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Rational Approximations to Certain Numbers

B. G. Tasoev UDC 511.3

ABSTRACT. The exact order of approximation to certain numbers by rational numbers is established. The basic
tool for this purpose is an expansion in regular continued fractions. Some new such expansions are also derived.
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In 1978 Davis [1] proved that for any € > 0 there exist infinitely many rational numbers p/q satisfying

the inequality
1 Inin
e— _p" < (—-I-a)-;—q,
q ¢*Ing

while the inequality

P (1 B ) Inlng

e p ! < 5 € ZIng

has only finitely many solutions. The proof of this assertion was carried out by using the continued-fraction
expansion of the number e

e=[2;1,2,1,1,4,1,1,6,1,...] = [2; T, 2+ 2X, 1],

obtained by Euler, as well as the integral representations for the numerators and denominators of the
convergents of this continued fraction. Here we have used the symbol 1,2+ 2X,1 to denote the infinite
sequence of numbers obtained by successively joining the blocks 1,2 + 2,1 for A = 0,1,2,.... Such
abbreviated notation will be used throughout the paper.

The continued fraction

a
bo +
az
b +
by + —>
2 b3+ .-
will be written as 4, ay as
by 4+ -1 22 28 . 1
0+b1+b2+b3+ (1)
(see [2]) and in the case a; = a3 = --- = 1 the conventional notation [by; by, b, b3, ...] is used.

The main result of the paper is the following assertion.

Theorem 1. Suppose that a number o is defined by the continued fraction

0= [Bo; br,..rs by, 1 F ALy - s Cm + Adoml,

where all the b;, c¢;, d; belong to Z and the d; are nonnegative, while b;,c;, i1 > 1, are positive. Suppose
also that Q is the number of nonzero numbers d;, 2 >0, and

d = max d;.
1<i<m
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Then for ¢ = Q/d and any € > 0 the following assertions are valid:
1) the inequality

Ining

¢*Ing

a——%’[ <(c+¢)

has infinitely many solutions in rational numbers p/q;
2) the inequality
Inlng

< (C—é‘)m

p
a——-
q

has only finitely many solutions in rational numbers p/q.

If in the continued fraction for « all the numbers d; are zero, then, as is well known, in this case « is
a quadratic irrationality and does not admit rational approximations of order better than 1/q>.

The Davis assertion follows from Theorem 1, since in our case 2 = 1 and d = 2. The proof of
Theorem 1 uses the elementary properties of continued fractions and is much simpler than the proofs of
the Davis theorem. Below we consider a number of other examples. Further, new expansions of some
numbers in continued fractions of the type described above will be obtained. The properties of continued
fractions are described in the books [2, 3].

The following lemma is concerned with arbitrary regular continued fractions, not necessarily of the form
described in Theorem 1.

Lemma 1. Suppose that o = [ag, a1, az,...] is a reqular continued fraction and p,/q,, n >0, is a
sequence of its convergents. Then the following inequalities are valid:

1 Dn 1
—_— L |- <, n>1 2
(an+1 +2)‘372; dn an+1q;')z ’ ( )
al"'anSQnSFn’dl'“an7 nZl, (3)

where F,, is the Fibonacci sequence.

Proof. Essentially, all the inequalities of this lemma are well known. By [3, Chap. 24], the following

relation is valid:
1

B (an+1(In + (In-l)Qn ’

P

qn

where o, 41 is the complete quotient of the continued fraction. Hence from the inequalities
An+1 S Ont1 < Gpni1 + 17 0 .<. dn-1 S n

we obtain the estimates (2).

To prove inequalities (3), let us use the induction method. For n = 1 and n = 2, inequalities (3)
obviously hold. For n > 2, it follows from the relation g,4+1 = Gp+1gn + gn—1 that apt1qn < gn1 <
On+1(qn + @n-1). By the induction assumption and the recurrence equation F,,; = F, + F,_; for
Fibonacci numbers, from these inequalities we obtain inequalities (3). O

We shall apply this lemma to the number « from Theorem 1. In this case a, = b, for n < s. But if
n > s, we define integers ¢ and r by the relation n —s=mt+r, 1 <r <m. Then a, = ¢, +td,.

Lemma 2. Under the assumptions of Theorem 1, the following asymptotic formula holds as n — oco:

In(a; ---ap) = —1% -n Inn + O(n). (4)
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Proof. If on the left-hand side of (4) we discard all factors corresponding to the numbers b; as well as
to the numbers ¢; + Ad; with d; = 0, then the resulting error will be O(n). Therefore, it suffices to prove
Lemma 2 under the assumption that s =0 and for any j the condition d; # 0 holds, i.e., 1 = m. Now
the assertion is easy to prove with the help of the relation

cilei + di)(ci + 2d;) - (c; + tds) r(g-) = d§+1r(a°-‘; +t+ 1)

and the asymptotic formula for the logarithm of the gamma function. O

Proof of Theorem 1. First, let us prove the second assertion of Theorem 1. If the rational number
p/q is not a convergent to the number «, then the following inequality is valid: (see [3, Chap. 25])

P L
q| ~ 2¢2

and therefore, the inequality from assertion 2) of the theorem no longer holds for large g.

If p/qg = pn/gn, n > s, is a convergent to the number «, then we define integers ¢ and r so that
n+l—-s=mt+r, 1<r<m. Then any1 =c. +td,.

If d. =0, then it follows from the left-hand inequality (2) that

Dn 1
a-2> —m .
qn| — (c‘r+2)Q121.

This contradicts the inequality from assertion 2) of Theorem 1 for large n.
But if d, # 0, then from the left-hand inequality (2) we obtain

Pn| 1
— 2 .
gn| = (tdr +cr +2)q2

In view of the fact that In F, = O(n), from (3) and Lemma 2 we obtain

(5)

a—

Ing, =In(a; ---a,) + O(n) = -;2—7’ ‘nlnn+ O(n)

and

t= i (14 0(1)) (6)

—— - (1+0(1)). (7)

Since d, < d, it follows that inequality (7) contradicts the inequality from assertion 2) of Theorem 1 for
sufficiently large ¢.

Thus any solution p/q of the inequality from assertion 2) has a denominator bounded by some constant
depending on «. The proof of assertion 2) is complete.

To prove assertion 1), we choose r so that d. = d, and set n+1 = s+mt +r for an arbitrarily chosen
positive integer ¢. Then we have a,y; = ¢, +td, and from the right-hand inequality (2) we obtain

atrlo L .
| (td+c)i’
by (6), this leads to the inequality
Dn Q Inlng,
a-2nl . S(1+0(1
gn| d gilng, (1+ (1)

valid for all positive integers ¢. This means that the convergents p,/q, with n+1 = s+mt+r, where r
is defined by d,. = d, and t is any sufficiently large integer, satisfy the inequality from assertion 1) of
Theorem 1. [

Let us now derive corollaries of Theorem 1.
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Corollary 1. The number

2 e¥e-1
tanh;=;—27a—_{-:—-1—, QGZ, (Z>0,

satisfies the assertion of Theorem 1 with constant ¢ = 1/(2a).

This assertion follows from the expansion tanh(2/a) = [0; (1 + 2\)a] proved by Euler in 1737. Note
that the paper [4] contains only the proof of the existence of a constant ¢ for which the second assertion

of Theorem 1 for the number tanh(1/a) holds. For similar results, also see [5].

Corollary 2. The numbers €2, el’®  and €/, where a,b, a >2, b>3, are integers and b is odd,
satisfy the assertion of Theorem 1 with constants c, equal to 1/4, 1/(2a), and 1/(4b), respectively.

This assertion holds on the strength of the following classical expansions in continued fraction (see [6,
Chap. 14)):

e?=[7;2+3X,1,1,3+3N, 18+ 12X, et/r=[;(1+2)a—1,1,1],

206 — {1; b—;—l +3b), 6b + 12b), i;—l 4300, 1, 1}.

Note that the assertions on the numbers e/, ¢?/® are proved in the paper by Davis {7].
In the next theorem, we present a number of expansions in regular continued fractions, from which,
using Theorem 1, we can be obtain results on rational approximations.

Theorem 2. The following expansions in continued fractions are valid:

v 1
\/;tanhﬁ—-[o,(4/\+1)u,(4/\+3)u], u,v €N, (8)
aet/* =la+1;2a—1,27+2, 1, a €N, (9)
a et =[0;a—1,2a,1,2A+ 2, 2a — 1], a€Z, a>1, (10)
% =[5;2,3,2A+2,3,1, 27+ 2], (11)
3¢=1[8;6,2,5 20 +2,5,1,2A+2,5, 1,20+ 2, 1], (12)
de=1[10;1,6,1,7,2, T, 7 +2,7,1, A+ 1,1), (13)
%e=[1;2,2)\+1,3,1,2)\+1,1,3], (14)
1
5e=00;1,9, T, 23 +1,5,1,2X+ 1, 1,1, 26 + 18X, (15)
1
76=00;1,2,8,8, L, LX+1,7, 1,3+ 1,2, (16)
1
tan5=[0;a——1,1,(2/\+3)a—2], a€Z, a>1, (17)
tanl=[1; 2X+1, 1], (18)
1
\/Etanﬁz[l;(4/\+3)a——2,1,4/\+3,1], a €N, (19)
1 1
— tan— = [0: a — —
7 a.n\/a 0;a—1,1,4A+1,1,(4X+5)a — 2], a€Z, a>1, (20)
2 tanl=[3;8,T,3\+ 2, 2, 3A + 3, 12X + 20], (21)
1
5 tanl=[0;1,3,T+3X, 1,12+ 2, 1,3+ 3%, 2. (22)

To prove this theorem, we use some classical expansions of the values of analytic functions in nonregular
continued fractions, as well as the following assertion.
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Lemma 3. Suppose that rg =1,7r,,79,... are nonzero numbers and
*
ay =TpTp-18n, n=1,2,3,..., b, =rpbn,, n=0,1,2,....

Then the continued fraction

at a’
b+ — 2
07 b 4B+

converges to the same number as the fraction (1).
Proof. For the proof, see [2, Theorem 2.6]. O

Proof of Theorem 2. To prove relation (8), set £ = /uv in the relation tanh(1/z) = [0; (2A + 1)z]
and use Lemma 3 with 19 = 1, rorys = U/, Tog+1 = u/v, k> 0.
The expansions (9)-(16) are proved by similar methods. For example, to prove relation (9) we set
z = 1/a in the expansion [2, relation (6.1.37)] and then apply Lemma 3 with ro = 1, rox = a, rox—1 =1,
k > 1. As a result, we obtain the expansion
1 1 1 1 1 1 1
Vo g4~ — Z — Z — Z ...
ae a+1—2a+3—-—2a+5—-2a+7-— ) (23)
Let P,/Q, and p,./q. denote the sequences of convergents for the right-hand sides of (23) and (9),
respectively. By induction on n, it is easily shown that
Pont1 _Psn Pany2 _ Pania n>0.

3 bl
Qont+r  @Brn  Qontz Bl

This proves relation (9).
Relations (17)—(22) are also proved by similar methods. For example, to prove relation (17) we can use

the expansion
r z2 2. ¥ 2°

L% T T 2
nr=y 3 _F-7-9- (24)
(see [2, relation (6.1.55)]). The even part of the continued fraction (18) is of the form (see [2, Theorem 2.10])
L1111
2-5-7-9-—
Comparing this fraction with (24) for z = 1, we can easily find that (24) and, simultaneously, the continued
fraction (18) are equal to tanl. O

Note that all the expansions in Theorem 2 were not given in the literature. Let us indicate another
theorem proved in the same way as Theorem 1.

Theorem 3. Suppose that ap, a > 1, m > 1 are inlegers and
e 1 OO
a=[ao;a)‘,...,a’\] .

m

Then for ¢ =1/\/a and any € > 0 the following assertions are valid:
1) the inequality

a— gl < (c+e)q"‘°‘“’2 Ina/(m Ingq)

has infinitely many solutions in rational numbers p/q;

2) the inequality
p < (C _ E)q-z—,/z Ina/(m Ingq)

o — =
q

has only finitely many solutions in rational numbers p/q.
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[

[l i3]

The example to Theorem 3 yields the following expansion proved in [8]:

=) s
Za—-(a-{»—I)2 . H (a2m _ 1)—-—1

8=O°° :},:O =[0;a’a2’a3,a4,..‘}'
Za—sz . H (a2m _ 1)-1
§=0 m=0
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