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R a t i o n a l  A p p r o x i m a t i o n s  t o  C e r t a i n  N u m b e r s  

B .  G.  T a s o e v  UDC 511.3 

ABSTRACT. The exact order of approximation to certain numbers by rational numbers is established. The basic 
tool for this purpose is an expansion in regular continued fractions. Some new such expansions are also derived. 
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In 1978 Davis [1] proved tha t  for any ~ > 0 there exist infinitely many rational n u mb er s  p/q  satisfying 
the  inequality 

e -  < ~ + e  q21nq,  

while the inequal i ty  
e P[ l n l n q  

- < ( 1 - e ) q 2 1 n q  

has only finitely m a n y  solutions. T he  proof  of this assertion was carried out by using the  continued-fract ion 
expansion of the  n u m b e r  e 

e = [ 2 ;  1 ,2 ,  1, 1 ,4 ,  1, 1 , 6 , 1 , . . . ]  = [2; 1 , 2 + 2 A ,  1], 

obtained by Euler ,  as well as the  integral representat ions for the numerators  and  denomina to rs  of the 
convergents of this  conti imed fraction. Here we have used the  symbol 1, 2 + 2A, 1 to  denote  the infinite 
sequence of n u m b e r s  obtained by successively joining the  blocks 1, 2 + 2A, 1 for A = 0, 1, 2, . . . .  Such 
abbreviated n o t a t i o n  will be used th roughou t  the  paper.  

b0 + 

bt + 

The  cont inued fraction 

will be wri t ten  as 

al 

b2 + - -  

62 

a3 

b3 ÷ "'" 

al  a2 a3 . . .  
b0 + b-7 + + b-; + 

(see [2]) and in the  case al  = a2 . . . .  = 1 the conventional  notat ion [bo ; bl, b2, b3, . . .  ] is used. 
The  main  resul t  of the paper  is the  following assertion. 

T h e o r e m  1. Suppose that a number a is defined by the continued fraction 

(i) 

= [b0; b t , . . . , b s , c l  + A d t , . . .  ,Cm + Adm], 

where all the bi , c~ , di belong to Z and the di are nonnegative, while bi , ci , i >_ 1, are positive. Suppose 
also that Q is the number of nonzero numbers di, f~ > O, and 

d = max  di. 
1<~<m 
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Then for c = Q/d  and any e > 0 the following assertions are valid: 

1) the inequality 

cz -Pql l n l n q  
- < (c + e) q2 In q 

has infinitely many solutions in rational numbers p /q;  
2) the inequality 

Pl e) 1--nlnq 
- q  < ( c -  q21nq 

has only finitely many solutions in rational numbers p /q .  

If in the continued fraction for a all the numbers  di are zero, then, as is well known, in this case cz is 
a quadrat ic  irrationality and does not admit  ra t ional  approximations of order  be t te r  than  1/q 2 . 

T h e  Davis assertion follows from Theorem 1, since in our case fl = 1 and  d = 2. Th e  proof  of 
Theorem 1 uses the elementary properties of cont inued  fractions and is m u c h  simpler than  the  proofs of 
the  Davis theorem. Below we consider a number  of o ther  examples. Fur ther ,  new expansions of some 
numbers  in continued fractions of the type descr ibed above will be obtained.  T h e  propert ies of cont inued 
fractions are described in the books [2, 3]. 

T h e  following lemlna is concerned with arbi t rary  regular  continued fractions, not  necessarily of the  form 
described in Theorem 1. 

L e m m a  1. Suppose that a = [ao,al ,a2,  . . . ]  is a regular continued fraction and Pn/qn,  n > O, is a 
sequence of its convergents. Then the following inequalities are valid: 

1 I 1 Pn 
(an+l + 2)q2~ < ot - < an+lq,~2' n _> 1, (2) 

a l . . . a n  <_ qn <_ F n .  a l . . . a n ,  n >_ 1, (3) 

where Fn is the Fibonacci sequence. 

P r o o f .  Essentially, all the inequalities of this l e m m a  are well known. By [3, Chap.  24], the  following 
relation is valid: 

! 
~ _  Pr~ I 1 

(c%+lqn + qn-1)q~' 

where czn+l is the  complete quotient of the cont inued fraction. Hence f rom the  inequalities 

an+l _< an+l  < a,~+l + 1, 0 _< qn-1 < qn 

we obtain the est imates (2). 
To prove inequalities (3), let us use the induct ion  me thod .  For n = 1 and  n = 2, inequalities (3) 

obviously hold. For n > 2, it follows from the relat ion qn+l = a~+lqn + qn-1 tha t  an+lq~ < qn+l < 
an+l(qn + qn-1). By the induction assumpt ion  and  the  recurrence equa t ion  F,~+I = Fn + F,~-I for 
Fibonacci  numbers,  from these inequalities we obta in  inequalities (3). [] 

We shall apply this l emma to the number  a f rom Th eo rem 1. In this case an = bn for n < s .  But  if 
n > s ,  we define integers t and r by the relation n - s = m t  + r, 1 < r < m .  T h e n  an = Cr + t d r .  

L e m m a  2. Under the assumptions of Theorem 1, the following asymptotic formula holds as n -+ oc: 

ln(al--, a . )  = - - n  in n + o(n). (4) 
m 
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Proof .  If on the left-hand side of (4) we discard all factors corresponding to the mlmbers bi as well as 
to the numbers c~ + Adi with d~ -- 0, then the resulting error will be O(n) .  Therefore, it suffices to prove 
Lemma 2 under the assumption that s = 0 and for any j the condition d j ¢  0 holds, i.e., ~2 = m.  Now 
the assertion is easy to prove with the help of the relation 

c ~ ( c ~ + d i ) ( c ~ + 2 d ~ ) . ( c ~ + t d , ) . F  = , \ ~ + t + l  

and the asymptotic formula for the logarithm of the gamma function. [] 

P r o o f  of  T h e o r e m  1. First, let us prove the second assertion of Theorem 1. If the rational number 
p /q  is not a convergent to the number a ,  then the following inequality is valid: (see [3, Chap. 25]) 

- -  2q2 ' 

and therefore, the inequality from assertion 2) of the theorem no longer holds for large q. 
If p/q  = p,~/q~, n _> s, is a convergent to the number  a ,  then we define integers t and r so that 

n + l - s = m t + r ,  1 < r  < re.  Then a,~+l = e ~ + t d r .  
If dr = 0, then it follows from the left-hand inequality (2) that 

a ~ 1 >- 

This contradicts the inequality from assertion 2) of Theorem 1 for large n .  
But if d~ ~ 0, then from the left-hand inequality (2) we obtain 

a -  P--~] >_ 1 
qn. (tdr + Cr + 2)q 2" (5) 

In view of the fact that In Fn = O(n) ,  from (3) and Lemma 2 we obtain 

In q,~ = ln(al -- • an) + O(n) = - - .  n l n n  + O(n) 
?72 

and 
1 lnq  . ( 1 +  o(1)) (6) 

t = ~ " lnlnq--~ 

as t --+ co. Now it follows from (5) that 

a p_E~l>q~ _ - ~ ' q 2 1 n q n ~  l n l n q n - ( 1 + o ( 1 ) ) .  (7) 

Since dr _< d, it follows that  inequality (7) contradicts the inequality from assertion 2) of Theorem 1 for 
sufficiently large t.  

Thus any solution p /q  of the inequality from assertion 2) has a denominator bounded by some constant 
depending on a .  The proof of assertion 2) is complete. 

To prove assertion 1), we choose r so that dr - d, and set n +  1 = s + m t + r  for an arbitrarily chosen 
positive integer t.  Then we have a,~+l = cr + td ,  and from the right-hazld inequality (2) we obtain 

i, l 1 ( ~ _ u  < 

q. (td + 

by (6), this leads to the inequality 

I n lnlnq..(l+o(1) ) 
a -  -~ < -~ . q21nq  n 

valid fbr all positive integers t .  This means that the convergents Pn/qn with n + 1 = s + m t  + r ,  where r 
is defined by dr = d, and t is any sufficiently large integer, satisfy the inequality from assertion 1) of 
Theorem 1. [] 

Let us now derive corollaries of Theorem 1. 
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Corol lary  1. The number 

2 e 2/a - 1 
tanh----- aET~, a > 0 ,  

a e2/a + 1 ' 

satisfies the assertion of Theorem 1 with constant c--  1/(2a). 

This assertion follows from the expansion tanh(2/a) -- [0 ; (1 + 2A)a] proved by Euler in 1737. Note 
that the paper [4] contains only the proof of the existence of a constant c for which the second assertion 
of Theorem 1 for the number tanh(1/a) holds. For similar results, also see [5]. 

Corol lary  2. The numbers e 2 , e 1/a , and e 2/b , where a , b ,  a > 2, b >_ 3, are integers and b is odd, 
satisfy the assertion of  Theorem 1 with constants c, equal to 1/4, 1/(2a), and 1/(4b), respectively. 

This assertion holds on the strength of the following classical expansions in continued fraction (see [6, 
Chap. 14]): 

e 2 = [7; 2 + 3A, 1, 1,3+3A, 18 + 12A], e I/a = [i; ( i+ 2 i )a -  1, 1, 1], 

e 2 /b= 1; 2 +3bA,  6b+12bA,  5 b - 1  ~ +3bA, 1, 1 . 

Note that the assertions on the numbers e 1/a, e 2/b are proved in the paper by Davis [7]. 
In the next theorem, we present a number of expansions in regular continued fractions, from which, 

using Theorem 1, we can be obtain results on rational approximations. 

T h e o r e m  2. The following expansions in continued fractions are valid: 

1 
tanh ~ = [0; (4X + 1)u, (4A + 3)v], u, v e N, (8) 

ae 1/a = [a + l ; 2a - l ,  2A + 2,1], a E N ,  (9) 

a - l e U a = [ O ; a - l , 2 a ,  l , 2 A + 2 , 2 a - 1 ] ,  a E Z ,  a > l ,  (10) 

2e ---- [5; 2, 3, 2A + 2, 3, 1, 2A + 2], (II) 

3e = [8; 6, 2, 5, 2A + 2, 5, I, 2A+ 2, 5, I, 2A+2, 1], (12) 

4e -- [lO;1, 6, I,7,2,7, A+2,7, I,A+1, I], (13) 

1 
-~e= [1; 2,2A + 1,3, 1,2X + 1, 1,3], (14) 

1 
~ e =  [0; (15) 

1 
~e--- [0; (16) 

1 
tan - ---- [0; (17) 

a 

t a n l  = [1 (18) 
1 

v ~  tan ~ = [1 a e N, (19) 

1 1 
t a n ~ = [ 0  aEZ, a > l ,  (20) 

2 tan 1 ---- [3 (21) 
1 
5 t ~  1 = [0 (22) 

To prove this theorem, we use some classical expansions of the values of analytic functions in nonregular 
continued fractions, as well as the following assertion. 

1, 9, i, i, 2A + I, 5, I, 2A + I, 1, i, 26 + 18A], 

I, 2, 8, 3, 1, i, 1,A + I, 7, I, A + i, 2], 

a - l , 1 , ( 2 A + 3 ) a - 2 ] ,  a E Z ,  a > l ,  

; 2A + i, i], 

; (4A + 3)a - 2, 1, 4A + 3, i], 

; a - I, I, 4A + I, i, (4A + 5)a- 2], 

; 8, I, 3A + 2, 2, 3A +3, 12A + 20], 

; 1, 3, 1 + 3A, 1, 12 + 2A, 1, 3 + 3A, 2]. 
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L e m m a  3. Suppose that r0 = 1, rz, r2, . . .  are nonzero numbers and 

a n = r n r , ~ - z a n ,  n = 1 , 2 , 3 , . . . ,  b ~ = r = b n ,  n = 0 , 1 , 2 ,  . . . .  

Then the continued fraction 

b~ + a-A1 a2 . . .  
b~ + b~ + 

converges to the same number as the fraction (1). 

P r o o f .  For the  proof, see [2, Theorem 2.6]. [] 

P r o o f  o f  T h e o r e m  2. To prove relation (8), set x = ~ in the  relation t anh (1 /x )  = [0 ; (2)~ + 1)x] 
and use Lennna  3 wi th  r0 = 1, r2k+2 = V / ~ ,  r2k+l = V / ~ ,  k > 0. 

T h e  expansions (9)-(16) are proved by similar methods .  For example,  to prove re la t ion (9) we set 
x = 1/a in the expansion [2, relation (6.1.37)] and then  apply L e m m a  3 wi th  r0 = 1, r2k = a,  r2k-x = 1, 
k >_ 1. As a result, we obtain the expansion 

ae 1/a = a + 1 1 1 1 1 1 1 (23) 
1 - 2 a +  3 -  2a + 5 -  2a + 7 -  "'" 

Let P,~/Q,, and p,,/q,~ denote the  sequences of convergents for the  r ight-hand sides of (23) and  (9), 
respectively. By induct ion  on n ,  it is easily shown tha t  

P 2 n + l  __ P3n P2n+2 -- P3~+1 n > 0. 
Q2=+1 q3=' Q2=+2 q3,~+1 

This  proves relat ion (9). 
Relations (17)-(22) are also proved by similar methods .  For example,  to prove relat ion (17) we can use 

the  expansion 
x 5 2 X 2 . ,T, 2 X 2 

t a n x  = --" (24) 
1 - 3 - 5 - 7 - 9 -  

(see [2, rclation (6.1.55)]). The  even par t  of the cont immd fraction (18) is of the form (see [2, T h e o r e m  2.10]) 

1 1 1 1 

Compar ing  this fract ion with (24) for x = 1, we can easily find tha t  (24) and,  simultaneously,  the  cont immd 
fraction (18) are equal  to tan 1. [] 

Note tha t  all the  expansions in Theorem 2 were not given in the  l i terature.  Let us indica te  another  
theorem proved in the  same way as Theorem 1. 

T h e o r e m  3. Suppose that ao, a > 1, m > 1 are integers and 

O~ [ao ;a : '  .. a~] ~° . 
• ' ' ~  ' ~ J A = l  

?Tg 

Then for  c = 1/vra and any e > 0 the 

1) the inequality 

o ~ -  

has infinitely many  solutions in 
2) the inequality 

has only f initely many solutions 

following assertions are valid: 

P l  < (c + ¢)q-2-~/2 ln,/(,~ h~¢) 

rational numbers p /q  ; 

< (c - ~)q-2-~/2 l==lCm lnq) 

in rational numbers p / q .  
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The example to Theorem 3 yields the following expansion proved in [8]: 

s 

8-~--0 m = 0  
oo $ 

s=O m=O 

= [0;  a, a2,aa,  a 4 , . . . ] .  
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