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A m a t h e m a t i c a l  m o d e l  is p roposed  for  describing the  flow of a m i x t u r e  of  gases and  
react ive solids inc lud ing  a he te rogeneous  chemical  igni t ion reac t ion .  The  m o d e l  is 
closed wi th  an  equa t i on  for  t he  kinetics of oxide f i l l  growth.  I t  is a s s u m e d  t h a t  
the  hea t  of  t h e  chemical  reac t ion  can be released in b o t h  phases  depend ing  on the  
a c c o m m o d a t i o n  coefficients. The  igni t ion of  a mot ionless  cloud of  m a g n e s i u m  part ic les  
is s tud ied  in t e r m s  of  th is  model .  The  mode l  is t e s t ed  wi th  t h e  use of  expe r imen ta l  
d a t a  on t h e  m a x i m u m  t e m p e r a t u r e  of  t h e  m e d i u m  as a func t ion  of  t h e  par t ic le  radius .  
D a t a  on t h e  d e p e n d e n c e  of  t h e  pa r ame te r s  of  a hea t ed  par t ic le  cloud on t h e  physical  
and  chemical  cons tan t s  of  t h e  m i x t u r e  and  part icles are  p resen ted .  

Studies of the ignition of gaseous suspensions 
are of current interest in connection with the fire 
and explosion hazards of industrial dusts. From the 
standpoint of the general theory of heterogeneous 
media, of which gaseous suspensions composed of 
fine solid particles and a gas are a special case, 
the motions of aerosol suspensions can be described 
mathematically and physically in two approxima- 
tions. The first is a single particle regime, in which 
the motion and heating of the discrete phase occur 
against a known flow field of the gas. This description 
is valid for gaseous suspensions with a sufficiently 
low dust content. The second approach is based on 
the assumption that  the particles are quite numer- 
ous and can have a reciprocal effects, both dynamical 
and thermal, on the gas. Mathematical models have 
been proposed [1-4] for the ignition and combustion 
of gaseous suspensions under dynamic conditions be- 
hind advancing and reflected shock waves which in- 
clude the different velocities and temperatures of the 
phases along with a heterogeneous low-temperature 
oxidation reaction. In order to close this model in 
the ignition state, it was assumed that the particle 
dimensions are roughly the same as the initial size 
and that the heat of the chemical reaction is released 
only in the condensed phase. In the following, we de- 
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velop a model for the ignition of an aerosuspension 
that is free of these assumptions. 

BASIC E Q U A T I O N S  

As in [1], we shall consider a three-component 
two-phase medium on the basis of the general ap- 
proach developed by Nigmatulin [5], in which a 
chemical reaction described by the stoichiometric re- 
lation 

v11g11 -{- v22g22 ~ //23923 -[- v13g13 

occurs, where v~ and g~ are the stoichiometric co- 
efficients and molecular masses of the phases and 
components. It is assumed that the gas is a mixture 
consisting of an oxidant (i - 11), an inert compo- 
nent ({ = 12), gaseous oxidation products (i = 13), 
metal (i - 22), and condensed oxidation products 
(i - 23). Everywhere in the following ui = uigi and 

The conservation equations for masses of the 
phases and components have the form 

O~pi + azplu~ = (-1)i+1~2J, i = 1, 2, 

Osn .-~ O~nu 2 -" O, PlOI~ll : --(Vll+ V2~ll)J, 

vll + ~2~xI ~12 
- ~ 1 i  = I, 

vll + ~2~11,o ~12,o' 
(1) 
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~22( 0~ - -  ~22,0) 

,. = 

/22 r0  

a = 1 u3P~ 
O ' ~2 "-- /22 ~ /23" 

/22/923 

Here pl = E p0 and = . 22p~ + m2 p% = 
m2p ~ are the average densities of the gaseous and 
condensed phases, poj is the true density of the j t h  
gaseous component, p0 is the apparent actual den- 
sity of the condensed phase (c-phase); mj (j = 1, 2) 
and m2i (J = 2, 3) are the volume densities of the 
gases, c-phase, metal, and oxide; n is the number of 
particles per unit volume; R = h Jr r, where r is the 
particle radius and h is the thickness of the oxide 
film; ~ji = Pji/Pi (J = 1, 2 and i = 1, 2, 3); u i are 
the velocities of the phases; at = ~ / ~ ,  ~ = ~ / ~ ,  
and Oj = ~ + ujb~; a subscript 0 denotes the ini- 
tial state; and, the first digit in a subscript with two 
digits denotes the number of the phase. 

J is given in terms of the local flow characteris- 
tics by 

J : -4~p~ '~r~ 0~r = _ 3  p2_2 02r. (2) 
/22 r P2 

The source function J must be defined as a function 
of the average flow quantities. In an experiment there 
is generally some information on the rate of transfor- 
mation of an individual fine particle. This is either 
a datum about the linear combustion velocity of the 
particle, which can be obtained from the empirical 
Sreznevskii law, or about the rate of growth of the 
oxide film thickness. Thus, it is necessary to obtain 
an expression for J of type (2). For this we shall as- 
sume that  during the chemical transformation the 
particle consists of a metMlic core of radius r coated 
with an oxide film of thickness h, i.e., the radius of 
the sphere i s /g  = r + h. Here it was assumed that  
the finest oxide particles precipitate out on a larger 
metal particle. In addition, a conservation equation 
for the number of particles and one of the continuity 
equations for the c-phase were used. Based on these 
equations it is also possible to find the last of the 
integrals in Eq. (1). 

The momentum conservation equations for the 
phases are written in the form 

O~p~ui + O~(piu~ + rnip) 

= pO,,rnl Jr ( -1) i+ l~2J  + Ri, i = 1, 2, (3) 

where Ri are the forces acting on the corresponding 
phase. 

The energy conservation equation of the phases 
is written in the form 

OtpiEi + c3~(piuiEi Jr mipui) 

= - pO~mi + ( - 1 ) i + l f s 2J ( - k ,+ i ,+ u - - - 2 )  

+ R (Zul +  u2) + O,i, i = 1, 2. (4) 

Here Ei = ei + u~/2 (el a r e  the internal energies of 
the phases), fl is the accommodation coefficient for 
the force interaction of the phases (/~ = 1 - f l ) ,  p 
is the pressure of the mix, and Qi is a function de- 
scribing the thermal interaction of the phases. Since 
the conservation equation for the total  energy of the 
mixture does not contain sources, we have the ba- 
sic energy equation [5] of the mechanics of reacting 
heterogeneous media, 

kl  Jr  k2 "-  i l  -I- i2,  

where the ki a r e  the accommodation coefficients, 
which are to be determined, and the ii are the en- 
thalpies of the phases. The heat released in the chem- 
ical reaction is 

q.  = V11i l l  Jr  V2i22 - -  P3i23 - -  V13i13. 

It is possible to go from the conservation equa- 
tions for the total energies of the phases (4) to heat 
influx equations with inhomogeneous terms describ- 
ing the heat sources, the frictional force between the 
phases, the kinetic energy of the masses which un- 
dergo phase changes (released only into the gas), 
heat transfer between the phases (Qi), and the work 
of the pressure forces which develop from the change 
in the specific volumes of the phases. Note that  for 
particles this is the variation in the apparent actual 
density of the particles. 

In order to determine the ki, w e  shall assume 
that  heat cqq. is released in the gas and ~lq. = 
( 1  - ~l)q.  in the particles. Transforming to the en- 
thalpies in the heat influx equations and using the 
representation of the right sides for determining ki 
in them, we obtain the equations 

(Vl l  Jr D2~11)i l l  Jr 192~12i12 

- (v13 Jr v2~13)i13 - D2kl = a lq . ,  

(v2 - 0 2 ~ 2 2 ) i 2 2  - ( /22  - ~ 2 ~ 2 2 ) i 2 3  - ~ 2 / ~ 2  = ~ l q , .  

The solution of this system has the form 

kl  -"  [ - -0 t lq .  Jr (/211 J r /22~11) i l l  J r  /22~12i12 

--  (/213 --  /22~13)i13]//]2, 

k2 --'- i l  - i2 - k l .  

In this way the accommodation equations have been 
determined. 
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The equations of state of the phases are easily 
expressed in terms of the average characteristics of 
the flow of the suspension: 

P "  plTla~ ( Z  ~1i) 
~-"'~ ~i ] ' r/~l + m2 = I, 

P2 0 rn2= _-'C, P~ = c ~  j = 2 , 3 ,  
P2 

p0 = P~ r~ + (RS _ r~)p~% 
n~ -- ~ ( r ) ,  

el = c~lAT1 + h ~ 

e2 = e2AT2 + h ~ 

Cvl = B ~ l i C ~ i ,  

A ~  = ~ - T ~ 

c2 = ~ ~2j c2j, 

(5) 

h ~ 1 7 6  A ~ = ~ - T  o , j = 2 , 3 ,  

T o is the equilibrium temperature in the standard 
state, hi ~ are the heats of formation of the phases 
and components, cp1 is the specific heat of the gas 
mixture, cpi is that of the gas component, c2 is that 
of the condensed phase, and c2j is that of the solid 
phase. 

We shall consider the unknowns to be 11 
components of the vector function r  
P, r,~ll, h, n), which is defined by the seven partial 
differential equations which express the conservation 
of mass, momentum and energy of the phases and 
components in Eqs. (1), a single equation of state 
from Eqs. (5), and the algebraic relation between 
r and h expressed by the last of Eqs. (1), and, fi- 
nally, the mathematical model is closed by the ki- 
netic equation for the growth of the oxide film, 

02h = G(h, T2 , . . . ) .  (6) 

Thus, system (1)-(6) for determining the 11 un- 
knowns in the solution vector ~b is closed. 

Remark. The number of differential equations in 
(1)-(6) can be reduced through the integral 

n P2~22 
no P2D~22,0 ~3" 

We now consider the following problem as an 
application. 

I G N I T I O N  OF A G A S E O U S  S U S P E N S I O N  
IN T H E  C O N T I N U U M  R E G I M E  

Poin t  M o d e l  and  I ts  T rans fo rma t ions  

We consider a cloud of magnesium parti~cles that 
fills unit volume uniformly and exchanges through 

the walls of a vessel with surroundings heated to a 
temperature T. When the initial parameters of the 
cloud and characteristics of the external interaction 
are changed, the gaseous suspension may exhibit dif- 
ferent types of heating dynamics. We shall estab- 
lish these using a point model for the above equa- 
tions supplemented by heat transfer with the exter- 
nal medium: 

d~pl = (-1)i+lP2J, i = 1, 2, 

~22,o(~ - ~2) 

v l l +  P2~ll _ ~12 Z._,cx-"x~ I, 
/211 "~ ~2~11,0 ~12,0" 

~2, = 1 ,  R 3 - .R~  - a(r 3 - r~), (7) 

d,(plel + p2e2) = - S k ( T i  - CT), 

m2p d~p~ = -P2k~.J + Q2, 
p2d~e2- P--~-o 

3 
Q2 = - m 2  ~ ~12(T2 - T, ) ,  

where k is the coefficient of heat transfer from the gas 
to the tube, c~x2 is that from the gas to a particle, and 
S is the inner surface area of the tube. Combining 
the equations of continuity for the phases, we find 
the first integral, i.e., the conservation of mass for 
the mixture as a whole, 

px + p2 = plo + p2o = el. (8) 

Substituting the expression for J in the continuity 
equation for the c-phase, we obtain an equation with 
separable variables which yields the integral 

p )  = ~ + ~22,0(e s - 1) (9) 

P2,0 

Using Eqs. (8) and (9), it is easy to obtain the de- 
pendence of the average gas density on the particle 
radius, 

Pl ---- a' -- p201~22,0(~ 3 -- 1), p0 1 --~ P2,0 (10) 
Pl,0 ~ PX,0 

Equation (10) substituted in the third of Eqs. (1) 
makes it possible to find the integral of this equation, 
as well: 

Vli + P2~l I a 
- ( 1 1 )  

/)11 'Jr" P2~11,0 ~ - -  pO1~22,0('rS - -  1)" 

Therefore, the average densities and relative 
concentrations of the phases and components are ex- 
pressed explicitly in terms of the relative particle ra- 
dius. 

Transformation of the Equations for  the Ener- 
gies of the Phases. The particle energy conservation 
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equation, i.e., the next to the last of Eqs. (1), has 
the following enthalpy form: 

P2 ~ ~2jdti2j - rn2dtp = J&lq. .  

Given the representations 

(12) 

�9 p o ,2j = c2j(T2 - T ~ + ":'C- + h2j, j = 2, 3, 
P2i 

and substituting them in Eq. (12), we obtain the en- 
ergy equation for the solid particles in the following 
form: 

p2c2d~T2 = Q2 + J&lq, .  (13) 

Similarly, the conservation equation for the gas can 
be written as 

plcpd~Tt -- Q1 + Jotlq. - Sk(TI  - T) .  (14) 

We supplement Eqs. (13) and (14) with the kinetic 
equation for the growth of the oxide layer and the 
geometric relationship between R and r: 

f h ? \  
d,h -- Kexp ~ -  ~TT)' R a -  R ~ -  a(r a -  r~). (15) 

System (13)-(15) for the three unknowns 7"1, T~, and 
r is closed. 

Asymptotic Approximation for the Mathemati- 
cal Model (13)-(15). We shall use the fact that dur- 
ing the chemical transformations in the preignition 
period the thickness of the oxide film changes very 
little, i.e., h / r  << 1. Expanding the last of Eqs. (15) 
in a series and limiting ourselves to the linear ap- 
proximation, we find the representation 

(a - 1)(r - r0) ---- h - h0, (16) 

which yields 

d , r = ( a _ l ) _ I d ,  h - K exp (  E )  (17) 
a - - 1  " 

Note that since the thickness of the oxide layer varies 
little, the coefficients in Eqs. (13) and (14) can be 
"frozen" in the first stage of this study and we 
shall use the representation (17) for determining the 
source term J for magnesium particles. This makes 
it possible to represent two of the unknowns (the 
temperatures of the gas and solid particles) by the 
asymptotic model 

p2c2d, T2 = -a l (T2  - T1) 

-4-bexp ( -  s  -'A(T2,T1), (18) 

plcpldtT1 = el(T2 - T 1 ) -  c(T1 - T )  - B(T2, T1), 

3 3p22K 
where al - m2 ~ ~12, b - Rv2(1 - a) q*' and c - 

Sk.  Equations (18) must satisfy the initial conditions 

T2(0) -- T2,0, TI(0) = T1,0. (19) 

These conditions describe the different possible ther- 
mal effects on the cloud. For example, if the particles 
are ejected into some volume containing a high tem- 
perature gas, then T2,0 < T1,0. 

As the cloud evolves thermally, the temperature 
can vary regularly or irregularly. This depends on the 
form of the catastrophe (ignition) manifold, which 
we now investigate. 

Zero Isoclines of Eqs. (18). On equating the 
right-hand sides of Eqs. (18) to zero, we obtain a 
system of equations for determining the stationary 
points of our mathematidal model: 

AT1 = a----L--~ AT2, AT~ -- T~ - "~, 
al -t-c 

(20) 
( E )  ~ A T ~ .  bexp - " ~ 2  - al c + al 

The last equation, when differentiated with respect 
to T2, can be used to obtain the convolution curve 
on the catastrophe/ignition manifold. In the case of 
the ignition of a cloud under study here, the doubly 
degenerate critical points on this manifold coincide 
with the analytic form of the Semenov condition, 

Ol = al (c + al)b : o~_ = A T 2 -  exp - /~T2- 

and have been discussed previously [6]. Here AT2- 
is the smallest root of the equation 

E 
O(T2) - ~ AT2 + 1 = 0. 

It is known from the general theory of thermal explo- 
sions that the last of Eqs. (20) is a nonunique curve 
in the (T ~ or) plane for the interval c~ E ( e - ,  ~+). Its 
properties have been discussed in detail elsewhere [7, 
8]. 

Jacobi Matrix and Eigenvalues. The Jacobi ma- 
trix at the stationary points of system (19) has the 

J = 

form 

A1,T2 =- - a 2 u ( G  + v) 

B1,T2 -- ~a2 

A1,T1 = a2 

~a~ 
B1,T2 : - -  

?1~3 

where ,, = + , ,  = = and 

a2 = al/p2c2. The eigenvaluesA of this matrix are 
found from the equation (A = A/a2) 

A ~- + trJA + detJ  = 0, (21) 

where t rJ  = u(G-4-d) ,  detJ  = ~G/v,  and d = 
v(1 + ~/uZv2). The existence of a root of Eq. (21) 
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depends on the sign of the discriminant D(G) = 

t r J2-4de tJ  = G2+2GI+d 2, where I = v(1-~/u2v2). 
We shall treat it as a function of G. Its sign, in turn, 
is determined by that of D1 = -2~ /u  2, which is non- 
positive. This implies that the discriminant is a pos- 
itive function. Therefore, the roots of Eq. (21) are 
always real. 

We examine the behavior of detJ(T2) as a func- 
tion of whether the point T2 belongs to the stationary 
states curve. It is easy to show that 

>0 ,  T2E(O,T_)=A, T 2 E ( T - , ~ ) ' - C ,  
detJ < O, T2 E (T_,T+)-B. 

Based on the above remarks, we can formulate 
Proposition 1. The eigenvalues of Eq. (21) for 

T2 E A and T2 E B are both negative; for T2 = 
T+_ one of the eigenvalues is zero and the second 
is negative; for T2 E (T_ ,T+) the eigenvalues have 
different signs. 

Therefore, on A and B the stationary points of 
the equations are stable nodes, while on the negative 
branch the stationary points are saddle points, and 
for T -- T_, T+ they are degenerate nodes. 

Initial and  Boundary-Value Prob l ems  
for Eqs. (18) and  (19) 

Based on Proposition 1, we can describe the pos- 
sible types of solutions of Eqs. (18) and (19). First we 
consider the solution of the boundary-value problem 
for the temperature of the gaseous phase as a func- 
tion of the temperature of the c-phase. It is obtained 
by dividing the first of Eqs. (18) by the second. Here 
it is possible to state an auxiliary boundary-value 
problem which can be used to give a classification o f  
the types of heating dynamics for the particles: 

T2(T1) = T A, T1 -- al AT A + ~, 
al+c  

T~(T1) = T B, Tt = '~ A T  ~ + ~.  
a1+c 

We now show how to solve it. First, we choose the 
slope of the trajectory from a point belonging to 
the unstable branch B corresponding to a positive 
eigenvalue. Upon specifying a negative temperature 
increment for the particles on this trajectory, we find 
the corresponding increment in the gas temperature. 
Taking the resulting values of the unknowns as ini- 
tial data, we can integrate the equation and, as T1 
approaches T B, the trajectory enters a stationary 
point belonging to the stable branch of, the catas- 
trophe manifold, T -- T A. In the case of a positive 
increment of the particle temperature, the solution, 

which is a semitrajectory, will approach" T c, which 
is also a stable node. 

In a similar fashion, it is possible to construct 
a second trajectory that passes through the saddle 
point T B before intersecting the straight lines T2 = 0 
and T1 = 0. We denote the region lying between the 
axes and this trajectory by Dz and above, by D2. 
Then the solution of the Cauchy problem with initial 
data T O from D1 approaches T A, while for T o E D2, 
the solution approaches T c. Based on these remarks, 
we formulate 

Proposition 2. The solution of the Cauchy prob- 
lem for o~ E (c~_,c~+) and T o E Di stabilizes on 
branch A; if T O E D~, it stabilizes on C. There is 
a trajectory which joins the unstable state T B with 
T A and T c. The solution of the Cauchy problem for 
c~ ~ (c~_, c~+) stabilizes on T C and T A, respectively. 

Remark. Let a E (c~_, c~+). The solutions pass- 
ing through the stationary points (T B, T A) and (T B, 
T c) describe the regimes of dispersive quenching and 
dispersive ignition, respectively. The solution of the 
Cauchy problem with initial data from region D1 
can describe both quenching and regular heating of 
a particle in the cloud; if the initial data are taken 
from Du, then this solution describes the ignition 
of the cloud. If c~ ~< c~_, then for initial data lying 
below T c the cloud ignites and if ~ /> ~+, regular 
heating or quenching occurs, depending on whether 
the initial point lies below or above T A. 

Discussion of  N - m e r i c a l  Resul t s  

Before proceeding to solving the direct problem, 
we stop to determine the kinetic constants E and K 

3.0 

2.9 

2.8i 

2.7 
0.05 

§ 

I I I | I I 

0.15 0.25 ,02 

Fig. 1. The limitlng temperature T of the medium as a func- 
tion of the average density of manganese particles: particle 
radius 5/~m and radius of containment vessel 1.5 cm; points 
-~ denote experimental data [9], the dashed curve refer to 
the calculation with the constants developed for describing 
the oxidation of solid magnesium in air and the solid curve 
refer to the author's calculations. 
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Fig. 2. Particle t empera tu re  as a funct ion of time: (a) nonequi l ibr ium thermal  regime at  the initial times, (b) 
quasiequiUbrium hea t ing  of the phases  and  the approach to a s ta t ionary state  B. 

TABLE I 
tign and c~ as Functions of the Particle Radius for T1,0 -- T2,0 = 1, T -- 3.03, and c~_ �9 l0  s = 1.598 

r~ ~m 0.01 0.1 1 5 6 7 8 9 10 15 16 

tlgn, sec 3.99 5.81 9.58 17.06 18.85 20.76 22.8 25.21 27.93 66.19 91.32 

cr �9 lO s 9.55 �9 104 9.55 �9 103 9.55 �9 102 0.48 0.57 0.67 0.76 0.86 0.95 1.42 1.52 

17 

none 

in the cloud ignition formula. To do this, by analogy 
with [7, 8], we write down the Semenov conditions on 
the catastrophe/ignition manifold for the two radii 
of the particles and for the limiting temperatures of 
the region surrounding the exploding cloud. These 
two equations have an analytic solution for the un- 
knowns, E = 48.54 and K -- 3.054. Figure 1 shows 
the dependence of the limiting temperature of the 
medium on the average density of magnesium par- 
ticles obtained using these parameter values. In this 
and the remaining figures, the temperatures are rel- 
ative to 300 K. 

Next, the calculations were done for the direct 
problem, i.e., the heating dynamics of the compo- 
nents of the mixture were determined. As the above 
remarks show, regular and catastrophic heating of 
the cloud occur. Thus, let T l , o  "" 2, T2,0 = 1, 
r = 5 /~m, R1 = 1.5. 10 -3 m, and T = 4. For 
this case, c~_ �9 104 - 2.3 <~ a - 10 -4 - 4.43, igni- 
tion does not occur, and the particles undergo regu- 
lar heating out of thermal equilibrium (the quantity 
A = n S a 1 2 / a 1 S 1  ,~ 10 is not too large), as shown in 
Fig. 2. In the first stage of heating of the system, the 
gas transfers heat to the particles so its temperature 
drops (see Fig. 2a), and then the temperatures of 
the phases approach one another, but the gas has a 
higher temperature. The rates of change of the tem- 
peratures of the phases do not differ greatly here, 
and the phases subsequently approach thermal equi- 
librium on the lower branch of the ignition manifold. 
This is shown in Fig. 2b for later times. 

Decreasing the vessel radius to R3 = 1.5.10 -4 m 
causes the zone where the gas temperature is re- 

duced to vanish because of more rapid heating of 
the smaller volume of gas; there the temperature re- 
laxation time is about 4 msec. 

Let us see if this mathematical model for the ig- 
nition of a magnesium cloud describes the scale fac- 
tor described in [9], i.e., the reduction in the limiting 
ignition temperature of the system as its size is in- 
creased. This situation can be illustrated by this sort 
of computational data. Let Ti,0 - 2 and T2,0 - I; 
then for Rs = 1.4 cm ignition sets in within the in- 
terval T E ~.832.835) and for/~3 = 1.5 cm, the cloud 
ignites for T E (823.825). 

We study the effect of the particle radius on the 
ignition delay time fish. Calculations were done for 
different particle radii (see Table 1) and for a con- 
stant average density of the particles. The third row 
of the Table 1 lists a dimensionless characteristic of 
the process which controls the onset of ignition in 
the system for r ~ 17 /~m. For r >/ r ,  >~ 17 #m 
ignition is not observed in this system. This hap- 
pens because the convective heat transfer coefficient 
is proportional to r -2, i.e., decreases with increasing 
particle radius. As a consequence, the heating of the 
particle extends to temperatures where there is sig- 
nificant heat release from the chemical reaction, so 
that  the ignition delay increases. 

The effect of the ambient temperature on the 
ignition delay was studied. The results of these cal- 
culations are shown in Table 2. Evidently, when the 
temperature is not high enough ignition does not oc- 
cur in the system (the first column of Table 2) and 
as T increases the preignition period is reduced. 

The dependence of the heating dynamics on the 



424 Fedorov 

TABLE 2 
t i | n  and ct as Functions of Ambient Temperature for T 

2.67 3.03 3.17 3.3 

~i~n, sec  no  ign i t ion  14.86 11.66 9.34 

~ _  �9 105 1.6 2.57 4.4 7.11 

= 1, and It3 = 1.5 cm 

3:5 3.67 4 

7.86 6.8 5.44 

10.96 23.05 0.32 

initial gas temperature was determined by varying 
the latter. The results are shown in Table 3. The tem- 
peratures of the phases behave as follows: for equal 
initial temperatures of the phases, the gas heated at 
the vessel walls transfers heat to the particles and 
the phases essentially arrive at thermal equilibrium. 
This is related to the fact that the zero isocline of 
the energy equation for the gas can be used to deter- 
mine AT1 = AAT2/(I+A), where A = nSo~12 /C~ l~ ' l .  

Since A >> 1 in these calculations, the gas temper- 
ature approaches that of the particles and then the 
cloud of particles, which is in thermal equilibrium, 
ignites. 

The reaction of the cloud to preliminary heating 
of the particles, i.e., when the initial temperature 
T2,0 is changed, is similar. Thus, for r = 5 pm and 
T1,0 = 1, the ignition delays are 9.55, 9.21, 8.84, 8.71, 
and 8.43 for T2,0 = 300, 600, 900, 1000, and 1200 K, 
respectively. The dependence of the induction time 
on the amount of particles in the cloud is shown in 
Fig. 3. It can be seen that  as P2 increases with the 
other conditions held constant, Sign decreases. This 
happens because of increased heat transfer from the 

TABLE 3 
~ign as a Function of the Initial Gas Temperature 

for T2,o = 1, T = 3.5, c~_ �9 l 0  s = 0.48, and R3 = 1.5 cm 

T1,0 1 2 3 3.5 4 

t i ra ,  sec  9.55 7.86 5.06 2.87 1.07 

~fgn, a e c  

30 

20 

10 
l I I I l 

0.08 0.16 0.24 
I ! 

0.32 P2 

F ig .  3. Igni t ion delay as  a f u n c t i o n  of the  average par t ic le  
density.  

gas to the particles in the first convective stage of the 
heat transfer process, as well as because of increased 
heat release from the chemical reaction. 

Increasing the radius of the reaction vessel leads 
to the establishment of an adiabatic ignition process. 
In fact, increasing R3 over an order of magnitude, 
beginning at 15 cm, yields induction times of 21.27, 
23.26, 23.28, and 23.28 with a gas temperature of 900 
K and, of the ambient, 1050 K. At the same time, the 
Nusselt number for the typical vessel sizes [9] has no 
effect on the development of ignition. This is because 
A >> 1 and the effective heat transfer coefficient for 
the mixture ceases to depend on the heat transfer 
mechanism between the gas and particles. 

The effect of the heat release in both phases was 
studied. In particular, for ~ = 0, which corresponds 
to heat release at the particles alone, tign = 9.55. 
As ~ increases, the ignition delay increases up to the 
point where the particles in the cloud do not ignite. 
Thus, for ~ = 0.5, 0.6, 0.7, and 0.8, respectively, 
Sign -" 11.9, 12.9, 14.6, 17.83. If, on the other hand, 

= 0.95, the cloud does not ignite. 

C O N C L U S I O N S  

A distributed mathematical model for the ig- 
nition of gaseous suspensions of metal particles has 
been proposed which takes into account the heat re- 
lease in both phases. 

In the framework of a point approximation for 
this model, we have obtained the conditions for var- 
ious types of heating dynamics of the gaseous sus- 
pension and determined the kinetic constants in an 
empirical formula for the growth of the oxide film 
which made it possible to describe the experimen- 
tal dependence of the limiting temperature of the 
medium on the average density of particles in a mag- 
nesium cloud. 

It has been shown numerically that when the 
volumes enclosing the cloud of particles are small, 
nonequilibrium regular heating of the mixture occurs 
leading asymptotically to an equilibrium state lying 
on the lower branch of the catastrophe/ignition curve 
and when the vessel size is increased, ignition occurs. 

It has been found quantitatively and qualita- 
tively that, with the other parameters fixed, there is 
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a critical radius r .  for the particles in the cloud, such 
that  for smaller radii than this, the cloud ignites and 
for greater, regular heating takes place. 

Increasing the fraction of heat released in the 
gas leads to regular heating of the particles in the 
cloud. 

This work was supported by the Russian Foun- 
dation for Fundamental Research (Grant  No. 96-01- 
01886). 
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