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Rapid melting and solidification of a semi-infinite substrate subjected to a high intensity 
heat flux over a circular region on its bounding surface moving with a constant velocity is 
considered. General expressions are developed for the coefficients in the finite difference 
equation governing the heat transfer in moving orthogonal curvilinear coordinate systems. 
These expressions are reduced to their specific forms in terms of dimensionless nodal 
temperature and enthalpy for a moving oblate spheroidal coordinate system. Quasisteady 
state conditions are assumed and the thermal properties of the substrate in the liquid and 
solid phase are considered constant and equal. It is also assumed that the substrate melts 
and solidifies at a single temperature. Temperature distributions in the molten region and 
the adjacent heat affected zone are computed along with the liquid-solid interface shape, its 
velocity and other important solidification variables. Both uniform and Gaussian heat flux 
distributions within the circular region are considered. The results are presented in their 
most general form-- in  terms of dimensionless numbers when possible. Specific criteria for 
the melting of the substrate are established. It is shown that the three variables, absorbed 
heat flux q, the radius of the circular region a and the velocity of the moving flux U, could be 
combined into two independent variables. That  is, the dimensionless temperature distri- 
bution in the metal pool and the solid substrate remain the same as long as the products qa 
and Ua or U/q are kept constant. The effect of these variables on cooling rate in the liquid 
and the ratio of temperature gradient to growth rate at the solid-liquid interface are 
discussed using an aluminum substrate as an example. 

I. INTRODUCTION 

THE availability of high power directed energy sources 
such as the electron beam and different types of lasers 
has led to the development of a number of new 
materials processing techniques which exploit the 
unique characteristics of these sources. One such 
process, the rapid surface layer melting and subsequent 
solidification of metallic and semiconductor substrates, 
appears to have many potential applications. In two 
recent papers ~,2 we addressed the one and two dimen- 
sional transient heat flow problems during rapid melt- 
ing and solidification of the surface of a semi-infinite 
substrate subjected to a high intensity stationary heat 
flux on its bounding surface. In the present investi- 
gation the earlier findings are extended to three- 
dimensional heat flow on the surface of a semi-infinite 
solid subjected to a moving heat flux. It is anticipated 
that the equations and solution method developed 
would be equally applicable to other metallurgical 
processes such as welding. 

In general, most experiments with a directed energy 
source, such as the continuous wave CO 2 laser, involve 
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scanning of the source over the surface of the substrate. 
Analytical solutions to simple moving heat source 
problems have previously been considered by 
Rosenthal. 3 His analysis is for a solid substrate which 
does not undergo a phase change. It is based on the 
notion that if the dimensions of the substrate are large 
with respect to the moving source, then the system 
approaches a quasisteady state; steady state prevails 
from the standpoint of an observer located in and 
travelling with the source. The analytical solutions of 
Rosenthal 3 have been extensively used in metallurgical 
processes such as welding and surface hardening. How- 
ever, these solutions are only accurate at large distances 
from the source and can not address the complex 
problem of melting and solidification which is the 
subject of this investigation. 

In this paper we extend the mathematical technique 
developed and used in the previous two-dimensional 
transient heat flow problem. 2 The oblate spheroidal 
coordinate system is used again, however, the math- 
ematical expressions and computer methodology devel- 
oped assume the existence of a quasisteady state while 
the coordinate system is in motion (i.e. after the starting 
transients have vanished). 

II. PROBLEM STATEMENT 
AND SOLUTION APPROACH 

We consider a high intensity heat flux over a circular 
region on the bounding surface of a semi-infinite solid 
moving with a constant velocity, U, in the y-direction in 
cartesian coordinate system, Fig. 1. The absorbed heat 
flux is high enough to cause melting of the surface layer. 
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Fig. 1--Schematic illustration of a laser beam--substrate geometry 
during rapid surface melting and solidification. 

Temperature profiles in the molten region and the 
adjacent heat affected zone, as well as the important 
melting and solidification variables of the surface layer 
are to be determined. The analysis is based on the 
assumption that a quasisteady state is established, 
which is to say that the system appears to be in a steady 
state as viewed by an observer located at the center of 
the circular region and travelling with the heat source. 
We thus transfer the coordinate system from the 
semi-infinite solid to the center of the heat source. The 
surface outside the heated region is considered adia- 
batic. The thermal properties of the solid and the liquid 
phases are considered to be constant and equal. Finally, 
it is assumed that the workpiece melts and solidifies at a 
single temperature. 

The generalized expressions previously derived 4 for 
the determination of the coefficients in the finite 
difference equations governing the stationary heat 
transfer problem within discretized spatial domains are 
extended to account for the motion of orthogonal 
curvilinear coordinate systems. These expressions are 
then reduced to their specific forms for a moving oblate 
spheroidal coordinate system which is a "more natural" 
coordinate system than the cartesian for this problem 
geometry. The finite difference equations are rewritten 
in terms of dimensionless nodal enthalpy and temper- 
ature, in a manner similar to that previously de- 
scribed, :'6 to permit numerical solution of the multi- 
dimensional, discrete temperature-phase change prob- 
lem. In this way, both dimensionless temperature and 
enthalpy are used to formulate a single energy conser- 
vation equation for each discretized spatial domain 
regardless of whether it is in the solid state, the liquid 
state or contains the liquid-solid interface. Finally, the 
quasisteady state temperature distributions in the mol- 
ten region and the adjacent heat affected zone are 
computed along with the liquid-solid interface shape, its 
velocity and other important melting and solidification 
variables; cooling rate and the ratio of temperature 
gradient in the liquid to the interface velocity. 

III. M A T H E M A T I C A L  DESCRIPTION 

The generalized form of the heat conduction equation 
in stationary orthogonal curvilinear coordinate system 
(Ul, u2, u3) has previously been derived. For  a volume 
element moving in space with velocities v~, v 2 and v 3 this 
expression can be expanded to include conduction of 
heat in and out of the volume element due to motion:* 

*All the terms in the equations are defined in the Nomenclature. 

1 l Ou, 

{h OH h 3H h h3V3" ~u33H] - 0  + + [11 

Where the scalar factors (metric coefficients) relating 
the curvilinear coordinate system to the cartesian sys- 
tem are those previously defined? The arc lengths, areas 
and the volume of the element in the curvilinear 
coordinates are related to the cartesian by: 

ds i = hldu ~; i = 1,2,3 [2] 

dA i = h~hkdujduk; i,j ,k = 1,2,3 [3] 

d V  = hduldu2du3 [4] 

Finally, P in Eq. [1] denotes source strength per unit 
volume. 

The Taylor series expansion of Eq. [1] about an 
arbitrary discretized domain in space centered at a node 
at (i,j,k) can now be carried out to put the equation in 

t I 
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k+:~ 

�88 
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Fig. 2--Three-dimensional moving oblate spheroidal coordinate sys- 
tem and problem geometry showing a discretized space domain. 
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finite difference form. The subscripts i,j and k indicate 
the finite discretization of space in the u~, u 2 and u 3 
directions, respectively. The change in respective co- 
ordinate values between successive nodes are Au~, Au 2 

and mu 3. If terms of the order of Au 3 and higher are 
neglected, the substitution of all the finite difference 
approximations in Eq. [1] yields the coefficients to the 
various nodal temperatures: 

[ ~ 1 

h2Au~ 2au~ 2au/~ h, ) i,j,* l,j,k 

1 ph q 
2Au2 ~ h2 ] 

[ k,h 1 (k,h]] 
+ th~au] 2Au3 01/3 ~ 3 /  T'J'k-' - - -  

l 
2Au3 ~ h3 ] 

+ k,h 1 3 [kjh~] 
h~Au~ + 2Au I ()b/l ~k h~ ] T,+ ''j,k + 2-~., ~ h, / 

[ k2h 1 3 (k2h]] 1 [phv2] 

[ 1 o ?,h] l 1 ?hq 
+ [h~au~ + 2au3 au3 \ ~ 1  ] T'j'k+' + ~ \ h3 ) 

id,k 

i j , k  

i ,j ,k 

ij,k 

ij,k 

+ - 2 ~ +  ~ +  r . ,k-  Si h2Au2 h~ Au2 ] i,j,k i ,j,k 

hpH o] 
+ [P " h + ,  At ] ]  i,j,k = 0  

H i ,j - I,k 

H i• t 

H i  + l , j ,k 

H i d  + l,k 

H i,j,k + 1 

n ij,k 

[5] 

Application of the general Expression [5] to a moving 
oblate spheroidal coordinate system located at the 
center of the heat flux and travelling with the source is 
now considered. The cartesian and the oblate spher- 
oidal coordinate systems are shown in Fig. 2. The heat 
flux is applied over a circular region of radius a in the 
x-y plane and is travelling in the y-direction with 
constant velocity U. 

Vy = U 

v x = v, = 0 [6] 

The thermal properties are considered to be uniform 
isotropic and equal for the solid and liquid phase. 
Quasisteady state conditions are assumed--terms in- 
volving time in Eq. [5] are zero. 

The control volume is centered about an arbitrary 
point (i, j ,  k) in space and is moving with a velocity U 
in the positive y-direction, i, j and k indicate the finite 
discretization of space in the r/, ~ and ~ directions, 
respectively. 

u~ = ~ , u 2 = 4 ,  u 3 =  

v I = vn, v 2 = v~, v 3 = v~ [7] 

The scalar factors (metric coefficients) for the oblate 
spheroidal coordinates and the interrelationship be- 
tween vector components (velocities) in the two coor- 
dinate systems are given in Ref. [5]. Substituting Eq. [6] 
in these interrelationships and performing the indicated 

operations yields: 

U sinM sin( sin~ 

v~ = v ~ s h Z 0  _ sin2 ~ 
U coshv/cos( sin~ 

v~ = V~oshZr/ _ sin2 ( 

v~ = U cos, / ,  [8] 

The scalar factors and the velocity components from 
Ref. [5] are now used in the general expressions for the 
finite difference coefficients: Once the appropriate 
operations are carried out Expression [5] can be put in a 
more useful form for the problem at hand. 

CsTi,j: = C 1 T i _ l &  k + CzT i+ ld , k  q- C3Ti•  k 

+ C4Ti , j+l ,  k + CsTi• 1 .-t- C6Tia,k+l 

Cs C9 
C7 Hi - z , j , k  + H i + l , j k  HiE tk 
co C " C - 

Clo H Cll H~• i + Cn 
+ ~ p  i • + l ,k C p ' C-p H i "j'k + l 

P a(cosh2"rh - sin(j) 
+ k [91 

The coefficients in Eq. [9] are: 

1 1 
C1'2 = AT/~ "~- 2 ~  tanMi 

1 1 
c34 = a-~ ;- ~ cot~, 
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1 (coshZqi - sin2~j) 
C5,6 - A~2 cosh2rh sin2(j 

C7 = C8 a U o C  p . sin(j sinq, k = 2kAy/ slnh~/~ 

aUpCp 
C9 = Cl~ = 2kA~ c~ cos~j sin0k 

aUpCp (coshZqi - sin2~j) 
Cl~ = C~ - 2kA~ cosh~ h sinai cosq~ 

[ 1 1 1 (cosh2"qi - sin2~j) 
C , =  ,=l C , =  +2  ~ +  ~ +  A~ ~ c -o~sh2~s~  

[10] 

In the above each coefficient has been divided by (ak 
coshr h sinai Ar/A~Aq,). 

The finite difference representation of the heat con- 
duction equation can now be put in its equivalent 
enthalpy form using a modified version of notation in 
Ref. [2] for dimensionless nodal enthalpy, ~, and 
dimensionless nodal temperature, O. These two depen- 
dent variables are defined as: 

Cs~ij,k = ClOi_l j ,k  ~- C20i+lj,k "~- C30i j_ l ,  k 

~- C40ij+l,k -~ C50ij ,k_ I ~- C60ij,k+l 

-- C7~i_lg,k ~- C8~i+lj,k -- C9~i j_ l ,  k 

+ Clo~u+~.k -- C,q~j.k_~ + Cl2~b~,i.k+l 

pa2(coshZ.qi - sin2(i) C v 
+ CJL,j~ + Ir " ,~H,~"  

[15] 
The coefficients C~ t o  C 1 2  and C, are those defined in 

Expression [10]. 
An alternate approach to the general formulation of 

the problem developed here, which results in Eqs. [9] 
and [10], is to apply an energy balance to an arbitrary 
moving control volume of finite size with a total source 
strength p A V  centered about node i , j , k  in oblate 
spheroidal coordinates. This approach, described in 
detail in the Appendix, is very useful because; a) it 
verifies the general formulation of Eq. [1] developed in 
this investigation, and b) it renders improved physical 
interpretations of the various coefficients derived for 
Eq. [9] and [10] and the boundary conditions described 
in the next section. 

1 ( H  - I 4 . )  a V  = 

Yv ~ AII,, 
( T -  TM) 

0 = Cp AH,i 

H - H *  

AH~I 

In general, H in Eq. [11] refers to the specific 
enthalpy of the discretized space volume and assumes 
different forms when the node is in the liquid, the solid 
or the liquid-solid region. H* is the specific enthalpy of 
the solid at its melting point. 

In the solid region the dimensionless nodal enthalpy, 
~, is negative and is equal to the dimensionless nodal 
temperature: 

q, = 0 = C p ( T  - T M )  

AHsI ~ 0 

In the superheated liquid region: 

C e ( T -  TM) 
g , = l +  > 1 . 0  

AHs/ 

0 = i f - 1  

A discretized space volume containing the liquid- 
solid interface is at the melting point of the material: 

0 < g , ~ < l . 0  and 0 = 0  

The value of ~p is equal to the weight fraction of the 
element which is in the liquid state, f t .  

The appropriate forms of Eq. [1 1] for a discretized 
space domain in the solid or liquid region, Eqs. [12] or 
[13] are substituted into Eq. [9]. After some manipu- 
lation and multiplication by different factors the fol- 
lowing common equation is obtained for both the solid 
and the liquid. 

IV. BOUNDARY CONDITIONS AND 
SOLUTION OF THE FINITE 
DIFFERENCE EQUATIONS 

[1 1] The boundary conditions are derived based on the 
following assumptions. 

The absorbed heat flux in the circular region of the 
bounding surface (z = 0, x -y  plane) is in general a 
function of distance and time, q = q(r,t) where r 
= xfx 2 + y2. In this paper the problem is solved for 
the two special cases of uniform and Gaussian distri- 
butions of the absorbed heat flux within the circular 
region. Equation [15] is then subject to the following 
boundary conditions. 

I. 7 = 0 ,  0 ~ < 7 r / 2 ,  

[12] Tr 7r 3T 
- ~ < q , < ~ ,  077 0 [16] 

The first node at this boundary is at i = 1, r/l 
= A~//2, therefore, the surface located at i - 1/2 is 
coincident with this boundary of symmetry: 

Qi-l/2j,k[;=l = 0, Ci = 0 [17] 

Similarly, the top surface is parallel to the moving 
[13] direction, hence: 

c7 = 0 [18] 

In general, the heat flux in the circular region on the 
[14] bounding surface is incorporated in the term involving 

P in Eq. [15]. 

rate of heat generated p =  
unit volume 

a2 t: + aU2 r 
f q (0 sin (20 d(. f d,~ 

(j - A(/2 0 - ,,0/2 

AV [191 

where ,5 V is the volume of the discretized space domain. 
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AV = hAvlA~A @ = a3(coshZo, - sin2~j) 

• cosh*/i sinai A~/A~Aq~ 

For case a) q = constant 

P is calculated from Eqs. [19] and [20]. Substitution of 
this finding in the last term of Eq. [15] leads to the 
following expression: 

a q c o s ~ j  sin (A 0 • Cp 
k cosh~ A~A~ AH~ 

For case b) q - qoe-2sin% 

and the last term of Eq. [15] becomes: 

qoa [e -z~i"z(~j- ~ ' -  e -z~i"z'~j+ ~-'] Cp 

4 k cos h~ sin ~j A~TA~ AH~ 

boundary is zero: 

[201 C 3 = 0 ,  69 = 0  [321 

II. n > 0 ,  0~<8~<7r/2, 

8T 
= -Tr/2, 0q~ = 0, P = 0 

(the negative y portion of 
the y - z  plane, x = 0) 

Because of problem symmetry about the y - z  plane the 
plane defined by q~ = - 7r/2 will represent a zero flux 
boundary. Since the first node at this boundary is at k 
= 1, q't = Aq~/2, then the surface located at k - 1/2 is 
coincident with this boundary of symmetry: 

Q/j,k_l/21k=l, = 0, C5 = 0 

Similarly, this surface is parallel to the moving 
direction; hence: 

CH = 0 

77 
III. ~ / > 0 ,  0 < ~ < } ,  

7r ~T 
~ =  + 2 , ~ 4  = 0 ,  P ~ 0  

(the positive y portion of 
the y - z  plane, x = 0) 

By using a similar reasoning to that given above we 
must set 

C 6 = O, C n = 0 

IV. ~ / ~oo ,  0 < f < ~ r / 2 ,  

-7r/2 <q~ <~r/2,  P = 0  [29j 

Far away from the circular region (for the problem at 
hand, r/--. 10): 

--  C p ( T  M - To) 
0ij,~ = ~Pij,k = AHst [30] 

v. , > 0 ,  4 = 0 ,  e = 0  [31] 

(along the z-axis, x = 0, y = 0) 

The area of the surface located at j - 1/2 along this 

VI. ~ > 0 ,  ~ =  ~r/2, 

-7r/2 < ~  < r r / 2 ,  P = 0  [33] 

The surface on the x - y  plane outside the circular 
region is adiabatic: 

[ 2 1 ]  Q~j+~/2,klj=Ma~ = 0, C4 = 0 [34] 

The top surface is parallel to the moving direction, 
[22] hence: 

Cl0 = 0 [35] 

[23] The system of quasisteady state algebraic equations, 
Eq. [15], in the moving oblate spheroidal coordinates 
were solved using an iterative method. The computer 
logic presented below closely follows that previously 
described for the two-dimensional transient heat flow 
problem for stationary heat flux applied in the circular 

[24] region on the surface of a semi-infinite solid, z However, 
the quasisteady state nature of the problem has elim- 
inated time derivatives from the heat flow equation. 

The solution is started by initially assigning a tem- 
perature of T o to the semi-infinite solid. Then, by using 
Eqs. [12] to [14] the left hand side, LHS of Eq. [15] is 
calculated using the boundary conditions by repeated 
point iteration throughout the mesh in a definite order a 
number of times until the convergence criterion is met. 
The following logic is used in the sequence of calcu- 

[25] lations. 
If ~Pij., < 0 the element is in the solid and right hand 

side, RHS, of Eq. [15] is less than zero. 

RHS 
[26] q~,j,~ = Cs [36] 

As the calculation is repeated for the next nodal 
point, the value of 0 in the previous nodal point in the 
mesh is set equal to that calculated from Eq. [36]. On 
the other hand, if 0 ~< ~P,j,k ~< 1.0 the element contains 

[27] the liquid-solid interface and the value calculated from 
Eq. [36] gives the fraction of liquid in the volume 
element. The value of 0 for this nodal point is set equal 
to zero in the next iteration step. Finally, if q~ij,k > 0 the 
element is in the superheated liquid region and the 
values of ~ and of 0 for this nodal point become that 
given by Eq. [13]. 

[28] The convergence criteria is tested by comparing the 
new value of q'ij,k with the old guess value: 

[~bg.j,, (new) - ~bi,l,~ (old)l< 10 4 [37] 

Convergence is assumed when Eq. [37] is satisfied. 

V. RESULTS AND DISCUSSION 

The equations and the computer logic developed 
were used to calculate the quasisteady state temperature 
distribution in an aluminum* substrate subjected to 

�9 * The properties of aluminum used in the calculations are listed in 
Table I. 

both uniform and Gaussian moving heat flux distri- 
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butions. The results are presented in their most general 
form, when possible, i.e. in terms of dimensionless 
parameters in order to establish general trends between 
the process variables and the important melting and 
solidification parameters. The sequence of the pres- 
entation is as follows. First, the steady state temperature 
distributions due to a stationary heat flux acting over a 
circular region of radius a are discussed and the results 
are compared with the transient heat flow calculations 
of the previous paper} It is shown that the criteria 
developed earlier, between the product of the absorbed 
heat flux and the radius of the circular region qa and the 
steady state temperature at the center of the circular 
region, are equally applicable to the problem on hand. 
A significant departure from the earlier 2 calculations is 
the assumption that the conductivities of the liquid and 
the solid phases are equal. The effect of this assumption 
on the steady state temperature distributions is dis- 
cussed. Secondly, the effect on the temperature distri- 
butions and the solidification parameters of moving the 
heat flux in the y-direction with a dimensionless veloc- 
ity Ua/2a  are discussed in detail for both uniform and 
Gaussian heat flux distributions. 

1. Steady State Temperature 
Distributions Stationary Heat Flux 

Figure 3 shows a general plot of the data obtained in 
the previous study} The curve associated with the 
vertical axis on the right side of this figure shows that 
there is a minimum product of qa required if the center 
of the circular region on the surface of the substrate is 
to reach a given temperature, e.g. the vaporization 
temperature of the substrate. That is, for very small 
values of a /2  V ~  (long interaction times) the temper- 
ature at this location approaches its maximum steady 
state value. Again, the term A H , / C p  in the numerator 
on the right hand vertical axis of Fig. 3 denotes the 
equivalent temperature change for the melting of the 
substrate. 

For  the aluminum substrate, the minimum values of 
qa "~ 1.45 • 105 W / m  and qa "-~ 2.3 x 10 -~ W / m  are 
deduced from Fig. 3 for a solid surface temperature 
T(0,0,0) = T M and for the initiation of surface melting, 
respectively. These values are identical to those of the 
previous calculations} On the other hand, the minimum 

10 0 ~ = : : : : ~ _ ~ . ~ _ _  ~ - ~ -  : , - ~  10 ~ 

"~ i0 -~ : : :  i0 -i o 

i 

1 0 - 2 [  , i i ' HEAT FLOW \ '~- . __ t , - _\. 10 -2 

i0-~ i0 < i 0  ~ i0 ~ 10 2 

a / 2 / ~ s t  

Fig, 3 - -Tempera tu re  at the center of the liquid zone of a semi-infinite 
solid substrate during surface melting as a function of uniform 
absorbed heat  flux, radius of the circular region and time from 
Ref. [2]. 

value of qa ~-- 6.4 x l0 s W / m  deduced for the center of 
the circular region to reach the vaporization temper- 
ature is larger than that calculated earlier because the 
assumed higher conductivity of the liquid* permits 

* The higher conductivity of the solid is used for both the liquid 
and the solid in this study. The actual average conductivity of the 
liquid is 108 W m  -I K -1. 

faster diffusion of heat away from the heat source. 
Figure 4 shows the effect of different thermal con- 

ductivity values on the location of the liquid-solid 
interface when steady state prevails. Note that a higher 
liquid conductivity, while the conductivity of the solid 
remains the same, results in a larger metal pool (a 
higher qa value) if the center of the circular region is to 
reach the vaporization temperature. 

The steady state temperature distributions of a sta- 
tionary heat source are of interest because this is the 
problem geometry as the velocity of the moving heat 
source approaches zero. Figure 5 shows the shape and 
location of several isotherms, including the liquid-solid 
interface, in an aluminum substrate for two different 
values of the product qa. These are steady state 
isotherms and the center of the circular region has 
reached maximum temperatures T~ and 2130 K for qa 
= 6.4 • 105 W / m  andqa  = 5 x 105 W/m,  respec- 
tively. The temperature distributions remain the same in 
these dimensionless plots for all values of q and a as 
long as the product qa is kept constant. 

Figure 6 shows the effect of increasing the product qa 
on the steady state location of the liquid-solid interface. 
The associated maximum temperature at the center of 
the circular region is listed on each curve. The melt pool 
becomes deeper and hotter as the product of the 
uniform absorbed heat flux and the radius of the 
circular region increases. Furthermore, ratio of the melt 
width to the melt depth is larger than one and increases 
with decreasing value of the product qa. 

Figures 7 and 8 show the actual temperature distri- 

FRACTIONAL DISTANCE, y/a or x/a 
0.4 0.8 1.2 1.6 

0 r ~ / / '  

c ~  

~m 0.8 ks = k = 228' qa = 6"4 x 1 0 s ~ / / I  

o 

~ ~  ALUMINUM 

1.2 L-S INTERFACE 
_ _ ~ - ~  UNIFORM HEAT FLUX 

T(O,O,O) = T v 

U=O 
STEADY STATE 

1.6 1 
Fig. 4---The effect of changes in the thermal conductivities of the 
liquid and solid phases on the steady state location of the liquid-solid 
interface of an a luminum substrate subjected to a stationary uniform 
absorbed heat  flux q over a circular region of radius a. In each case 
the center of the circular region has reached the vaporization 
temperature T~. 

2.0 
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FRACTIONAL DISTANCE, y /a  or  x/a 
0.8 1.2 1.6 /i 

0.8 / 

-- + y  N 

~ / 
.1.2 / 

/ %  

~ 1.6 j "  

2.0 ~ ~ ISOTHERMS 
/ UNIFORM HEAT FLUX 
/ ,, j qa = 5 x 10 s W/m 

t T(O,O,O) = 2130 K 
2.4 / _ _  #qa = 6.4 x 10 s W/m- 

' -~T(O,O,O) = T v ' 

U = O  
2.8 , STEADY STATE 

Fig. 5--Steady state location of several isotherms, including the 
liquid-solid interface (T  -- 993 K) for two different products of qa. 

0 0.4 

. . , . -  

2.0 

i 
I 

/ 

/ 
/ 

/ 
/ 

2.4 2.8 

FRACTIONAL DISTANCE, y /a  or x/a 
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Fig. 6 - - T h e  effect of the variable qa on the steady state geometry and 
location of the liquid-solid interface. The maximum temperature at 
the center of the circular region associated with each curve is also 
listed. 

butions in the melt pool and the solid along the z-axis 
and on the z = 0 plane, respectively. As anticipated, 
temperature gradients along the z-axis increase with 
increasing values of the product qa and decrease with 
increasing distance from the surface of substrate. On 
the other hand, symmetry on the z = 0 plane requires a 
zero temperature gradient with respect to the x or the y 
axis at the center of the circular region. Note  that the 
temperature gradients at the edge of the pool on this 
plane increase with decreasing values of the product qa. 
This information will be of interest when relationships 
between cooling rates and process variables are dis- 
cussed in the moving heat flux problem geometry. 

2. Quasisteady State Heat F l o w - -  
Moving Heat Flux 

A. Uniform Heat Flux. An initial finding of this 
investigation was that the three variables, absorbed heat 
flux q, the radius of the circular region a and the 
velocity of the moving heat flux U, could be combined 
into two independent variables. That is, the dimension- 
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Fig. 7--Steadys~tetemperaturedistnbutionsinthe meltpooland 
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Fig. 8--Steady state radial temperature distributions in the melt pool 
on the z = 0 plane for different values of the variable qa. 

Table  I. Properties of the A l u m i n u m  Substrate 

C p* = 1067 J K g - i  K-~, specific heat 
AH,t = 3.95 X 1@ J Kg-~, latent heat of fusion 
K t = 228 W m -  ~ K -  t, thermal 
conductivity 
T M = 933 K, melting temperature 
T,. = 2723 K, vaporization temperature 
p* = 2545 Kg m -3 density 
a = 8.4 • 10 -5 m 2 s-~, thermal diffusivity 

* Averaged from 298 K to the vaporization temperature. 
t Averaged from 298 K to melting temperature. 
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less temperature distribution in the liquid metal pool 
and the solid substrate remain the same as long as the 
products qa and Ua or U / q  are kept constant while the 
individual values of the three variables are varied. 
Consequently, the data is presented herein in a general 
form, covering a large range of process parameters, in 
terms of the product qa or U / q  and the dimensionless 
parameter Ua/2a .  The latter parameter has previously 
been used in crystal growth models. 7,8 

Figure 9 shows the dimensionless temperature dis- 
tribution along the y-axis for different values of Ua/2a.  
For small values of Ua/2a  ~ 0.003 the heat flux is 
moving very slowly across the substrate in the 
y-direction and the temperature distributions are al- 
most, but not exactly, identical to those shown in Figs. 5 
to 8. That is, there is little distortion of the melt pool 
and it remains almost symmetrical as it travels across 
the substrate. On the other hand, increasing the 
dimensionless velocity results in increasing distortion of 
the metal pool- - the  maximum temperature along the 
y-axis shifts toward the tail end of the pool. The data in 
Fig. 9 permits determination of temperature distribu- 
tion along the y-axis for a wide range of process 
variables. For example, for a radius of the circular 
region a = 400/Lm and qa = 6.4 • 105 W / m  the 
maximum temperature reached at steady state, U = 0, 
was the vaporization temperature of aluminum. The 
maximum dimensionless velocity Ua/2a  ~ 1.0 in Fig. 9 
translates into an actual velocity of ~0.42 m/s, a 
temperature T(0,0,0) ~ 2400 K and a maximum tem- 
perature, displaced from the center of the circular 
r e g i o n ,  Tma x ~ 2540 K. Changing the product qa to 4.1 
• l0 s W / m  while U a / 2 a  is kept constant, results in a 
significant reduction in the temperature at the origin 
T(0,0,0) ~ 1510 K--compare  this with the steady state 
value of 1730 K in Fig. 6. 

Examples of the shape and location of several 
isotherms, including the liquid-solid interface, for given 
values of the products qa and Ua/2o~ are shown in 
Fig. 10. This figure shows composite top and side views 
of the isotherms at steady state for a stationary and a 
moving heat source. 

The dimensionless velocity Ua/2oz = 0.75 would, for 
example, translate into actual velocities of 0.1 m/s  and 
1 m/s  for radii of the circular region of --~ 1260 ~tm and 

126 lam, respectively. The corresponding absorbed 
uniform heat fluxes that result in qa = 6.4 • 105 W / m  
a r e q ~ 5 . 1  X 108W/m~andq-~  5.1 • 109W/m 2, 
respectively. Figure 10 shows significant shifts in the 
geometry of the isotherms to the trailing end of the 
moving heat source. 

It is interesting to note that due to the high conduc- 
tivity of the aluminum substrate the distortions in the 
isotherms are not nearly as pronounced as those 
expected in lower conductivity materials such as iron or 
nickel. This point was clearly demonstrated in the 
moving point source calculations of Rosenthal? 

Figures 11 and 12 show the effects of changing the 
variables qa and Ua/2G on the geometry and location 
of the liquid-solid interface--the liquid pool. First, it is 
evident that there is little distortion of the pool at low 
velocities. Second, increasing the product Ua/2a  results 
in a corresponding decrease in a maximum pool depth. 
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Fig. 9--Quasisteady state dimensionless temperature distributions 
along the y-axis of a moving uniform heat flux q absorbed over a 
circular region of radius a. The velocity of the heat source, U, is in the 
positive ),-direction. 

Third, the geometry of the pool is more spherical at 
higher products of qa--i ts  width to depth ratio increases 
with decreasing values of qa. Finally, shallower pool 
geometries are less affected by changes in the 
dimensionless velocity. 

The effect of changes in the values of qa and Ua/2a  
on the cooling rate in the liquid at the solid-liquid 
interface, G L �9 R,* and the variation of this cooling 

* G L and R are the temperature gradient in the liquid and the 
solid-liquid interface velocity perpendicular to the metal pool surface, 
respectively, 

rate along the different axes of the cartesian coordinates 
are shown in Figs. 13 and 14. These are calculated 
cooling rates during solidification of the trailing half of 
the metal pool. Heating and cooling rates from the 
point of view of a stationary observer located anywhere 
in the heat affected zone of the substrate can similarly 
be determined. The cooling rate, G L �9 R, can be 
alternatively described as the producer of U �9 8 T / 3 y ,  
where OT/~y  is the y-component  of the temperature 
gradient in the liquid at the liquid-solid interface. The 
cooling rate is a maximum along the y-axis and its value 
for a given radius of the circular region increases with 
increasing values of the ratio U/q.  This is clearly 
evident in the plots of Figs. 13 and 14 note the values 
of G L �9 R • a 2 at z / a  = x / a  = 0. This fact can also be 
deduced from the steady-state temperature distributions 
in Fig. 8. The temperature gradients at the solid-liquid 
interface increase with decreasing values of uniform 
absorbed heat flux q. 

For given values of qa and U a/ 2a  the cooling rate 
continuously decreases toward the edges of the metal 
pool, Figs. 13 and 14. This is expected since both the 
temperature gradient in the y-direction and the solid- 
liquid interface velocity perpendicular to itself tend to 
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Fig. l ~ o m p o s i t e  side and top views of the 
isotherms in an aluminum substrate sub- 
jected to stationary and moving uniform 
absorbed heat fluxes over a circular region on 
its boundary surface. The n-n curve connects 
the points of maximum temperature farthest 
from the y-axis. 
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Fig. 11--A side view, x = 0 plane, showing the effects of changing the 
values of qa and U a / 2 a  on the shape and size of the molten region. 
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zero at points of maximum melt depth and melt width, 
in other words no melting occurs at these locations. 
Examples of cooling rates that are readily calculated 
from these figures are as follows. Assume a uniform 
heat flux of q = 1.2 • 109 W / m  2 absorbed over circular 
region of radius a = 250/zm is moving with a velocity 
U ~ 0.5 m/s,  qa - -  3 • 105 W / m  and Ua/2e~ ~ 0.75. 
The calculated cooling rates from Figs. 13 and 14 at y / a  
=- O, x /a  = 0.8 and z /a  = 0.4 are ~ 9  • 106K/s, ~3 .7  
• 106K/s and ~ 8  x llYK/s, respectively. 

The ratio of the temperature gradient in the liquid at 

and perpendicular to the solid-liquid interface divided 
by the solid-liquid interface velocity perpendicular to 
the melt pool during solidification, G J R ,  is a measure 
of the stability of a planar interface and its progressive 
breakdown into cellular and dendritic solidification 
modes. This parameter  is plotted vs the z /a  and x /a  axis 
for different values of the variables qa and Ua/2a in 
Figs. 15 and 16, respectively. The data clearly indicate 
that the minimum G J R  value consistently occurs 
along the centerline of the moving pool on the y / a  axis. 
The interface velocity at this location is in the 

METALLURGICAL TRANSACTIONS B VOLUME 12B, MARCH 1981--41 



6 I 
L" ~ Ua/2c~ = 0.75 

x 5 

. \ 

N 4  \ 

0.45 

.~ " - .4  \ 

< h,, x 

2 I 
\ 

\ 
\ 
\ 

I I 
ALUMINUM 

UNIFORM HEAT FLUX 

- - - -  qa = 3 x 10 s W/m 

qa = 6.4 x 10 s W/m 

QUASI-STEADY STATE 

O 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

FRACTIONAL DISTANCE. z / a  

Fig. 13--Variation of the product of cooling rate at the solid-liquid 
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the x -- 0 plane for different values of the independent process 
variables. 

~ Ua/2c~ = O. 75 

o " ' - C .  1 
~ 5 & "- 

\ 
r \ 

% 4 0 .75-  \ 

0.45 ~" 

2 x \ \  \ 
=o ~,\ 

o 
0 O,2 0.4 0.6 O.8 L.O 

FRACTIONAL DISTANCE, x / a  

ALUM/NULl 

UNIFORM Hs FLUX 

qa = 3 x I0  s W/m 

qa = 6.4 x 10 s W/m 

QUASI-STEADY STATE 

1.2 1.4 1.6 
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y-direction and assumes its maximum value of U. At a 
given dimensionless velocity Ua/2a  the temperature 
gradient G c and the ratio GL/R in this location 
decrease with increasing value of the product qa. 
Similarly, at a given value of qa increasing the traverse 
speed of the heat source results in a corresponding 
decrease in GL/R.  

It is important to note that as one moves along the 
back of the pool on the x = 0 plane from z /a  = 0 
toward the bottom of the pool the interface velocity 
vector both rotates and changes in magnitude--it  starts 
out at its maximum value of U pointing in the positive 
y-direction and continuously decreases to zero at the 
maximum pool depth. It is thus clear why the GL/R 
increases with increasing distance down the back of the 
pool, increasing z/a,  Fig. 15. 

In a similar manner, simultaneous rotation and 
decrease in magnitude of the interface velocity vector 
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Fig. 15--Variation of the ratio G c/R at the solid-liquid interface with 
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occurs in the z = 0 plane as one moves from the back to 
the side of the pool. This explains the increasing GL/R 
values with increasing distance along x /a  in Fig. 16. 

B. Gaussian Heat Flux. The effect of changing the 
heat flux distribution from a top hat (uniform) to a 
Gaussian was investigated. As previously noted, 2 if the 
total absorbed power in the circular region, Q, is 
identical for the uniform and the Gaussian heat flux 
distributions, then the following relationship is readily 
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deduced: 

qo 
qu.irorm --  2.313 [38] 

where qo is the absorbed heat flux at the center of the 
circular region in the Gaussian distribution. 

Examples of calculated liquid-solid interface loca- 
tions for the Gaussian heat flux distributions are shown 
in Figs. 17 and 18. The product qoa/2.313 ~ 4.65 • 105 
W / m  resulted in a maximum steady state T (0,0,0) = T~ 
for the case of a stationary heat source. This value is 
lower than that for the uniform heat flux due to the high 
concentration of absorbed power at the center of the 
Gaussian distribution. The liquid-solid interface for 
small values of the dimensionless velozity Ua/2o~ is 
symmetrical in both the y -- 0 and z = 0 planes, Figs. 
17 and 18, respectively. For  a given temperature in the 
center of the circular region the metal pool is shallower 
for the Gaussian heat flux distr ibution--compare the 
solid curve for Ua/2o~ ~ 0.03 in Fig. 17 with the curve 
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Fig. 18--A top view, z = 0 plane, showing the effects of changing the 
values of qa and Ua/2a on the shape and size of the molten region of 
an aluminum substrate subjected to a Gaussian heat flux moving with 
constant velocity U in the positive y-direction. 

for qa = 6.4 • 105 for the same dimensionless velocity 
in Fig. 11. This is expected since the total power 
absorbed in the Gaussian distribution is lower. 

Decreasing the product qoa/2.313 results in colder 
and shallower melt pools while increasing the dimen- 
sionless velocity shifts the trailing end of the pool 
toward the negative y-axis. These observations are in 
line with previous findings for the case of uniform heat 
flux. It was also found that motion of the heat source 
has a more pronounced influence on the melt temper- 
atures than in the previous case. For example, increas- 
ing the dimensionless interface velocity to Ua/2o~ 

0.75 reduced the temperature at T (0,0,0) from T v to 
~1600 K for the value of qoa/2.313 ~ 4.65 • l0 s W/m.  

Finally, general trends relating cooling rates and 
G L / R  values are similar to those previously discussed 
for the case of uniform absorbed heat flux distribution. 

VI. S U M M A R Y  

The three-dimensional temperature distributions in 
the melt pool and the adjacent heat affected zone of a 
semi-infinite substrate subjected to a moving directed 
high energy source can be readily determined with the 
generalized formulation of the heat flow equation in 
orthogonal curvilinear coordinates coupled to an en- 
thalpy model. While numerical computations are pre- 
sented for an aluminum substrate subjected to moving 
uniform and Gaussian heat flux distributions, the 
equations developed could be equally applicable to a 
range of metallurgical processes previously treated with 
the moving point source equation. It is shown that if the 
two independent variables qa and Ua/2o~ or U / q  are 
specified, the dimensionless temperature distributions in 
a given substrate material remain the same. Short- 
comings of the model include the use of constant 
thermophysical properties and the fact that convection 
in the metal pool is not taken into consideration except 
by arbitrarily increasing its thermal conductivity. On 
the other hand, the general trends that can be deduced 
for a given energy source and substrate material should 
permit a more systematic approach to the variation and 
control of the process variables in order to achieve the 
desired heat flow conditions during melting and solid- 
ification. 

APPENDIX 

An alternate method to the general formulation of 
the finite difference representation of the heat conduc- 
tion equation in moving orthogonal curvilinear coor- 
dinate system, Eq. [1], is considered here. In this method 
an energy balance is applied to a control volume of 
finite size in oblate spheroidal coordinates moving with 
velocities v~, v~ and v,, see Fig. 2. The resultant energy 
balance is approximated using finite differences and is 
shown to converge to an identical formulation as that 
given in Eqs. [9] and [10]. This approach is used to both 
verify the general formulation of Eq. [1] developed in 
this investigation and to render improved physical 
interpretation of the various coefficients given in 
Eq. [101. 

The moving control volume element about a point 
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( i , j , k )  is illustrated in Fig. 2. The energy balance for this 
volume element having a total source strength of pA V 
is carried out by considering the total rate of heat 
transfer through each surface by conduction and due to 
the motion of the volume element. 

Let Q and Q' denote the rate of heat transfer entering 
or leaving the volume element by conduction and by 
motion of the volume element, respectively. The energy 
balance for the quasisteady state case under consid- 
eration is given by: 

(Qi-,/Zd,k - Qi+ l/2d,k) 

+ (Qia 1/2., - Qig+l/2,k)  

+ (Qij.k-l/2 - Qid,k+l/2)  

+ (Q;+l/2,j,k - Q~-l/za,k) 

+ ( Q ;d +,/2,k - Q ;d -1/zk) 

+ (Q;j,k+,/2 - Q;j,k-l/2) 

+ P A V  = 0 [A1] 

In what follows the values of Q and Q'  for the i 
- 1 /2  and  i + 1 /2  faces  are eva lua ted  as examples .  Al l  
the other terms in Eq. [A1] can then be similarly 
obtained. It is shown that the sum of all these terms, 
after appropriate manipulations, results in Eq. [9] with 
the coefficients defined in Expression [10]. 

Qi-,/2a,k = -- k (TiJ'k -- T i -  ij,k) ~ [A2I 
( A S , ] ) i _ l / 2  i--I/2 

Appropriate substitutions of Eqs. [2] to [4] and the 
appropriate form of the scalar factors for obtate spher- 
oidal coordinate system into Eq. [A2] and some ma- 
nipulation gives: 

Qi-l/2j,k = -- C1 (Tij,k -- Ti-I j ,k)  

x ak  cosh~i sinai A~A~A4~ [A3] 

Similarly, 

Qi+~/~js~ = - C2(Ti+ij,~ - Ti,j,k) 

• ak  cosh,~ sin~s A ~ / X ~  [A4] 

The coefficients C~ and CE are those defined in 
Expression [10]. Similar expressions to [A3] and [A4] are 
readily developed for the rates of heat transfer through 
the other four faces of the volume element due to 
conduction. 

The rate of heat transfer entering the i - I/2 face 
due to the motion of the volume element is: 

Q;-l/2j,k = p C  pTi-l/2d,kYni_t/2 l~kA i -  1/2 [AS] 

Substitution of Eqs. [3], the appropriate form of the 
scalar factors and [8] into Eq. [A5] gives: 

- -  a U p C  p sinai simhk [ T i-  l/2j,k] 
Q ~- l /2j,k kArl 

sinhrli_ I/2 coshrli-1/2 
coshrli 

�9 ak  cosh'0~ sin(jA:qA~A0 [A6] 

a U p C p s i n ~ j  sin~k t-r 
Q~- I/2dk = karl - -  \ ~ i -  l/2,j,k] 

�9 ak  coshrl i sinai ~rlA~2x~ 

[ sinhrli c~ ~rl l coshrl, 

Similarly: 

Q'i + l/2d,k --'-- a U p C p  sin~ L sine? k 
kArl ( T i + 1/2j,k) 

�9 ak  coshrl i sinai ArlA~A4~ 

[sinhrl~ + c~ ~ rl ] c o s h r l  i 

Subtraction of Eq. [A7] from [A8] gives: 

Q ~ +  - -  ! lj,k Q~ ~/2d,k 
a U p C p  sinai sin4~k �9 ak coshrl i sinai ArlA~A~ 

[A7] 

[A8] 

k 

[[ sinhrli 2Arl cosh2rl, ] 
�9 (Ti+,ak -- T i -~ jk )  + coshrl---~(Tijk) 

[A9] 

Substituting Eqs. [A3], [A4], [A9] and similar terms 
for the other four faces into Eq. [AI] and dividing both 
sides by 

ak coshrl i sinai 2xrl2x~A~ 

gives an identical equation to Expression [9]. Note that 
the sum of the second terms inside the brackets of Eq. 
[A9], the coefficient to T~j,k, becomes zero in Eq. [All. 
This essentially implies that the sum of the combination 
of area and velocity terms multiplied and differentiated 
with respect to each axis is zero or 

t - U - .  ] = 0 IA101 

which is the continuity requirement. 

a 

A 
C 
Cp 

f l  
GL 

h 
H 
AH, t  
k 
P 
q 
Q 
R 
s 

t 

T 

NOMENCLATURE 

radius of the circular region, m or/~m 
area of the element 
integration constant 
specific heat, JKg- ~K- l 
fraction liquid 
temperature gradient in the liquid at the liquid- 
solid interface, Km- 
scalar factor 
specific enthalpy, JKg- 
heat of fusion, JKg- 
thermal conductivity, Jm- ~s- ~K- 
rate of heat generation per unit volume, Wm -3 
absorbed heat flux, Wm -2 
rate of total absorbed heat, W 
interface velocity, ms- i 
arc length 
time, s 
temperature, K 
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T 
o 

TM 
T. 
u 

U 
V 
v 

x , y , z  
Ol 

0 
q~ 
0 

ambient temperature, K 
melting temperature, K 
vaporization temperature, K 
coordinate axis 
velocity of heat source, ms- i 
volume, m 3 
velocity, ms- t 
cartesian coordinates 
thermal diffusivity (k/pCp), m2s - 
oblate spheroidal coordinates 
dimensionless temperature variable 
dimensionless enthalpy variable 
density, Kg M-3 

Subscripts 
i,j,k nodal point subscripts in ~/and ( and ff directions, 

respectively. 
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