~ VoCe, ~) (54) 

on its right-hand side. 

The amplitude of the mode excited by this source in an optical wavegnide is found using the 
reciprocity theorem: 

Is(,,,) = ~ ps  Vo ~ e  = g(~) I0(~o), (55) 
V 

K(w) = i k2  f e2(~ V02(~, w) d3~ *. 
V 

(The reflection of the sounding signal from the fiber end is not allowed for in the above formula.) 

From Eqs. (15a), (55), and (50), allowing for the relation 

(56) 

(fo(~) f~CJ)) = soCk) ~(~' - ~) (57) 

we find 
oo 

iu(t0) = % / ~  / s o ( w ) K ( ~ ) e - ~ .  
MOO 

(58) 

858 



The expression for the signal arriving from the point ~ from a single inhomogeneity is obtained 
from Eqs. (58) and (56) by the formal substitution 

4r  
E2 = ~ A,- 6(e'-  ~),  (59) 

where As is the scattering amplitude related to the differential scattering crass section and effective scat- 
tering area (ESA) by [121 

As A~ = Edi~ = ESA/47r. (60) 

The above formulas indicate that to find the useful signal iu, we must have a model of the field of 
the monochromatic wave beam Vo in a medium with large-scale ;nhomogeneities. Let us write this field 
in the form 

Vo = ~ t (~  exp ( - i k ' ~  - ik'r (61) 

where A and k'~ are the random values of the wave amplitude and phase at the point ~', k' = w/c, 
c = c o / R e v / ~  - is the average velocity of light in the medium, and it is assumed for simplicity that A 
and ~ are frequency independent in the sounding-signal band. In this case, we ignore the signal shape 
distortions related to dispersion and the frequency dependence of the wave size of the aperture. 

Then from Eqs. (58), (56), (61), and (7), with allowance for the quasimonochromatic nature of the 
illumination source, we obtain the expressions 

iu = Re/u, 

.oJ 0 n .  

V 

2 r=~o -  ~[. +(( i l l ,  

(62) 

(63) 

(64) 

which establish a direct relation between iu and the autocorrelation function of the sounding signal. The 
image is formed a.s a result of visua]iTation of the signals Su~ or Su2, which are obtained after the detection 
of current iu. These signah are expressed in terms of Iu in the form 

2 r " -  

Sut-- lr f=ir~]/u-V u - I~, 
1 

Su, -- 2m~r Iu- Fu. (65a, b) 

8. FORMULAS FOR CALCULATING AN IMAGE OF A LOCAL INI-IOMOGENEITY 

The video signals forming an ~rn~ge of a local inhomogeneity ("of a point object") with the given 
effective scattering area are found from Eqs. (59), (63), (65), and (60): 

Su, = 4(2~r)-t/2k~t(ESA)l/2A2(~i)Ib0(~)l, 

Su2 = ~'k0-2(ESA) A4(~i) b2(~), (66a - c) 

2 
~, = to - - [~i + r 

C 

k0 = we/c, c = c0 /Redr~  -, ~(~i• zi) is the point of ;nhomogeneity location (the formulas are written with 
allowance for the condition IIm(e)l << Re(E)). 

From Eq. (66), it is obvious that the useful signal as a function of delay time of the reference 
signal (to) repeats the envelope of the autocorrelation function of the sounding signal (or the envelope 
squared) and reaches a maximum at to = t0i = 2(zi + r The amplitude of the useful signal is propor- 
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tional to the intensity (or the intensity squared) of the illumination field at the point of inhomogeneity 
location and is the random function ~. The quantity t0i also contains the random component (2~/c). 
Therefore, the error in determining the distance (zi) from the measured value of toi depends not only on 
the coherence time (~'c) of the emitted signal but also on the phase fluctuations Vo of the wave at the point 

To calculate the statistically average video signals, we use the following assumptions: 
A. The fluctuations of A and ( are statistically independent. 
B. The scattered component of the field of the illumination beam 

Vs = Vo - (Vo) = A s e  - i ~ s  (67) 

fluctuates in accordance with the normal law such that its amplitude and phase have the following distri- 
butions: 

: , 

P(~s) = 1/2~r (0 < ~os < 21r). 

C. The probability density r can be approximated by the function 

(68a, b) 

(69) 

D. The envelope of the autocorrelation function of the souading signal has Ganssian shape (see 
~ .  (16)). 

E. The field of large-scale fluctuations of permittivity of the medium (el) is statistically homoge- 
neons in the plane z = const. 

Calculating the statistical means of Sum, we ass-me that the variable ~Vo• is one of the arguments 
of A and ~ (previously, the dependence of these functions on ~0• was not shown explicitly). We also take 
into account that under the condition (E) the statistical moments A(~o• ~• z) and ~(~'o• ~• z) depend 
only on the variables ff = r'0• - ~• and z. For the mean-square amplitude of the field ~ and the intensity 
of its nonscattered component, we use the special notations 

E(fi, z) = 

1 . . ,  . . ,  

E ~ ( # , , )  = ~[(Vo(~o• ~ 

and note that under the condition (B) the following relation is fidflled: 

<A4> / 4 = 2E2 2 - E~s . 

(7o) 

(71) 

(72) 

With allowance for conditions A, C, D, and Eq. (72), the statistically average images JI,2 = (Sut.2) 
are presented as 

8 (ESA)t/2E(~, zi) bl (7.o - z~, zi), (73) Jt(eo,_, z) - v ~ k 0  

4~(ESA) 
J ~ ( e o . ,  ~o) - ~ " 1 2 E ~ ( ~ ,  ~,~ - - ~  ~ ~ ( ~ ,  ~,)J ~ ( ~ o  - ~,, ~, ) ,  

k~ 
(74) 

b~,2(Az, z~) = t + 2~ ~ exp --(Azj..2), ~ + 2~o',~J ' (75) 
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z0 = c~0/2, ~ ~- r - H i ,  Az~ = ~-r Az2 = ere 2 " ( 7 6 a -  d) 

The quantity zi is given as an argument of the functions bt,2 because the parameters (~) a~d e~ 
depend on zi; E(~, z) is the distribution of irradlance (statistically average density of the energy flux) in 
the medium from a continuous radiation source with unit power and directivity characteristics, which are 
aimilar to those of the actual illumination source, or, in other words, the Jr'radiance in the illumination 
beam divided by the source power; E ~  is the irrarliance by nonscattered light (E and F~, have the 
, imension 

To calculate the three-dimensional image of inhomogeneity, in addition to the clistributiona E and 
Eat, vm mtmt know the parameters (~) and a~, which are expressed in terms of the time characteristic~ of 
the &pulse light beam. 

Indeed, using Eq. (61), we see that if a source with power P = W0 6(0 forms the h'radiance field 
E$(~ t) in the medium, the probability density ~ is expressed in terms of E$ as 

(77) 

and the parameters (r and a~ are related to the time characteristics of the light pulse that arrives at the 
point F via the relations 

( 4 ) = d - z ,  { =  f t E s d t  E~dt,  (78a~b) 
b O O  ~ O O  

OO O0 

Note that irradiance in the continuous illumination beam is also expressed in terms of the pulsed 
irradi~ce ' /  

E = Woo E,  dt. (80) 
--OO 

A~ is obvious from Eq. (73), Lu the case of Linear detection of a signal, the two-dimensional image 
of the point inhomogeneity repeats the distribution of irradiance (E) in the section of the illumination 
beam by the plane z = zi. In quadratic detection (see Eq. (74)), it reproduces approximately the squared 
distribution of irradiance. The absence of one-to-one correspondence between the functions ,/2 and E 2 
is attributed to the fact that in the case of use of a quadratic detector the spatial fluctuations of the 
illmnination-beam intensity contribute to the statistically average image (enhanced backscattering in a 
medium with large-scale inhomogeneities [13]). This contribution is a function of the field-fluctuation 
atatistica and is minimal under the condition B, which can be violated if a medium has inhomogeneities 
similar to short-focus lenses. 

In the case of quadratic detection the image is sharper (leas blurred). However, its fluctuations are 
stronger, which is confirmed by the estimates of the signal-variation coefficients: 

6so,., = # < ( s . , , , -  (81) 

These coefficients are related to the statistical moments of the illumination-field amplitude via the relations 

6Su, = r - (A2) 2 r  8) - (A4) 2 
(A2) , 6Su, = (A4) , (82a, b) 
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from which, in particular, for Ens << E we have 

&gut = 1, 6,.qua = V~. (83a, b) 

7. AN IMAGE OF THE MEDIUM WITH CONTINUOUSLY DISTRIBUTED SCATTERERS. THE 
EQUATION OF IMAGE TRANSFER 

As a result of backscattering of an iU,,mlnation beam from small-scale inhomogeneities of the 
medium, each inhomogeneity generates the correlation response iu N b0(~) cos wok with random amplitude 
and phase. If the m,mher of inhomogeneities in the resolution element is large, the sum of these responses 
forms a noise- like signal iu with statistically mean (iu) = 0. After the detection of iu a regular component 
appears in the signal. It is calculated by substituting Eq. (63) into Eq. (65) and averaging Sui,2 over 
the field-realization ensembles el~. The statistically average images of the medinm axe described by the 
expressions 

J=CF_LO, zo)= (Su.)= 21rak~ / ~(~' ,  2ko)<A4(Fxo,~b~C'r)>daF, (84) 
V 

4 = (s.,) = 12J2, (85) 
m 

where z0 = ct0/2, ~2, and r axe determined from Eqs. (3) and (64). Deriving Eqs. (84) and (85), we 
assumed the large-scale (et) and small-scale (e2) fluctuations of e to be statistically independent and 
used the condition of smallness of the correlation radius (/2) of the small-scale fluctuations compared 
with the scale of the spatial inhomogeneity A2(r -') and the size of the resolution element with respect to 
distance (Crc/2). In Eq. (85), we astatine that the quadrature components of the current iu (Re/u, Ira/u) 
are distributed according to the normal law. 

In accordance with Eqs. (84) and (85), the images JI,2 bear information on the spectral density of 
fluctuations e with spatial frequency 2ko. 

The function of volume scattering (15) of a randomly hahomogeneous medium (differential cross 
section of the scattering of its volume unit) is expressed in terms of the total spectrum of the permittivity 
fluctuations 

�9 (e, ~) = ~ ( e ,  ,,) + ~2(e, ~) (86) 

in the form [14] 

(87) 

(V is the scattering angle). Therefore, with allowance for the condition ~I(F, 2k0) -- 0, in Eq. (84) we 
a s s u i n e  

2 1 
2ko) = = (88) 

where 

is the backscattering coefficient (the effective area of backscattering of a unit volume of the medium). If 
we use the expression for (A4b~) from Section 5, ,/2 can be written as 

J2(eo) = / aoCr-') Q(r'o - r-') da~ ", (90) 
V 

Q(p~ = 4~'kO 2 [2E2 (~..L., z0) -- .E~n,,(~..I_ , z0)] ~(p,.., z0), (91) 
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cto 
where ~" = ~'• + z- s g0 = r'0• + z0- ~0, ~ = P• + Pz" ~0, z0 = - - .  2 

Equation (90) is a three-dimensional analog of the image-transfer equation [6, 9], and the function 
Q(p-') is the three-dimensional function of point blurring (FPB). The statistically average image of the 
point inhomogeneity (determined by Eq. (74)) is obtained from Eq. (90) using the formal replacement 

a0(~ = (ESA) 6(e- ~,) (92) 

and is expressed via Q as 
J2(•o) = (ESA) - Q(r'o - ~). (93) 

Therefore, the statistically average images of local inhomogeneity and distributed scatterers are 
described by the universal formulas (90) and (91). However, their random realizations differ markedly by 
the fluctuation level. The signals Su, and Su, arriving from the small-scale inhomogeneities are distributed 
as the amplitude and intensity of normal noise, respectively. They are characterized by the variation 
coefficients 

6Su, ~ 0.523, 6Su, = 1, (94) 

which are approximately two times smaller th~n the coefficients (83). 

8. THE, FU'NCTION OF POINT BLURRING 

As is obvious from Eqs. (90) and (91), to study the regular component of the image (,/2), we must 
have the FPB model, which can be developed on the basis of the data on irradiance distribution in a 
continuous ill,,mlnation beam (E) and the parameters { and (At) 2 characterizing the group delay and 
blurring of the 6-puise signal as it passes through the scattering medium. 

Calculating the FPB, we must allow for the presence of the focusing system between the emitting 
end of an optical waveguide and the boundary of the medium. For this purpose it suffices to replace M 
in Eq. (52) by the function M0(~'• which describes the distribution of the field V0 at the output of the 
focusing system and satisfies the normalization condition 

0 0  

/[M012 d2~v• = 1. (95) 
--OO 

Recall that V0 is the wave beam field in a fictitious medium without small-scale b~homogeneities. 
This medium is characterized by the function of vol,,me scattering flz (z, "y) ,., @z (see Eqs. (86) and (87)), 
the small-angle scattering index 

,n (~) = 2,~ ~ (~, .y) sin.y d.y = B. ,  ( . ,  p) alp, 
0 0 

the small-angle scattering indicatrix 
xz(z, ~) =/~l/az, 

the attenuation index a(z), and the effective absorption index 

~l(z)=~(z)-~1(z). 

(96) 

(97) 

(98) 

It is assumed that a coincides with the attenuation index of the actual medium (which allows us to 
take into account the energy losses of the illumination beam due to the light scattering from small- scale 
inhomogeneities). 

To divide the measured function of volume scattering of the medium into the high-directivity (81) 
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and weakly anisotropic parts, it is expedient to use the relation 

.a, ~ < ~/4,  
/~1= 0, 7>~r /4 ,  (99) 

or to describe ~t using a function that approximates ~ in the region 0 < 7 < ~r/4 and rapidly falls 
off exponentially for 7 > ~r/4. In this case, the effective absorption index of the medium (~t) and the 
small-angle scattering index (al) are related to the index of true absorption s(z) and the total scattering 
index o'(z) via the relations [9] 

sl  = ,r + ~o45a, al = (1 - ~o4s)a, 

~,5 = / ~s inTdT/  / ' s i n T d 7  
,r/4 

(lOOa - c) 

(~o45 is the fraction of light scattered by an elementary volume of the medium to the angles 7 > 45~ For 
the Heny-Greeustein scattering ]ndieatrix, which is usually used in the problems of optics of tissues, the 
relation 

~45 = 1 - (cosT> (IOI) 

is fulfilled with very high accuracy ((cos 7) is the average cosine of the indicatrix). Therefore, in the future 
we shall identify the parameter ~t with the traaqport attenuation index 

~;1 = at = at +~,  at = (I - (cos')'))a. (io2) 

On the basis of solution of the radiative transfer equation (RTE) in the small-angle approximation, 
the distribution of E in a stratified turbid medium is presented as [15] 

co 

E(Fi, z) = f f  c(F,, z)e~-~F,, 
--CO 

] C(h,z) = Cas(h,z)exp cq(z -- z')'~(z - z',hz')dz' , 

~.(h,z)  ~ ~ f f  M 0 ~1 "~ 2 k  0 / M~ - e-ihF-Ld2~l, T o = fIT(Z)dz, 

(103) 

(104) 

(105a, b) 
- c o  0 

co /co ~co 

0 0 0 

The distribution of irradiance Em created by the nonscattered component of the light beam is found by 
replaci-g Eq. (104) by Eq. (105) on the right-hand side of ~ .  (lO3). 

In particular, for the focused Gaussian beam, assuming that 

( -r~'Lg- + ik~163 
Mo exP - . ~  2zf ] (1o7) 

and the focusing system aperture is shifted from the boundary of the medium by the distance Az, we 
obtain 

E n , ( ~ ,  z) = ~ exp - , 
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{'z + Az  ~ 2 " 
a 2 - - a ~ ( I  z+_.AZ~zf 12+~, ~0a0 ] (109) 

We use a0 to denote the effective radius of the beam at the focusing system aperture, z4 is the distance 
from the aperture to the focusing point, and a is the effective radius of the beam at the depth z. 

Using the appropriate approximation for x1(7), we present the total irradiance (E) in the form of a 
single integral, which m~ it possible to develop sufficiently simple numerical algorithms for calculating 
the FPB and J2. For apprcmmate estimates (to which we confine ourselves in this paper) one can use the 
simplest (although rough) expression for E in the form of the sum of E~s and the Gaussian distribution 
of irradiance whose parameters are chosen such that the integral characteristics of the beam (total power 
and distribution variance of irradiance in its cross section) are described by the formulas [6, 16] of the 
smaILangle diffusion approximation of the theory of radiation tr~qfer:* 

E = Ens + Es , Es  = waP~ exp (-~--~-l~ ~ \ a-s] ps = e-., _ e-~., 

/ a2s=a2+~ ~ ~'.z 2 (i-e-'-), 

(110a  - g) 

~r/4 �9 =14 

I 

f t =  a t ( z ) d z ,  and r ~ = a l z .  
0 

Here Es is the h-radiance of the plane z = const by scattered light, Ps is the power of the scattered 
component of the fight beam, a~ is the variance of irradiance distribution in a light spot that is formed 
by scattered fight, and (9"2> is the variance of the high- directivity part of the scattering indicatrix. 

To estimate the parameters (~) and r that enter Eqs. (75) and (91), we use the formulas resulting 
from the self-similarity solution of the RTE in the small-angle diffusion approximation [17, 18]: 

(111a, b) 

560 

Although, unlike Eqs. (103)-(I06), Eqs. (ii0) and (111) are written for the case az = const, they 
are rather simply generalized to the arbitrarily stratified medium. 

9. THE FREQUENCY-CONTRAST CHARACTERISTIC (FCC) OF THE OCT SYSTEM 

Equation (90) allows us to consider the image J2(~ as a spatial signal, which results from the 
passage of the signal a0(~ through a linear filter with pulsed response Q(p-') and frequency characteristic 

M(h, zo)e -i~ = f f /  Q(E zo)e -i~'~d3 Qd3~, (112) 

"A similar method was used in [17] to improve the self-similarity solutions of the tratmf~" equation. 
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which is called optical transfer function, and its absolute value M is called the frequency-contrast char- 
acteristic. If we ignore the dependence of the parameters (~) and a~ on ~• and present h in the form 

= h• + h. �9 zo, then, under the condition of axial symmetry of the ill-ruination beam, from Eqs. (91) 
and (112) we obtain 

M(h, zo) = M•177 zo) Mz(hz, zo), 

M• = l(h• h• = ]g• 

O0 

f - E.i,(.o• , f(h• = 27r [2E2(p• 2 zo)] So(h•177 do• 
0 

(113a- e) 

M,(h,,zo)e -i'p = f b2(p,,zo)e -/a'p" ~dp , .  
- - 0 0  - - 0 0  

According to Eqs. 
coefficient 

(90) and (i13), when observing a layer of the medium with backscattering 

so(e• z ) = ~ ( 1  + ~ ~ h•177 (H4) 

the image of this layer 

J~(~o• = ~ [ 1 +  ~ c ~  ~•177 
reproduces the variations of ao with contrast 

(115) 

m = ~ M •  (116) 

if the layer thickness is greater than the size of the resolution element with respect to distance. Therefore, 
M• is considered to be the contrast transfer coefficient of the sinusoidal component of distribution a0(~*• 

The average "brightness" of the image -/2, as the FCC, is expressed in terms of the function f:  

= ~ f  Q a~e *= 4~'~c'r~-2/(o, zo). 
V 

(11~') 

Using Eqs. (108)-(110) and Eq. (113d), we write this function in the form 

f(h• = e-2~ 

+ 4e-~'( 1 -e -~ ' )  e-,-d~C~• + (1 -e -~- )  2 e_.Ch~o), ] 
1+~o ~ ' 

1 .T~ (i_ e_~.)_, ~, = a ~ / a ' =  1 + ~ 
z,o 

o =  f I TO" = 0"1 Z 0 , T t  = C~ t d z .  

o 

(l18a - e) 

The results of calculation of M• using Eqs. (l13b) and (118a) are shown in Fig. 2 in the form of the 
curves presenting the FCC dependence on the optical depth to. at which the observed layer of the medium 
is located. Each curve corresponds to a certain value of the parameter C and the given value of l• 
where l• = 2~r/h• is the scale of the inhomogeneity a0 and 2a is the diameter of the light spot formed 
by nonscattered light in the plane z = z0. We ignore the dependence of a on zo, assuming that zo << Az, 
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A z  ~ zf, and a ~- (zf/koao) (see Eq. (109)). 

The curves in Fig. 3 illustrate the dependence of Ig M• on the absolute values of z0 (in man) and 
l• (in/~m) with the values of (72) and al typical of sl<in [19]. 

Using the data in Fig. 2, we conclude that it is po6sible to observe the internal structure of tissues 
with sufficiently high transverse resolution (l• < 20a) at optical depths ~'a < T ~ "~ 5 + 10. We should note 
the nonmonotonic behavior of the dependence of T ~ on G (which is proportional to a~): T ~ is minimal 
for G ,,~ 1 and increases as G varies toward larger or smaller values. Such a dependence of T ~ on G is 
explained by the competition of two phenomena that  influence the resolution: (1) in a more transparent 
medium, the confocal observation gives a higher resolution gain; (2) the optical depth Tr at which the 

illumination beam is broadened the given number of times, increases with the scattering index as a~/3 
(see Eq. ( l l0d)).  In this case, the absolute values of the depth of inbomogeneity visibility TO/at increase 
monotonically as at decreases (see Fig. 3). 

The contrast losses in observation of the layered structures in the tissue are characterized by the 
function M,.  The image of the stratified medium with backscattering coefficient 

no(z) = ~ ( 1  + ,no cos h,z)  (if9) 

has the form 
J2(~0) = ~ [ 1  + , ~  cos(h,~o - r  

It reproduces distribution (119) with contrast m = moMx and spatial shift Azo = r  
are determined from Eqs. (75), (90), and (113) as 

h ,  ~ = ~ . r  + 2 , ,  , 

02o) 

which 

(121a - c) 

a~o  = ( r  

According to Eq. (121a), the coefficient of contrast transfer Mz exceeds 1/e if the spatial scale of 
the observed structure Is = 27r/h, satisfies the condition 

l= > ~, = 9 , q h  ~ (1~2) 

In the initial interval of optical depths when the scatter of photons over the scattering paths is small 
compared with the coherence length of the sounding signal,/0 = V~(crc/2). As is obvious from Eqs. ( l l l b )  
and (122), the substantial blurring of the coherence function that leads to an increase in ~ (and a decrease 
in hz) by a factor of 2 occurs at the optical depth 

7~=-atzo=2.9~/a lCTc/ (72) .  (123) 

For example, if (V 2) -- 0.03 and crc/2 = I0 ~m, then F_~ I. (123) yields r~ = 10.6 (zo -- 0.53 mm) 
for al  -- 20 ram-l ;  r~ - 7.5 (zo = 0.75 ram) for al  = 10 mm -I .  The dependence of I ~ on the depth of 
location of the observed layer of tissue (for the above parameter values) is shown in Fig. 4. 

The light scattering from large-scale inhomogeneities leads to a videosignal delay by time (~)/c, 
which results in a systematic error in determination of the distance to the dement  of the medium from 
which the signal arrives: the distance is increased by Azo ---- (~). The dependence of Azo on z0 calculated 
by Eq. Cilia) is shown in Fig.4. 
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Fig. 2. Frequency-contrast characteristics of M •  as a function of 
1-~ = GI zo for different parameters C = 3(o'ia)2/(,72): a) C = 0.01 
are the solid curves and C = 0.1 is the dashed curve; b) C = 1.0 are 
the solid curves and C = 10 is the dashed curve; the figures denote 
the values of l •  I j .  = 2~r/h.L is the scale of inhomogeneity of 
the backscattering coefficient, and 2a is the focal-spot diameter. 

10. ATTENUATION OF THE USEFUL SIGNAL AND LIMITING VISIBILITY DEPTHS 

The depth of visibility of the internal structure of tissues can be limited not only by contrast losses 
but also by attenuation of the average "brightness" of the image (~) .  Using Eqs. (29), (117), and (l18a), 
we present J2 in the form 

J2 = {p--#) (124) 

in terms of the average coefficient of signal transfer, which is determined from the formulas 

CO-~) = ~-~CTc(kOa)-2e-2np(7-<r), 

8 e_ ,~ (1  _ e _ , .  ) + 2 ( i  _ e _ , . y .  
p(r~,) = e - ~ "  + 1 + ~o 

(125a, b) 

The results of calculation of p(rr for several values of the parameter C are shown in Fig. 5. As is 
obvious from the figure, the region of exponential attenuation of the signal is clearly observed only for C 
below 1 when the ratio between the beam diameter and the photon free path is smaller than the r.m.s. 
angle of the beam deflection in an elementary scattering event. The signal decreases rapidly with optical 
depth as the beam radius or the scattering index of the medium decreases. However, its absolute values 
increase with the power of a signal arriving from the front tissue layer. Under the conditions 

_3..-2r. (126a, b) ~r~ >> 1 and r 3 > C > %~ , 

to estimate (p---~), we can use the simple asymptotic formula 

12 (~I  (cr~l (kozo)_2e_2.,. (12z) 
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Fig. 3. Frequency-contrast characteristics of M •  for the skin- type 
medium as a function of location depth of the observed tissue 
layer (mm): 2a = 15 #m; (72 ) = 0.03 ((cos'),) = 0.9); a t  = 
20 mm - t  are the solid curves, a t  ---- 10 rnm - t  is the dashed curve; 
l• = 27r/h• = 75 pm are curves 1,150 pm are curves 2, and 300 #m 
are curves 3. 

Note that for (cos 7) > 0.8 the optical characteristics of the medium with the Heny-Greenstein 
scattering indicatrix are related as 

at = (cos 7)a, a--~ ~ at = (i - (cos T))a, 

(~) -~ 0.3(t - (cos 7)), 

which allow us to exclude the parameters ~-~, at, and (q2) from Eq. (127) and write it in the form 

~ /  e -~'  (cosT), 

(128a - c) 

(129) 

where ~o = c/fo, c is the velocity of light in the medium~ and 7"t = (at + k)zo is the transport  depth from 
which the scattered signal arrives. 

As is obvious from Eqs. (125a) and (129), the transfer coefficient of the signal that  is reflected from 
the uppermost  layer of the tissue is equal to 

{p~( z=O ) ) = otCrc(k0a) -2, (t3o) 

and the power losses in the case of direct and back passage of the signal through a tissue layer with 
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Fig. 4. Systematic error in determination of the distance (Azo) and 
minimum period of the contrastly mapped layered structure (l 0) as a 
function of the sounding depth zo: (72) _ 0.03; (c'rc/2) = 10 #m, 
at = 20 mm - t  are plotted by solid curves and at = 10 mm -1 are 
plotted by dashed curves. 

thickness z0 are determined as 

( p - ~ / ( p ~ ( z = O ) )  = 2o (~'r)~-~" (131) 

For at = 1 mm -1 ,  k << at,  Crc/2 = 10/~m, )~o = 0.8 #m,  2a = 15 pro, (cos 7)  = 0 .9 ,  a n d z o  = 1 ram, 
Eqs. (130) and (t3t) give 

0~-~(z=o))  = 5 . 8 .  lO -6 ,  (p -~ ) / (p -~ (z=o) )  = 1 . 7 . 1 o  - 4 .  

This example shows that losses due to propagation of light in a tissue are a small fraction of the 
general loeses, and the exponential attenuation of light exerts a relatively weak influence on the average 
brightness of the image of deep layers of a tissue. 

After the replacement ~-~ --~ a0(F0), ~ --~ J2(Fo), Eqs. (124) and (127) can also be used to calculate 
the images of large-scale inhomogeneities of the backscattering coefficient if their transverse dimension is 

I~ > zox/0.1- Tt. (132) 

The sign;~l from inhomogeneities with such dimensions and "true contrast" 

= (~o - ~)I~ (133) 
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Fig. 5. Signal-power transfer coefficient (p-~) divided by (p-~(z=0)) x 
exp(-2~'t) as a function of ~-~ = a l  z0. The numbers denote the 
values of the parameter C. The maxima on the curves show the 
backscattering enhancement. 

is distinguished ag'~iTLqt the background of shot noises of the receiver under the condition (see Eq. (38)) 

m0 ~-~) > ~(I + ~)(SlN)01 x, (134) 

where (S/N)o is the threshold signal-to-noise ratio. In this case, the visibility range (zo) is determined 
from the equation 

,,,o,~(~r .1 
z~176 = (cos-y)~(1 + 6)(SlN)o j ' (135) 

from which it follows that for the parameter values shown in the above example and under the conditions 
(S/N)0 = 5, $ << I, mo/(cosT) = 0.5, r/P0 = 50 pA, and fl =/~f0 = 1.5- 105 Hz (/~ = 5.4- 10 -1~ 
z c ----- 1.5 ram, and tc = 0.025 sec) the distance is 7-o = 1.16 ram. 

We note that in the general case, when estimating the visibility range, along with the internal 
noises we must allow for the spatial noise generated by the fluctuations of the useful signal itself (speckle 
noise). Its correlation scales coincide with the dimensions of the decomposition element (one of them 
is the line width, and the other is Crc/2). Therefore, the useful-signal fluctuations do not prevent us 
from observation of inhomogeneities a0 with sufficiently high contrast m0, if the inhomogeneity image 
contains a large number of elements. However, the visibility of local scatterers and weak-contrast large- 
scale inhomogeneities is restricted exactly by speckle noise. Their visibility can be estimated by standard 
methods on the basis of the data on the signal-fluctuation statistics and characteristics of the statistically 
average image. 
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II. CONCLUSIONS 

Having compared the OCT and laser-pulsed vision methods, we conclude that although they use 
different ways of forming the resolution element with respect to distance, this difference has no impact on 
the informative properties of the image. An analog of the OCT system is an equivalent pulsed system. 

In acx~rdance with the equivalence principle, the turbid-medium tomograms formed by the OCT 
system with linear amplifier and quadratic detector of a videosignal can be described directly by the theory 
of pulsed vision based on the image transfer equation and such notions as the function of point blurring 
and frequency-contrast characteristic. The structures of tomograms obtained in the case of quadratic and 
linear detection ofa  videosignal are related by a simple ,,nlvemal relationship. In both cases, the tomogram 
bears information on the space variations of the backscattering coefficient of the medium. 

Thanks to the single-mode regime of radiation and reception of signah and the regular nature of 
the time structure of a videosignal that forms an image of a point object, the turbid-medium tomogram.~ 
have the same speckle noise as in holographic images and show coherent backscattering. The useful effect 
is an increase (by 3 dB) in the intensity of a signal that arrives from the medium from large optical depths. 
The negative effect is an increase in fluctuations of the image brightness and violation of the monotonic 
character of the dependence of the average brightness on the depth in the image of the subsurface layer of 
the medium (which is not related to stratification of its optical properties). 

Similar phenomena will appear due to the scattering of light from the boundary irregularities of 
the medium. To estimate them, we can use the results of the theory of optical observation through a wavy 
sea surface [20, 21]. 

In the OCT system with heterodyne photoreceiver, the radiation-source energy is used less effi- 
ciently than in the pulsed detection with direct photodetection of the signal. However, in the femtosecond 
tomography of biological tissues, the visibility depth of their structure is malnly restricted by resolution 
losses rather than by energy losses. 

In particular calculations and estimations we used the simplest (therefore, roughest) models of the 
light fields. A more universal and rigorous description of tomograms can be developed on the basis of 
Eqs. (103) - (106), which also allow us to study the possibilities of reconstruction of optical properties of 
a stratified medium from its images and analyze the possibilities of correction of image distortions related 
to the inhomogeneity of optical characteristics of the medium on the propagation path of the sounding 
and backscattered signat~. Equations (121c) and (111a) can be used directly to eliminate the error in the 
determination of the distance to the scatterer that is mused by the photon spread over the paths. 
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