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This work develops and investigates simple unified constitutive equations to model the 
mechanical behavior of plain carbon steel in the austenite temperature region for use in finite 
element stress analysis of processes such as continuous casting. Four different forms of con- 
stitutive relations are considered: constant structure, time-hardening, strain-hardening, and si- 
multaneous time- and strain-hardening models. Each relation is judged on its ability to reproduce 
experimental data from both tensile and creep tests and its ability to exhibit reasonable behavior 
under complex loading conditions. Three of the equations appear suitable for small strain mono- 
tonic loading conditions for a wide range of low strain rates (10 -3 to 10 -6 s-1), high temperatures 
(950 ~ to 1400 ~ and varying carbon contents (0.005 to 1.54 wt pct C). 

I. B A C K G R O U N D  

THE recent increases in computational speed and 
availability of finite element software are making stress 
analysis of casting processes feasible and desirable. A 
major obstacle to accurate mathematical analysis is find- 
ing and evaluating material constitutive equations that 
adequately describe the complex relationship that exists 
between stress, strain, and time at elevated tempera- 
tures. These equations should characterize mechanical 
behavior of the metal under the conditions encountered 
during the process. Choices include time-independent 
elastoplastic relationships, elastoplastic models with creep, 
unified models with evolving internal state variables, and 
elasto-viscoplastic models. Each of these approaches has 
both merits and problems. 

Assuming stress, tr, is caused solely by elastic strain, 
ee, the rate forms of the constitutive equations for an 
isotropic material in uniaxial loading are 

6" = E~e [1] 

= ~e "~ Ep -~- ~T [2] 

where the symbols are defined in the Nomencl~iture at 
the end of the article. 

Integrating these equations under the appropriate 
boundary conditions produces the deformation history 
(stress-strain-time response) of the material under any 
arbitrarily chosen loading conditions. These loading con- 
ditions could range widely and include the limiting cases 
defined in standard tensile tests (imposed Constant total 
strain rate), creep tests (imposed constant stress), and 
stress relaxation tests (imposed constant total strain). 

In a typical casting, every point in the material ex- 
periences a different complex loading history, which 
usually varies greatly as time progresses. To perform the 
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required multidimensional analysis, the effective (uni- 
axial) applied stress and strain needed in Eqs. [1] and 
[2] are usually determined from their spatial components 
using a von Mises criterion, m The equations are then 
solved using the finite element method, which simulta- 
neously calculates incremental changes in stress and strain 
at each location in the solid and at each time step during 
the simulation, under these complex loading condi- 
tions.t2] In doing this, the increments of inelastic strain 
are decomposed into their spatial components in pro- 
portion to the deviatoric stresses using the Prandtl-Reuss 
equations.tl] 

Inelastic strains are induced by the stresses, or elastic 
strains, which arise in response to the loading condi- 
tions. In many casting processes, small differences in the 
thermal strains, er, constitute a significant fraction or 
even all of the load. The total strain is often constrained 
to be constant, so the extent of the induced inelastic strain, 
in turn, directly affects the elastic strains and the loading 
history. Because of this coupling, the constitutive equa- 
tions have a magnified influence on the predicted stress 
in casting processes, t3] It is therefore important to find 
general constitutive equations that are accurate for the 
range of mechanical conditions encountered. 

Elastoplastic constitutive equations have been used to 
model many processes, including continuous cast- 
ing. [4,5,6! This is because the numerical methods for in- 
tegrating the equations over both time and position are 
well established and robust. However, at the high tem- 
peratures encountered in casting, the mechanical prop- 
erties are very sensitive to strain rate. Since casting 
involves wide ranges in strain rate, a time-independent 
elastoplastic analysis is crude. 

Improving the elastoplastic approach by adding c reep  ]7,8! 
leads to a more complicated analysis. Splitting the in- 
elastic strain, ep, into a rate-independent plastic part and 
a rate-dependent creep part, as is often done, is physi- 
cally arbitrary, since only the combined effect can be 
measured. Consequently, it is difficult to find a consis- 
tent set of elastoplastic and creep equations that, when 
integrated together, accurately describes the mechanical 
behavior of the metal under the range of  conditions en- 
countered. It is also difficult to test their accuracy. Since 
creep occurs during tensile tests and plastic work hard- 
ening occurs during creep tests, relations derived from 
either type of test are equally valid in describing the total 
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behavior. It is ill advised to simultaneously use creep 
equations and time-independent stress-strain data taken 
from independent sources. 

Models with evolving internal "structure" variable(s) 
are gaining in popularity, t9,1~ These "unified" models 
characterize the mechanical behavior of a given material 
under arbitrary loading conditions by defining its instan- 
taneous inelastic strain-rate response in terms of "state 
variables" which include temperature, stress, and 
structure. 

~p = ~p(o', T, c~ l, a2 . . . . .  an) [3] 

&, = &,(~p...) [41 

These equations can accurately model the complete 
range of physically observed behavior, since the "struc- 
ture parameters" in the model, ai, can evolve in the same 
way as their associated microstructural properties that 
characterize the material's resistance to inelastic flow. 
For example, an increase in the slope of the stress-strain 
curve during a tensile test produced by work hardening 
or a decrease due to recovery can be reproduced in a 
model by corresponding increases or decreases to a 
structure parameter that represents dislocation density. 

Orisamolu and Singh t~4~ developed a constitutive model 
of this form, including thermomechanical energy for large 
strains, using two structure variables: a strain-hardening 
parameter and thermoinelastic strain. The Miller model t91 
also uses two structure variables, back stress and drag 
stress, to exhibit the effects of kinematic and isotropic 
hardening. Anand t~~ and Brown et  a l . ,  tH~ have demon- 
strated the potential for single structure-variable models 
using the following specific form of Eq. [3]: 

G = , [51 

Smelser and Richmond t~Sj applied a model of this gen- 
eral form to model casting of aluminum. 

Unfortunately, these models with evolving structure 
variables are generally more difficult to integrate nu- 
merically and implement into existing programs using 
the finite element method (FEM). They can require over 
two orders of magnitude more execution time than the 
elastoplastic methods, t~61 This is likely due, in part, to 
the dependency of the structure variables on strain rate, 
which, being a derivative, is known to less accuracy than 
the strain or stress and is subject to wider variation dur- 
ing convergence iterations. This further increases the 
"stiffness" of the differential equations. It is also diffi- 
cult to evaluate the parameters needed for these models. 
Many of the phenomena which benefit most from these 
sophisticated evolving structure parameters are related to 
large strains for forming processes t~~ which are not 
a concern to casting. 

Simple elasto-viscoplastic equations offer another al- 
ternative. When treated as unified constitutive models, 
equations of the following form and Eq. [1] can be used 
without modification to describe the complete range of 
mechanical behavior: 

Model I: G = G( ~ T) [6] 

Model II: ~p = ~p(O-, T, t) [7] 

Model III: ~p = ~:p(tr, T,  ep) [8] 

Model IV: ~:p = i:p(tr, T ,  ep, t) [9] 

Equations [6] through [9] present four possible func- 
tional forms to define the inelastic strain rate needed in 
Eq. [2]. In all cases, the mechanical response of a given 
steel during arbitrary loading conditions is assumed to 
be isotropic and to depend only upon the state variables 
of stress, temperature, and time and/or  inelastic strain. 
This means that the material structure (for a given tem- 
perature, stress, and steel grade) is characterized solely 
by the scalar parameters of  time since the start of  loading 
and/or  the total inelastic strain accumulated up to that 
time. 

These equations have the advantage of being easy to 
implement into FEM code, and numerical methods for 
their evaluation are available, f17,1sagl This is because time 
is always known and inelastic strain always must be con- 
verged upon during every step of a nonlinear stress anal- 
ysis anyway. However, since no yield surface is defined, 
and plastic strain can begin immediately, these methods 
still require more computational effort than elastoplastic 
methods. 

For a single type of experimental data, the parameters 
for Eqs. [6] through [9] are relatively easy to find and 
can even be described using databases containing the 
original test data.t2~ Equations of  the form of  Eqs. [6] 
and [7] are commonly derived from simple tensile or creep 
tests and Eq. [8] from tensile tests. Equations [6] and 
[7] have been used successfully by several researchers 
to model bulging in continuous casting. L2~-27~ 

The worst attribute of these models is their obvious 
deficiency in characterizing the evolution of material 
structure. In general, the structure of a steel would be 
expected to change during a complex deformation his- 
tory in ways not directly related to the time or inelastic 
strain. Nevertheless, models with these forms are widely 
used to represent the complex loading conditions en- 
countered during casting processes that differ greatly from 
the test data they were based upon. It is therefore im- 
portant to evaluate and optimize their performance. 

The objective of this work is to develop and compare 
the abilities of  four different elasto-viscoplastic consti- 
tutive equations, based on Eqs. [6] through [9], to quan- 
tify the mechanical behavior of  plain carbon steel under 
conditions typically encountered during casting pro- 
cesses such as continuous casting: 

(1) temperature range of austenite (900 ~ to 1400 ~ 
(2) slow strain rate (10 -3 to 10 -6 s -1) 
(3) small strains (usually below 2 pet) 
(4) carbon contents ranging from pure iron (0.005 pct 
C) to high carbon steel (1.54 pet C) 
(5) complex loading histories 

II.  M O D E L  F O R M U L A T I O N  

Optimum versions of the simple constitutive equa- 
tions, of the forms suggested in Eqs. [6] through [9], 
were sought to model the mechanical behavior of  steel 
under continuous casting conditions. To accomplish this, 
parameters for each model were simultaneously fit to ex- 
perimental tensile and creep data using the method 
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described in Section A. The equations were then eval- 
uated for their ability to reproduce both the experimental 
data and behavior under complex loading conditions. 

Each of the model formulations has several common 
features. First, in order to model various plain carbon 
steels, a quadratic function of carbon content was used 
as a scaling constant, C, for each of the constitutive 
equations. First-order interactions between carbon con- 
tent, temperature, and inelastic strain were originally in- 
cluded in the scaling factor but were found to be 
negligible. Although evidence does exist showing the 
importance of solutes such as manganese, niobium, and 
phosphorus, tzs~ the paucity of  such data prevents other 
solutes from being included in the models. 

The second common feature of  each model is the tem- 
perature dependence of most of  the parameters. Initially, 
each parameter was chosen to be a quadratic function of 
temperature but was later reduced to linear, if the fit in- 
dicated there was little difference. 

Finally, models II through IV were formulated to han- 
dle arbitrary changes in loading conditions by treating 
the expression involving the net stress exponent, n, in 
the following general manner: 

~p = f , (C ,  T)  If=(o-)l"-'A(or) [10] 

This commonly used procedure enables negative inelas- 
tic strain rates to arise naturally while ensuring that neg- 
ative numbers are not raised to fractional powers. 

A.  Parameter  Estimation 

The best parameters for each model were found by 
minimizing the total error in matching both experimental 
tensile and creep data. For a given set of  model param- 
eters, the constitutive equations (Eqs. [1] through [3]) 
were integrated under conditions corresponding to each 
of the available stress-inelastic strain curves for the ten- 
sile test data and strain-time curves for the creep data. 
Thermal strain rate, ~r, was always set to zero, because 
all of  the experimental data was isothermal. Integration 
of each curve involved a backward Euler iteration scheme 
within each time step to converge upon the inelastic strain 
rate. t29,3~ A constant time step size of  0.01 to 0.7 sec- 
onds was employed for runs at low strain rates, with the 
smaller time steps needed for models III and IV. The 
time step was reduced 10 times at higher strain rates 
(above 10 -3 s-I).  Numerical stability was not a problem 
for reasonable values of  the parameters. 

The total error between points on the model-predicted 
curves and corresponding points on the experimental 
curves was defined by the following least-squares criterion: 

E2 
Total Error (MPa) / = E1 + - -  

(0.3) 2 
83 6 or 7 

El (MPa) 2 = E E (~ - 6r~J )2 
i=1 j = l  

12 7 

E2 (pct m / m )  2 =  E E ( ~ k l -  ~kl) 2 [1 l] 
k=l  1=1 

In calculating the error E~, j represents a discrete point 
on an individual stress-strain tensile test curve i, o- is the 

experimental stress, and 6- is the predicted stress. A sim- 
ilar correspondence holds for E2, which defines the total 
error in the estimate of  the strain-time creep test curves. 
The constant 0.3 represents a somewhat arbitrary con- 
version factor between stress and strain (i .e. ,  0.3 pct 
m / m  = 1.0 MPa) to allow comparison of the different 
units. This particular value, however, weights the error 
more heavily toward El; hence, the tensile data are fitted 
more closely. Choosing a different value than 0.3 for 
this conversion factor would allow different weighting 
between the creep and tensile data, ranging from fitting 
only the tensile data to fitting only the creep data. 

The simplex method for nonlinear optimization ta~J was 
used to estimate the optimal values of  the model param- 
eters that minimize the total error in Eq. [ 11]. The "sim- 
plex" is a geometrical figure consisting, in N dimensions 
for the N model parameters, of  N + 1 vertices and the 
associated edges, faces, etc. The method is started with 
an initial simplex and the error associated with each ver- 
tex. A reasonable starting value for each model param- 
eter that could generate stable curves was found through 
trial and error. Starting values for the other vertices were 
obtained simply by perturbing these values by -+5 pct. 
The parameters were not normalized, so the shape of the 
simplex changed greatly as the search progressed. 

Each step to reduce the error involves reflecting the 
point with the largest error through the face containing 
the smallest error. This requires reintegration of  each of 
the 83 tensile and 12 creep curves, which took approx- 
imately three minutes on a dedicated Silicon Graphics 
Iris 4D/25.  A reasonable estimate of  the optimum pa- 
rameter values typically required about 500 simplex steps 
or one day of CPU time. Convergence was defined when 
the error decreased by less than 1 • 10 -4 MPa after any 
iteration. Finally, the method was restarted at this "op- 
t imum" using a +-1 pct variation in the values to define 
the starting simplex. This usually confirmed that the final 
parameter values were indeed "optimal."  

Although this procedure might not be the fastest pos- 
sible, it was very simple and general. Changing the form 
of the constitutive model was easy, because this proce- 
dure involved no evaluation of derivatives, changes to 
the fitting procedure, or convergence difficulties. 

B. Data 

The experimental data used in the development of  the 
models are the tensile test data given by Wray t321 and the 
creep test data given by Suzuki et al.t331 These data were 
chosen over other measurements because they are both 
complete and comprehensive and together describe me- 
chanical behavior over the entire strain rate, strain, car- 
bon content, and temperature ranges of  interest. In 
addition, these data are compatible with each other, pre- 
dicting similar mechanical responses over the range of 
conditions where the data approximately overlap. 

The 83 sets of  tensile stress/inelastic strain data points 
were extracted directly from Table II in Wray ' s  article t321 
covering the range of conditions given in Table I of  this 
article and including five different temperatures, six strain 
rates, and eight carbon contents. The data of  Suzuki 
et al. was presented as a curve fit equation based on 
creep tests on 0.19 pct C steel, t331 Using the provided 
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Table I. Range of Conditions 
Used in Developing the Model 

From To 

Tensile tests: 
Temperature 950 ~ 1200 ~ 
Wt pct C 0.005 1.54 
Inelastic strain 0.1 pct 10 pct 
Strain rate 3 • 10 -3 S -1 6 )< 10 -6 S -1 

Creep tests: 
Temperature 1250 ~ 1400 ~ 
Constant stress 4.2 MPa 9.8 MPa 
Time 0 s 140 s 

relation, discrete strain-time data points were extracted 
for the given constant stress levels and temperatures and 
are included in Appendix I. Data for the model covered 
the range of conditions given in Table I. 

The model was based on a temperature range where 
the plain carbon steel is purely in the austenite phase. 
This temperature range is important for continuous cast- 
ing and avoids the necessity of employing mixture equa- 
tions to handle multiple phases�9 In addition, for these 
strains and temperatures, primary creep is dominant. This 
is indicated by both the curvature of the strain-time curves 
and the changing positive slopes of the stress-strain curves. 

It should be noted that experimental data itself has 
scatter�9 Based on the single tensile test replicated by 
Wray, t32J the common sample variance is estimated to be 
0�9 with 5 degrees of  freedom. This implies that dis- 
crete stress points should be within ---0.27 MPa of their 
true values, assuming a 95 pct confidence interval for 
the mean. However,  atypical data that do not follow the 
general trends are likely a greater source of scatter. This 
can arise from experimental problems, such as compli- 
ance of the testing equipment t1~ or differences in the ini- 
tial state of the test samples. [341 

The creep data are prone to similar problems�9 Most of  
the creep tests were run twice, and the time and strain 
at which recrystallization occurred were recorded, t35] 
Whenever appropriate, the curves in the present work 
are compared with both the experimental curves and these 
two recrystallization data points�9 Scatter is indicated, in 
part, by the degree of coincidence between these points 
and the experimental curves. 

C. Elastic Modulus 

An important part of  the constitutive model in Eqs. [1] 
and [2] is the elastic modulus at the high temperatures 
of  interest�9 Uncertainty exists concerning the true value 
of E at high temperatures, t36] This is partly because some 
experimental methods allow time for some creep to occur 
during the test, which leads to smaller estimates of  the 
elastic modulus�9 In the present work, the following re- 
lation, based on experimental data from Mizukami 
et al .  [37] under continuous casting conditions, was used 
to calculate E: 

E[GPa] = 968 - 2.33 (T - 273) 

+ 1.90 • 10 -3 ( T -  273) 2 

-- 5.18 X 10-7(T - 273) 3 [12] 

where T is the temperature of  interest in Kelvin. This 
relation applies to temperatures between 900 ~ and the 
liquidus. The E values produced by this equation are in 
agreement with data reported by Patel, t381 but they are 
much lower than data obtained with no creep relaxation, 
such as those surveyed by W r a y .  [36] 

The effect of elastic modulus on the shape of a typical 
calculated stress-strain curve is shown in Figure 1. Val- 
ues of  E were chosen by perturbing the nominal value 
of 14.5 GPa to encompass the wide range of  data that 
has been reported by previous workers�9 Equations [1], 
[2], and [7] were then integrated under typical tensile 
test conditions at 1100 ~ using the parameters of  model 
II (Appendix II). 

It is seen in Figure 1 that the elastic modulus controls 
the initial slope of the stress-strain curve. However,  its 
influence diminishes with increasing strain and it has lit- 
tle effect beyond about 0.2 pct total strain. Considering 
that the experimental tensile data used to fit the inelastic 
parameters of  the models were based on total strains of 
0.1 pct or more,  the value chosen for the elastic modulus 
would have little effect on the fitted model parameters. 
This implies that the elastic modulus could be varied to 
improve the fit at very small strains without much effect 
on the fit at larger strains. It was also found that nu- 
merical difficulties were fewer with a smaller elastic 
modulus, since the resulting size of  the elastic strains, 
relative to the inelastic strains, is larger. 

Alloy content also has a small effect on the elastic 
modulus. Arnoult and McLellan [39] found that at 
1000 ~ the modulus decreases by 3.2 pct per wt pct 
carbon. In consideration of  the other larger uncertainties, 
this dependency was not accounted for in the model�9 

D. Evaluation Criteria 

Each constitutive model was evaluated according to 
the following criteria: 

(1) Ability of  the model to reproduce the experimental 
stress-strain curves from tensile test data and the strain- 
time curves from creep data over the intended range of 

l ~= 1.4x 
T= 1100 ~ 
Wt.-%C = 0.50 

..4 
�9 o,,~ t �9  

. , . .  ~ ~ s  o s 

.,,.',-'r . 1 - -  

�9 �9 j~ 

=_. I ..-/ . . , /  / .  
,.'"/ - 
i /  / I - -  I 

271,. .', / ],,,,/,.' I - -  C;, ==;r;' I 

0 0.05 0.1 0.15 0.2 0.25 
Total Strain [%] 

Fig. 1 --Effect of variations in elastic modulus on shape of a typical 
stress-strain curve (model II; E.o.u.~l = 14.5 GPa). 
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conditions. This was determined by examining the many 
sets of  model-generated curves with the appropriate ex- 
perimental data points superimposed.[3~ In addition, the 
residual errors between the actual and predicted points 
were plotted against each independent variable (strain rate, 
temperature, carbon content, inelastic strain, and time). 
Trends in these plots help to identify weaknesses in the 
model. Finally, the absolute sum of all of the residual 
errors in modeling the tensile and creep data, E~ and E2, 
provided a fast indicator of the overall accuracy of each 
model. 
(2) Ability of each model to produce qualitatively suit- 
able behavior when modeling complex deformation his- 
tories. Several such loading conditions were examined: 
sudden changes in temperature, sudden changes in total 
strain rate, stress relaxation tests, and cyclic loading with 
and without stress reversal. 
(3) Ease of implementation of a model into FEM code 
and ease of  integration. This is considered relative to 
varying conditions and susceptibility to numerical 
instability. 
(4) Ease of fmding the "best-fit" model parameters. This 
is generally more difficult as the number of unknown 
parameters increases. 

III.  RESULTS 

The first concern of any model is that it reproduces 
the data from which it was constructed. The following 
sections present each model and evaluate their ability to 
match the experimental tensile and creep test data. 
Table II summarizes the overall accuracy of  the fit for 
all of  the models, whose best-fitted parameters are given 
in Appendix II. This table provides the total error in the 
predicted values of  the 513 tensile data points and 77 
creep data points used to develop the models. 

A.  Mode l  I 

The first constitutive equation model expresses the in- 
elastic strain rate as a function of only stress, tempera- 
ture, and carbon content. Physically, this simple relation 
assumes that the material structure remains constant 
throughout the deformation process. This is character- 
istic of  mechanical behavior in secondary or steady-state 
creep. This formulation has the advantage of simplicity, 
is easy to integrate, and has been used in several pre- 
vious continuous casting bulging analyses. [22,23.27] The three 
specific forms used in the present work are given below, 

Table II. Total Residual 
Errors Obtained for Each Model 

Tensile Creep 
Error E1 Error E2 Total 

Model (MPa) 2 (Pct m/m)  2 Error 

IA 9733 323 13,323 
IB 16,481 73 17,287 
IC 12,118 43 12,595 
II 1050 29 1375 
HI 2552 54 3150 
IV 1042 33 1414 

and the best estimates of the parameters, as found using 
the simplex method, are given in Appendix II. 

IA: ~p = C exp ( 7 )  o~ [13] 

IB: ~p = C exp (-~TQ) sinh {a~ o- } [14] 

1C: ~ p = C e x p ( - ~ T Q  ) [sinh{a~tr}]" [15] 

Models IA through IC differ from commonly used 
models  [22,23,27] only by the dependence on carbon con- 
tent, through factor C, and the temperature dependence 
of  the net stress exponent, n. 

Figure 2 shows how typical stress-inelastic strain curves 
calculated under tensile-test conditions (or "tensile 
curves") for model IA at different temperatures compare 
with the appropriate experimental data. [321 All of the ten- 
sile curves calculated for models IA through IC exhibit 
this same behavior of quickly reaching a flat asymptote. 
This is because hardening is assumed to depend only upon 
stress (or elastic strain). The lack of  inelastic strain hard- 
ening, which is implicit in these models, is obviously a 
very crude approximation of  the true behavior of steel 
over this range of conditions. This relation is naturally 
best at very low strain rates and/or  high temperatures, 
where the inelastic strain rate equals the total strain rate 
and the plastic portion of  the curve is flatter. The same 
conclusions apply to the tensile curves of models IB and 
IC which have the same flat shape but with a quantita- 
tively worse fit (Table II). 

Figure 3 shows the strain-time curves calculated for 
models IA and IC at 1350 ~ under creep test conditions. 
The model-generated curves are compared with both the 
experimentally based curves and the recrystallization data 
points from Suzuki et a/. I33] All of  the calculated curves 
exhibit a constant slope, characteristic of  the secondary 

25 

Temp. = 950 ~ 
Temp. = 1100 ~  �9 

. . . .  Temp. = 1200 ~ 
20- 

~ 1 5 .  4 

8 �9 r~ 
m 

[ ]  

O o 
d ? _ - _ .  ~ . . . . . .  o__ . . . . . . . . . . . . . . . . . . . .  

O 

5 oO e= l .4x  10"~sec. -I 

Wt.-%C = 1.24 

0 . . . .  i . . . .  I . . . .  i . . . .  I . . . .  I . . . .  i . . . .  I . . . .  i . . . .  I . . . .  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
Inelastic Strain [ % ] 

F ig.  2 - - T e n s i l e  test stress-strain curves calcu lated w i t h  mode l  I A  at 
di f fe ren t  t e m p e r a t u r e s  ( c o m p a r e d  wi th  e x p e r i m e n t a l  tens i le  test  da t a  
f r o m  W r a y m b .  
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8 ]  . . . . . . .  Model IA ] 

7 1 Model IC I ,,,,'x 
6 ~j~[ . . . . . .  T. Suzuki "'/[33-~/~, x o',, = 7.1 MPa 

47  . ' /  ..' 
-~ t / / . . "  . . j ' J '  ,~o=5.5M~ 

32 [ . / . . . . -  ~ . . . . . . . . . .  e ] / / . >  

o ~ 1  / "':'"" ............ ' " '  
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Time [ sec. ] 

Fig.  3 - - C r e e p  test  s t ra in- t ime curves  at 1350 ~ for mode l s  IA  and 
IC (compared  wi th  expe r imen ta l  c reep  tes t  data  f rom Suzuki,P3} where  
X denotes  recrys ta l l i za t ion  dur ing  7.1 M P a  tests).  

creep assumption of these models. Neglecting primary 
creep, which is dominant at the low strains important to 
casting, results in a poor prediction of the strain. Model 
IA best reproduced the steady-state creep rate at large 
times. However,  model IC matched the average creep 
strain better than IA for the shorter times of most inter- 
est. The creep curves for IB were similar to IC but had 
a slightly worse fit. 

All of  models IA through IC are quite crude, since 
they are incapable of  producing the work hardening or 
primary creep observed in steels during casting. They 
might be useful only as first approximations at very high 
temperatures and low strain rates or stresses. 

B. Model H 
The simplest enhancement to model I is to add "time 

hardening." This assumes that structure evolves mono- 
tonically with increasing time since the start of  the test. 
It provides a simple numerical mechanism to incorporate 
structure evolution, since time is always known during 
a simulation. This model therefore is just as easy as model 
I to integrate (for the same net stress exponent). A sim- 
ple model of  this form was developed from test data by 
Palmaers [40} and subsequently has been used successfully 
by several researchers to predict bulging in the contin- 
uous casting process. [23,24,251 Again, the present formu- 
lation enhances the simple form by including variation 
in carbon content and temperature-dependent exponents. 

II: gp=Cexp(~-Ta) cr"t" [161 

The best values of  the fitted parameters are given in 
Appendix II. It is expected that the fitted Arhennius tem- 
perature parameter, Q ( - 1 7 , 0 0 0  K -1) should roughly 
compare with the activation energy for self-diffusion of 
austenite iron, which is about 34,000 K -j (based on 284 
k J /mo l  and R = 8.31 J / m o l  K). I4l] It is alSO interesting 
to note that the net stress exponent, n, always has a value 
near 3, which has been suggested to be the theoretically 
appropriate exponent for power-law c r e e p .  [42,43,44] The time 
exponent, m, ranges from - 0 . 2 5  and - 0 . 6 9 ,  which cor- 
responds to a value of - 0 . 6 7  found by Feltham. t45] 

Under tensile test conditions (constant strain rate) at 
significant strains, this model is equivalent to a simple 
strain-hardening model, such as used by Garcarz et al.,[46] 
since ep/ip can be substituted for time: 

eP=Cl/(m+l) exp( (m+ -Q1) T) ~ ep/(m+t)[17] 

The form in Eq. [16] was chosen in the present work 
because it was found to perform better under creep con- 
ditions. In addition, it is significantly easier to integrate, 
since the net stress exponent n is always much smaller 
than n/(m + 1). 

Representative tensile curves generated with model II 
are shown in Figures 4 and 5. Figure 4 shows that this 
model characterizes variations in temperature reasonably 
well, particularly at higher temperatures. This demon- 
strates the well-known suitability of  the Arrenhius re- 
lationship for temperature-dependent effects. Figure 5 
shows that wide variations in the strain rate are also well 
modelled with time hardening. However,  time always 
increases during the analysis, so the model is unable to 
simulate constant structure. This deficiency can be seen 
to worsen the fit slightly at very low strain rate. Ex- 
amination of the stress-inelastic strain curves also re- 
vealed that this model reproduced the tensile test data 
better than the model proposed by Palmaers.[40] 

Figures 6 and 7 show representative creep curves at 
1300 ~ and 1400 ~ These figures show how model II 
can reasonably reproduce creep test behavior before re- 
crystallization at temperatures below 1400 ~ At 
1400 ~ the experimental strain is significantly under- 
predicted. The slope of the strain-time curve increases 
greatly with applied load, as it should. Note that there 
is always some curvature to these curves, since this model 
characterizes primary creep only. However,  recrystalli- 
zation usually occurs before steady-state creep is reached, 
so this is not a significant limitation. 
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Fig.  5 - - E f f e c t  o f  strain rate on  stress-strain curves  ca lculated  wi th  
m o d e l  II ( compared  with W r a y  tensi le  datap2]).  

C. Model III 

Model III characterizes structure evolution solely 
through the inelastic strain, ep. Numerically,  evaluating 
this model [331 is more difficult than the previous models.  
However,  the inelastic strain must be computed for any 
stress analysis, so this presents little additional difficul- 
ties to FEM implementation. 

The form of  model III is similar to model  IA, except 
that the deformation rate is driven by the difference be- 
tween the applied stress, or, and a new inelastic strain 
term, aee/. 

i i ,  

This new term is a form of  "back stress" hardening pa- 
rameter which has been used in previous constitutive 
models. [43,471 It is a highly temperature-dependent func- 
tion of  the inelastic strain and physically represents the 
threshold stress level needed to move dislocations through 
the current microstructure and produce permanent pos- 
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Fig. 6 - - E f f e c t  o f  stress on  creep test s train-t ime response  o f  m o d e l  
II at 1300 ~ (compared with S u z u k i  da ta ,  pal X denotes  recrystall ization).  

9 

= 5--] 

"~4- 

~ 3  

2 

1 

0 
0 

X 

/ 
x . -  d o = 7 . 1 M p  a 

/ 

/ co = 5 . 5  MPa 

, 3 /  

' ' ' 1  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

10 20 30 40 50 60 70 80 90 100 
Time [sec.  ] 

Fig .  7 - - C r e e p  test curves  us ing  m o d e l  II at 1 4 0 0  ~  ( c o m p a r e d  wi th  
S u z u k i  da ta ;  p3} X denotes  recrysta l l izat ion) .  

itive deformation. Because this back stress term evolves  
with inelastic swain, it introduces a temperature-dependent 
slope and curvature into the calculated stress-strain curves. 
The slope of  the curve increases with increasing values 
of  a~. The parameters C, n~, and n act in a similar man- 
ner. As their values increase, the entire plastic portion 
of  the curve is lowered, while the slope is unaffected. 
This form of  constitutive equation was found to produce 
a better fit with experimental data than other similar forms 
investigated. Its special attributes during complex load- 
ing will be revealed later. 

Although the shapes of  the curves are not exactly re- 
produced, the fit achieved by this model  is acceptable, 
particularly at small strains. Table II shows that the over- 
all fit o f  model  III is not quite as good as Model  II. 
Representative tensile curves calculated using this model  
are given in Figures 8 through 10. 

Figure 8 shows how well  the simple carbon-dependent 
factor, C, used in this model  accounts for the variation 
in mechanical behavior with carbon content. Although 
similar curves for models I, II, and IV are not given, 
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they exhibit similar fit. The fit is tolerable at strains be- 
tween 0.5 and 2 pet, but there are discrepancies at very 
small strains (below 0.2 pct). This is mainly because all 
of the steels have very similar initial behavior. The 0.051 
pct C steel had the worst fit, particularly at very small 
strains. This might be due to inherent differences in the 
properties of  steel below 0.1 pct C, which would render 
the simple quadratic function used in C insufficient. Dif- 
ferences in the initial state of  those particular specimens 
are another possibility. 

Figure 9 shows that model III can reasonably accom- 
modate variations in temperature at small strains. 
Figure 10 shows that this model is able to characterize 
strain-rate variations only to a limited extent. This in- 
accuracy stems from the inability of  this model formu- 
lation to change the slope of  the integrated stress-strain 
curve as a function of  strain rate. This deficiency in model 
III is inherent in the assumption that structure is linked 
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to inelastic strain alone. The data show that the slope 
should increase significantly at higher strain rates. For- 
tunately, this inaccuracy is less noticeable at strains less 
than 2 pct, which are the most important to casting. 

An example of  the residual error distribution plots is 
given in Figure 11. Here, the difference between the pre- 
dicted and experimental stress is plotted against the in- 
elastic strain. The nonrandom trends in this plot indicate 
deficiencies in the model. The most serious deficiency 
is the constant slope of the stress-strain curves required 
at all strain rates. The fitted compromise is naturally best 
at intermediate strains and strain rates. The worst resid- 
uals are seen at large strains. This is also partly due to 
the inherent increase in stress level with increasing strain. 
The large residuals seen at strains below 0.2 pct are also 
partly due to the anomalous behavior of  the 0.051 pct C 
steel. Plots of  the residuals against temperature and car- 
bon content are randomly distributed. This is consistent 
with the reasonable characterization with respect to those 
variables seen in Figures 10 and 11. 

Representative creep curves for this model are shown 
in Figure 12 at 1300 ~ This figure illustrates that model 
III,  like model II, can reproduce only primary creep be- 
havior. At long times, when the inelastic strain rate ap- 
proaches the total strain rate, the calculated inelastic strain 
approaches an asymptote, since all of  the variables in 
Eq. [17] are then constant. Thus, model III cannot sim- 
ulate steady-state creep and so has an inherent under- 
prediction of strain at long times (relative to the stress 
level). This is also consistent with its poor ability to re- 
produce the flat tensile curves at high temperatures and 
low strain rates. However, Figure 12 shows that this model 
does produce acceptable behavior at small strains and 
short times. 

D. Model IV 

The final form of constitutive equation investigated uses 
both inelastic strain and time to characterize the struc- 
ture. It is much more difficult to integrate than the 
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Fig. 1 2 - - C r e e p  test curves calculated with model  HI at 1300 ~ 
(compared with Suzuki [331 data; X denotes recrystallization). 

previous models but is still relatively stable and easy to 
implement into existing FEM codes. 

IV: ~ p = C e x p ( 7 ) [ t ~ - a , e ~ ' + a , t ' t r " ~ ] "  [19] 

This constitutive equation differs from model  III by in- 
cluding a time-dependent term, attnttr n~, to  explicitly 
model the phenomenon of  recovery which occurs con- 
tinuously during every test. This softening process re- 
duces the slope of  the stress-strain curves by annihilating 
dislocations that are formed via work hardening. This 
new term is also dependent on temperature, since re- 
covery is a diffusion-controlled process, and stress, which 
provides a higher driving force. The qualitative effect o f  
this term is to change the slope and curvature of  the stress- 
strain curves with varying strain rate due to its explicit 
time dependence. It was expected to produce a signifi- 
cant improvement in fit and behavior. 

Figures 13 and 14 illustrate the ability o f  this relation 
to characterize tensile test behavior. The overall fit is 
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temperatures (compared with Wray datap2]). 
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Fig. 1 4 - - T e n s i l e  test curves calculated with model  IV at different 
strain rates (compared with Wray data1321). 

better than model  HI, as expected and indicated in 
Table II. In particular, Figure 14 shows that this model  
characterizes the variations in strain rate which model  
III had problems with. 

The creep curves for model  IV have the same shape 
as those of  model III. Model  IV's creep curves also ap- 
proach a creep strain asymptote and, hence,  are poor at 
long times and high temperatures. Quantitatively, how-  
ever, the curves match the creep data closer than those 
of  model  III. 

IV. C O M P A R I S O N  
W I T H  O T H E R  M E A S U R E M E N T S  

The models were run to duplicate conditions o f  tensile 
tests by Suzuki t35] on 0.25 pct C steel. A sample o f  the 
model  predictions compared with the experimental data 
is given in Figure 15. The predicted curves are all sig- 
nificantly lower. This most  likely is due to differenCes 
in the initial structure o f  the samples caused by the dif- 
ferent annealing procedures used by Suzuki [35] and Wray p61 
Suzuki annealed samples at 1400 ~ and cooled to test 
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Fig. 15 - -Typ ica l  tensile test curves calculated with models  II and III 
compared with Suzuki data. pSI 
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temperature. [35j Wray annealed samples at test temper- 
ature, which likely produced less softening and hence a 
stronger initial structure. 

To account for this difference, the models were mod- 
ified to include a normalizing factor for the initial struc- 
ture. This was done by replacing stress, o', in Eqs. [16], 
[18], and [19] with tr/cr 0. The "initial structure con- 
stant," tr0, was thus always 1 for the Wray 136~ tensile data 
and Suzuki et al. t33] creep data upon which the model 
was based. Increasing cr 0 to 1.54 for the Suzuki t351 tensile 
data improved the fit tremendously, as shown in 
Figure 16. It is surprizing that a single value for this 
constant produced such an improvement in fit over the 
entire range of temperatures and strain rates investi- 
gated. Although the fit is poor for the high strain rate 
data, these conditions are outside the range of interest 
and data used to develop the models. 

The ability of the models to reasonably reproduce in- 
dependent tensile test data is encouraging. However,  the 
need for the initial structure parameter illustrates the well- 
known importance of sample preparation on the me- 
chanical behavior.J35] The constitutive models should be 
fit to experimental data obtained from appropriately pre- 
pared samples. In the case of  casting, solidifying and 
cooling the test specimens to the testing temperature "in 
situ" should be performed. 

V. C O M P L E X  L O A D I N G  

The previous sections compared the performance of 
the various models in reproducing experimental data under 
standard tensile or creep test conditions. However,  the 
conditions in continuous casting are neither constant strain 
rate nor constant stress. The loading in a casting process 
varies between these two extremes and involves contin- 
ual change in temperature, stress, and strain rate over 
wide ranges. To evaluate the ability of each model to 
reproduce behavior under complex loading conditions, 
six different types of  loading responses were investi- 
gated. These were chosen to represent extremes of the 
conditions actually encountered during casting. 
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Fig. 1 6 - - T y p i c a l  tensile test curves calculated with models II and III 
using initial structure constant of  1.54 compared with Suzuki data. psi 

A. Sudden Temperature Changes 

The effect of  suddenly decreasing the temperature dur- 
ing a tensile test was almost the same for all of the models 
investigated. The typical response is shown in Figure 17 
for model II for sudden decreases in temperature from 
1300 ~ to 1100 ~ at total strains of  1, 3, and 5 pct 
compared to the isothermal curves at those temperatures. 
The stress-strain curve is seen to follow the 1300 ~ curve 
until the change in temperature, whereupon the stress 
quickly rises to join and follow the 1100 ~ curve. De- 
creasing the temperature should produce a sharp rise in 
the stress that monotonically increases and asymptoti- 
cally approaches the upper curve from b e l o w .  [48'491 The 
lower temperature (upper) curve continues with an in- 
creased slope, since there is less creep. All of  the models 
do exhibit this behavior, except that the approach is very 
rapid. This response seems reasonable, despite the lack 
of experimental validation, which is difficult to perform 
accurately, due to the uncertainty in small thermal strains 
generated in the testing equipment. 

B. Sudden Strain-Rate Changes 

Figure 1 8 shows the calculated response of models II 
through IV for tensile tests that suddenly decreased the 
strain rate after 1 pct strain. The figure also includes the 
behavior at constant strain rate for the initial 2.0 x 
10 -4  S - l  (the upper curves) and final strain rates 2.0 x 
10 -6  S -1 (the lower curves). 

The expected behavior for this test is a monotonic de- 
crease in stress from the upper curve that asymptotically 
approaches the lower curve from above.I48,49] This is the 
behavior exhibited by model IV, although the response 
time is rather slow. Model III simply "jumps" very rap- 
idly between its two curves. 

The response of model II is the least reasonable. Its 
decrement curve in Figure 18 drops below the lower 2.0 
X 10 -6  S -1 curve and then asymptotically approaches this 
lower curve from below. This behavior simply reflects 
the problems that naturally arise in a purely time-hardening 
model when time correlates very poorly with the defor- 
mation history. The stress level achieved at high strain 
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Fig. 1 7 - - T e n s i l e  test curves calculated with model II at two tem- 
peratures together with response to sudden temperature decrements at 
strains of  1, 3, and 5 pct. 
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Fig. 1 8 - - C o m p a r i s o n  of models II through IV responses to sudden 
decrement in strain rate at 1 pet strain together with tensile test curves 
calculated at the two strain rates. 

rate drops suddenly to the value it would have reached 
at that time had the entire test been conducted at the cur- 
rent low strain rate. For example, 50 seconds of testing 
are required to reach 1 pet strain at the high strain rate. 
At the lower strain rate, 50 seconds would produce only 
0.01 pet strain and a stress of 3.7 MPa. Thus, a strain- 
rate decrement test after 1% strain on the higher curve 
produces a sudden drop to about this same 3.7 MPa stress 
level, followed by continued reproduction of  the lower 
strain rate curve, as if starting from 50 seconds. 

Suddenly increasing the strain rate during a tensile test 
produced the results that would be expected based on the 
strain-rate decrement behavior. Model III again jumps 
immediately from the low strain rate curve to the high 
strain rate curve. Models II and IV both rise rapidly in 
stress and overshoot the upper curves produced from 
constant deformation at the high strain rate. Model II 
then follows a parallel path to its upper curve, but never 
reaching it, while Model IV asymptotically approaches 
its upper curve from above. Model IV also exhibited an 
unusual spike in each stress-strain curve at high tem- 
peratures and low strain rates due to excessive recovery. 
This can be seen in its lower strain rate curve in 
Figure 18. 

Compression tests by Brown et al. [H~ on 2 pet Si steel 
indicate that the response time to reach the new steady- 
state flow curve after a sudden increase in strain rate is 
very fast at these low strain rates and high temperatures. 
For example, the 2 x 10 -3 s -~ flow curve was reached 
within about 0.5 pet strain after suddenly jumping 10 

4 1 o [11] times from 2 x 10- s- after 10 pet strain at 800 C. 
Even less strain was needed at higher temperatures 
(1000 ~ Moreover, no overshoot in stress can be de- 
tected in these results, tl~] even when jumping several 
orders of magnitude in strain rate. This fast response ob- 
served by Brown et al. tm is consistent with the predic- 
tions of other models, tt~ 

Based on these experimental findings, model III 
appears to exhibit the most realistic response to sudden 
changes in strain rate, since it always "jumps" between 

curves very rapidly. Model IV exhibits the correct 
asymptotic behavior but with a slower response time than 
expected. Model II is the most deficient in this test, with 
its qualitatively unnatural response. However, the quan- 
titative discrepancy for a sudden, two order of magni- 
tude decrement in strain rate is not excessive, so model 
II might still be useful for many real processing conditions. 

C. Unload~Reload Testing 

This test is simply an extreme case of the strain-rate 
decrement and increment tests. The responses of  models 
III and IV are similar to the previous test. However, the 
response of model II depends upon how time is treated 
during the reloading. Figure 19 shows a monotonic ten- 
sile curve together with two cases of unloading and re- 
loading after 0.2 pet strain. In one case, the time, 
representing the hardening parameter defining the struc- 
ture for this model, was "reset" to zero at the time of 
reloading. This reloading curve is then identical to the 
initial loading curve but offset by the 0.2 pet strain. In 
the other, "no reset" case, time was allowed to progress 
continuously through the test. In this case, the approach 
to the original curve is faster, which is the expected be- 
havior in the absence of recrystallization. Thus, it ap- 
pears that resetting the structure parameter is not 
appropriate until recrystallization has occurred. 

D. Stress Relaxation Tests 

Stress relaxation test conditions were chosen to du- 
plicate tensile tests performed by Maehara et al. on plain 
0.18 pet C steel. [28] First, monotonic loading was im- 
posed at a constant slow strain rate to 1 pet strain. Then, 
the total strain was fixed (by setting the total strain rate 
to zero) and the stress was allowed to relax for 180 sec- 
onds due to creep. These steps were repeated several times 
with the application of additional loads to increase strain 
by 1 pet in each step. Figure 20 compares the stress- 
time curves calculated using models II through IV with 
the measured stress relaxation curve at 900 ~ 
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Fig. 1 9 - - T e n s i l e  test curves calculated with model II for unloading 
at 0.2 pet strain and reloading at the previous strain rate. 
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All three models behave in a similar manner until the 
point of  first unloading and naturally match the experi- 
mental data of  Wray, [32] upon which they were based. 
The peak stress predicted at 1 pct strain is much greater 
than the stress measured by Maehara et al. , [ 2 8 ]  which re- 
veals significant differences between the two sets of  ex- 
perimental data. Maehara et al. report an experimental 
problem of unaccounted thermal strains in the testing 
system, due to temperature inhomogeneity,[2s] which might 
explain this discrepancy. Alternatively, the initial struc- 
ture of  the specimens may have been different, due to 
differences in annealing procedure prior to testing. 

The subsequent relaxation behavior differs greatly in 
magnitude between the models. Model II produces very 
rapid relaxation, and without reloading, the stress would 
have asymptotically approached zero. Models III  and IV 
produce slower relaxation toward a nonzero asymptote, 
which, for model III,  is given by 

cr = a~e "~ [20] 

Due to the inherent differences between the data of  
Wray t361 and Maehara, et a/fl Ea] the stresses predicted by 
the models generally overestimate the Maehara mea- 
surements throughout the loading/relaxation cycles. 
However, the qualitative behavior is reasonable. The 
predicted stress drops due to relaxation by an average of 
44 pct in each cycle for model HI and 27 pct for model 
IV, which are similar to the average measured drop of 
32 pct. Model II predicts an average drop of  83 pct and 
produces extreme increases in stress upon reloading, which 
is less realistic. The curve predicted by model HI is the 
closest to the measured curve. Changing the initial struc- 
ture constant to 1.4 resulted in the experimental curves 
consistently lying between the predicted curves of models 
III and IV throughout time and strain. 

E. Cyclic Loading with Stress Reversal  

The stress-strain responses of models II and IH to cyclic 
loading conditions are shown in Figure 21. These curves 
were produced by reversing the strain rate whenever 
---1.2 pct strain was reached. The stress predicted by the 
time-hardening model II is naturally seen to increase 

continuously as time progresses (with no reset). This is 
very different from the stable cyclic behavior exhibited 
by model III. Since model III  depends on strain alone 
to characterize the material structure, an identical stress 
is produced at the corresponding strain points in each 
cycle. Models II  and III therefore produce two possible 
extremes of material behavior. The long time response 
of model III  is probably more reasonable. 

Cyclic predictions for model IV are not presented since 
problems were encountered during the solution. This is 
typical of  more complicated models. With further work 
and more experimental data, it is expected that a form 
of model IV should produce behavior superior to the other 
models. Currently, there is not enough data to charac- 
terize the behavior of steel during stress reversals at these 
temperatures and strains. 

F. Sinusoidal Loading without Stress Reversal  

The final loading condition investigated was mono- 
tonic, sinusoidal tensile loading, with stress variations 
between 0.4 and 7.0 MPa. Figure 22 compares the strain 
time responses of  models H through IV to experimental 
measurements from Suzuki et al. for 0.19 pct C steel, t331 
The degree of  scatter in the measurements is indicated 
by error bars in the figure. All three models exhibit 
reasonable behavior, with model HI having the best 
quantitative fit. 

This loading case was also used to examine the po- 
tential of these models to characterize the drastic changes 
in microstructure and mechanical behavior that accom- 
pany recrystallization. Recrystallization was observed to 
occur at about 800 seconds during the experiment.t33] At 
this time during the simulations, the structural parame- 
ters (strain and time) were reset to zero in each model. 
The same expected response of increased deformation 
rate resulted in all of the models and the experiment. 
Thus, at the low strain rates encountered in casting, it 
appears reasonable to characterize recrystallization as a 
return to the initial structure. This is easily incorporated 
into the constitutive models, provided a function to pre- 
dict the conditions for recrystallization can be developed. 
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V I .  DISCUSSION 

The four different elasto-viscoplastic constitutive models 
have been compared over a range of common condi- 
tions. They are now evaluated together according to the 
criteria presented previously. 

A. Fit to Experimental Data 

None of  the models tested completely fit all of  the 
original experimental data used in their construction. 
However, all of  the models, except model I, appear to 
have potential. The simplest, constant-structure models 
IA through IC are very crude. For the small strains im- 
portant to casting processes, primary creep is dominant. 
Model II is always better and involves the same com- 
putational effort. 

Model II had the best overall fit to the experimental 
data. Model HI had problems at strains greater than 2 
pct due to its inability to reproduce variations in the slope 
of the stress-strain curve for varying strain rate. Diffi- 
culties were also seen in the creep tests at long times for 
the same reason. However, at lower strains and times, 
model III was almost as accurate as models I1 and IV. 
The small strains are most important, since casting pro- 
cesses do not produce large strains. Furthermore, steel 
at high temperature can withstand only a small amount 
of deformation (usually 5 pct strain or less at slow strain 
rates) before it undergoes the drastic structural change 
of recrystallization. Despite its added complexity, model 
IV was no better than model II. 

None of the models are very effective at modeling creep. 
for long periods of time. In continuous casting, how- 
ever, this is not a severe limitation, since drastic loading 
changes usually occur before much time elapses. The 
time interval between stress reversals caused by 
passing beneath individual support rolls and volume 
changes due to phase transformations is usually less than 
100 seconds. 

All of the models greatly underpredict the experimen- 
tal creep strain at 1400 ~ while at lower temperatures, 
the predicted strain is usually slightly high. It is inter- 
esting to speculate that phase transformation may have 
occurred during those tests, since the delta-ferrite to aus- 
tenite transformation temperature is 1394 ~ Phase 
transformations are accompanied by large amounts of  in- 
elastic strain, which increase in proportion to the stress 
level, tS~ In addition, the creep rate of the body-centered- 
cubic (bcc) ferrite structure of both alpha and delta fer- 
rite is many times higher than that of face-centered-cubic 
(fcc) austenite. This might explain the inability of  
single-phase models to achieve a reasonable fit at this 
temperature or higher. 

To extend the valid temperature range of these con- 
stitutive models beyond austenite, relations must first be 
developed for single-phase alpha and delta ferrite. Then, 
a simple mixture rule should be able to predict the 
weighted average inelastic strain rate of the material, based 
on the volume fraction of the different phases present at 
that temperature. ~5~] In addition, an extra term might be 
added to Eq. [2] to account for the phenomenon of  phase 
transformation plasticity, tSz~ 

B. Complex Loading 

Models II through IV all exhibit a similar ability to 
reasonably reproduce the experimental tensile and creep 
data for small strains and times. For sudden changes in 
temperature, the models again all behave in the same 
reasonable manner, jumping rapidly between curves. 
However, the models differ greatly in their response to 
complex loading conditions, including sudden changes 
in the strain rate, unload/reload, stress relaxation, cyclic, 
and sinusoidal tests. 

Generally, models III and IV produced similar behav- 
ior, while model II had a more extreme, anomalous re- 
sponse. Using time to characterize the material structure 
has severe limitations when there are drastic changes in 
loading conditions, such as stress reversals from tension 
to compression. This explains the problems that model 
II has in reproducing complex deformation histories. 
Careful resetting of  the time parameter to zero after se- 
vere loading reversals might extend the ability of this 
model. 

Model III, which characterizes structure using inelas- 
tic strain, appears to have the best ability to match the 
experimental response to changes in strain rate, stress 
relaxation, and cyclic loading tests. This suggests that 
inelastic strain is a better parameter to characterize the 
material structure during complex loading histories than 
time. Model IV also appeared to have good potential for 
modeling complex loading conditions. Having both the 
time and inelastic strain-hardening parameters gives model 
IV superior qualitative ability to reproduce complex 
loading behavior. However, without including complex 
loading data when evaluating the model constants, this 
model is no better and may even be worse than 
model III. The best model, however, is still uncertain 
in the absence of  additional experimental data. It is 
also unknown if these differences are important for 
the mechanical deformation histories of real casting 
processes. 
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C. Numerical Stability 

The models developed in this work were all designed 
to be easy to implement and use in an FEM program. 
Models I and U are easily implemented into standard FEM 
creep formulations, such as used in ABAQUS. tl9; Models 
III and IV should present few additional problems, since 
inelastic strain is always available and subject to con- 
vergence requirements for any simulation. 

The model equations should all be easy to integrate 
stably for the above same reasons. However, numerical 
integration is easier when the exponents on simulta- 
neously calculated variables, such as stress, are small. 
Larger exponents increase instability and generally re- 
quire a smaller time step for integration. Model II has 
an advantage in this regard, since its net stress exponent 
is always about 3. This compares with roughly 6 for model 
III and 12 for model IV. 

An additional important attribute of all of  the models 
is their ability to be inverted to solve explicitly for the 
stress in terms of  the other variables. This allows the use 
of alternative numerical solution strategies. Finally, a 
closed-form solution exists for constitutive models IA 
and II under some loading conditions. This can be help- 
ful in solving the FEM stress equations and can even 
make numerical integration unnecessary for simple 
problems. 

D. Finding Model Parameters 

As the models become more complex, it is harder to 
find optimal values for the model parameters and to un- 
derstand their meanings. In order of increasing com- 
plexity, models IA through IC had 7 to 10 parameters, 
models II and III each had 10, and model IV had 15. 
The most complex model, IV, also presented conver- 
gence problems during complex loading simulations 
involving stress reversals. 

An exception to this general guideline is the "data- 
base" model which can guarantee an exact fit at all of  
the experimental data points. The main challenge in this 
type of model is developing the multidimensional inter- 
polation scheme between data points. There is also the 
danger that any errors in the database are reproduced 
exactly by the model. 

Finally, the form of model IV appears to be non- 
optimal. Alternate forms, such as the one suggested 
below, might produce behavior clearly superior to models 
II and III, with the best attributes of both. 

~p = C exp (-~TQ) ( o ' - f ( e p ,  T))nt m [21] 

This does not appear worth the effort, however, before 
finding and incorporating more experimental data for 
complex loading conditions. Such data could easily be 
used in the fitting procedure presented in this work. 

VII.  CONCLUSIONS 

In this work, four different elasto-viscoplastic consti- 
tutive models were fit to experimental tensile and creep 

test data-using a least-squares approach to minimize the 
error in their integrated curves. The models were de- 
veloped for plain carbon steels with 0.005 to 1.54 pct 
C, temperatures in the austenite range (950 ~ to 
1400 ~ strain rates from 10 -3 to 10 -6 s -~, strains less 
than 5 pet, and short times before recrystallization occurs. 
The models apply to single-phase austenite, so relations 
for the ferrite phases, transformation plasticity, and mix- 
ture equations to handle the multiple phases should be 
incorporated before these equations are applied to com- 
pletely model casting processes. 

The models are purposely simple, so they are easy to 
implement into existing finite element software and pres- 
ent minimal numerical difficulties. Although this sim- 
plicity limits the abilities of  the models, the uncertainty 
and differences between available experimental data ap- 
pear greater. A single constant to account for differences 
in initial structure between different experimental data 
performed adequately. 

Each model has both merits and deficiencies. Model 
III may be the best compromise, considering its accept- 
able fit to the test data, reasonable behavior under com- 
plex loading conditions, and numerical stability. It is 
planned for use in coupled finite element models to sim- 
ulate the thermal/mechanical behavior of  the steel strand 
during continuous casting in and just below the mold. 
This constitutive equation should reasonably model this 
part of the process, because it involves relatively small 
loads, short times, and small strains, where this model 
performs best. In addition, the steel is predominantly 
austenite throughout the process, and stresses arising above 
1400 ~ should be small. 

Although it is less accurate under complex loading 
conditions, model II has the best overall fit to the orig- 
inal test data and might allow faster convergence with 
its small net stress exponent. Hence, it may be useful 
for preliminary simulations, particularly when the load- 
ing history changes consistently with time. Models II and 
III represent extremes in behavior from completely time 
hardening (II) to completely strain hardening (III). Thus, 
if the differences between process simulation results ob- 
tained using these two models is small, the importance 
of complex loading conditions is not important, and the 
results are likely to be reasonable with either model. The 
enhanced performance of model IV, which has both time 
and strain hardening, does not appear to be worth its 
added complexity and inferior stability at present. 

More experimental data are needed to determine the 
true behavior of steel under complex loading conditions 
relevant to casting before more sophisticated models are 
warranted. Additional experimental data are also needed 
at very low strains (below 0.5 pct) for the range of steel 
grades cast, particularly at very high temperatures (above 
1400 ~ In fitting the parameters of future models, a 
multiphase model incorporating transformation plasticity 
is recommended for data at 1400 ~ and above. Addi- 
tional work is also needed to quantify the conditions re- 
quired for recrystallization. The results of this work 
suggest that simple models may be suitable for repro- 
ducing the mechanical behavior of steel during casting 
processes, even when complex phenomena such as re- 
crystallization are present. 
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A P P E N D I X  I 

C r e e p  test  da ta  

Temperature Stress Time (s) 
(~ (MPa) 20 40 60 80 100 120 140 

1250 5.5 0.4 p c t e  0.6 0.8 0.9 1.0 1.1 1.2 
1250 7.1 0.9 1.3 1.6 1.8 2.1 2.3 2.6 
1250 9.8 2.4 3.4 4.2 4.9 5.6 6.2 6.6 
1300 4.2 0.34 0.50 0.63 0.74 0.84 0.93 1.0 
1300 5.5 0.8 1.1 1.4 1.6 1.9 2.1 2.2 
1300 7.1 1.7 2.4 3.0 3.5 4.0 4.3 4.4 
1350 4.2 0.6 0.9 1.1 1.3 1.5 1.7 1.8 
1350 5.5 1.4 2.0 2.5 2.9 3.3 3.7 4.0 
1350 7.1 3.2 4.5 5.6 6.4 7.5 8.0 8.6 
1400 4.2 1.1 1.6 2.0 2.3 2.6 2.9 3.1 
1400 5.5 2.6 3.6 4.4 5.1 5.9 6.4 7.0 

This table presents the percent strain/time data points defining the creep curves used in fitting the models. The data were obtained 
by integrating the equations given by Suzuki et a l .  p3] These data are consistent with the selected data included in their ar t ic le ,  p3] 

Model IA 

C 
a 
n 

A P P E N D I X  I I  

Cons t i t u t i ve  e q u a t i o n  s u m m a r y  

= 24 ,233  + 4 9 , 9 7 3  (pct  C)  + 4 8 , 7 5 7  (pct  C)  2 
= 4 9 , 4 8 0  
= 5 .331  + 4 . 1 1 6  x l 0  -3  T - 2 . 1 1 6  x 10 -6 7 e 

Model IB 

C = 2 .602  x 10 l~ + 2 .265  x 1012 (pct  C)  
- 1 .332 x 1012 (pct  C)  2 

Q = 56 ,423  
n -= 1 .5403 + 5 .913  x 10 -s  T - 5 . 5 3 8  - 10 -7 T 2 

Model IC 

~p = C e x p  ( ~ T Q )  [sinh {a,~o-}]" 

C = 1 .802 x 10  6 + 1.742 x 108 (pct  C)  
- 6 .503  x 107 (pct  C)  2 

Q = 4 4 , 8 0 9  
a~ = 1.068 + 1 .702 x 10 -4 T - 2 .808  x 10 -7 T 2 
n = 0 . 2 0 0  + 3 . 9 6 6  x 10 -4 T 

Model H 

~p=Cexp(-~Ta) O'ntm 
C = 0 .3091  + 0 . 2 0 9 0  (pct  C) + 0 . 1 7 7 3  (pct  C)  2 
Q = 17 ,160  
n = 6 .365  - 4 .521  x 10  -3 T + 1 .439 x 10  -6 T 2 
m = - 1 . 3 6 2  + 5 .761 x 1 0 - a T  + 1.982 x 10 -8 T 2 

Model III 

~p = C e x p  (-~TQ) [o- - a , e~ ' ] "  

C = 4 6 , 5 5 0  + 7 1 , 4 0 0  (pct  C)  + 12 ,000  (pct  C)  2 
a = 4 4 , 6 5 0  
a~ = 130.5 - 5 .128  x 10 -3 T 
n~ = - 0 . 6 2 8 9  + 1 .114  x 10  -3 T 
n = 8 .132  - 1 .540 x 1 0 - 3 T  

Model IV 

#e = C exp (~TQ) [ t r -  a~ep" + atf'cr"~]n 

C = 6519  + 1.005 x 105 (pct  C)  
+ 3 .664  • 105 (pct  C)  2 

Q = 6 4 , 0 2 0  
a~ = t 6 2 . 7  - 4 . 3 2 6  x 10  -3 T 
n~ = - 1 . 0 6 9  + 1.345 • 10  -3 T 
a, = 0 . 1 4 9 5  
n t = 0 . 3 2 9 9  
n~ = 0 . 7 2 2 4  - 9 .885  x 10 -5 T + 1.541 x 10 - T T  2 
n = 12.81 - 6 . 645  x 10 -4 T 

N O M E N C L A T U R E  

Var iab le s  De f in i t i on  Un i t s  
o" stress M P a  
d" p red i c t ed  v a l u e  o f  tr M P a  
e,  e las t ic  s t rain m / m  
ep ine las t ic  strain m / m  
e total  s train m / m  
e p r e d i c t e d  v a l u e  o f  e m / m  
E Y o u n g ' s  m o d u l u s  G P a  
T t e m p e r a t u r e  K e l v i n  
d stress ra te  M P a  s -1 

-1 total  s train ra te  s 
-1 ~, e las t ic  s t rain rate  s 
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~p inelast ic  strain rate s -1 
~r thermal  strain rate s -1 
E~ error  in f i t t ing tensi le  da ta  MPa  2 
E2 error  in f i t t ing creep da ta  (pct  m / m )  2 
t t i m e  s 

t~i internal  structure var iable  (varies)  

Mode l -F i t t ed  Parameters  

C carbon conten t -dependent  M P a  -n s -m-I 
function 

Q act ivat ion energy constant  Ke lv in  
fro init ial  structure constant  - -  

a~ tempera ture -dependent  M P a -  1 
constant  

at constant  in mode l  IV M P a  1-~ s - s '  

a~ tempera ture -dependent  M P a  s -n~ 
constant  

a~ tempera ture -dependent  M P a  s -~" 
constant  

m tempera ture -dependent  - -  
t ime exponent  

n t empera ture -dependent  net  - -  

stress exponent  
n~ tempera ture -dependent  - -  

inelast ic  strain exponent  
n~ tempera ture -dependent  - -  

exponent  in mode l  IV 
nt t ime exponent  in mode l  - -  

IV 
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