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EXISTENCE A N D  CONSTRUCTION OF ANISOTROPIC 
SOLUTIONS TO THE MULTIDIMENSIONAL 
EQUATION OF NONLINEAR DIFFUSION. I 

G. A. R u d y k h  and  E. I. Sem~nov UDC 517.956+517.958 

1. I n t roduc t i on .  Consider the following multidimensional nonlinear heat equation: 
ix 

ut = V .  ( g ( u ) V u )  - Ar u ---. u(x, t) : ~ x R+ --* R +, x e R n, (1.1) 

where f~ C R n is a bounded domain; R + = (0 ,~ ) ;  R+ -- {t : 0 _< t < +c~}; u(x,t)  _> 0 is the 
temperature of a medium; K(u) is a function defined for all u e R+; K(u) > 0 for u > 0; K(0) _> 0; 
K(u) is the nonlinear heat conductivity of the medium; and r  = f o  K(~) d~. Henceforth we make 

the following assumptions about ~(u): r e C a ( R  +) N CI(R+), r > 0 for u ~ 0, r = 0, 

r > 0 or ~(u) E C a ( R  +) N C(R+), ~(0) = 0, ~'(u) > 0 for u ~ 0, and r  = +co. Equations 
like (1.1) appear in many models of mathematical physics and their study is actual for the modern 
theory of nonlinear partial differential equations and its applications. Moreover, (1.1) belongs to the 
class of the so-called implicitly degenerate parabolic equations whose rigorous mathematical theory was 
laid down in rather recent investigations. We indicate, for instance, the articles [1-7] studying some 
special properties of solutions to (1.1) which relate to degeneration. Thus, the nonlinear equation (1.1) 
is parabolic for u > 0 and degenerates into a first-order nonlinear evolution equation at u = 0. 

Many publications are devoted to constructing exact nonnegative solutions to (1.1) [1, 6,8-26], 
wherein urgency of this topic is indicated. In this article, which adheres to [8-11, 14-16, 19, 20, 27-35], 
we obtain new exact nonselfsimilar anisotropic (in the space variables) explicit nonnegative solutions 
to (1.1) for K(u) = u ~, )~ E R. Depending on the parameter A E R, we examine the cases in which 
the integral f l  K(u)u_l  du is finite or equals +c~; i.e., 

1 

/ u ~ - l  du <_ +or.  12) 
o 

Below we propose and study an original construction [33-35] for solving the multidimensional nonlinear 
diffusion equation 

/x 
u t = V . ( u ~ V u ) ,  u = u ( x , t ) : ~ •  +, x e R  n, (1.3) 

where A E R is a parameter of a nonlinear medium whose values differ for different heat conduction 
processes [3]. We show that, under certain assumptions, the proposed construction enables us to obtain 
exact nonnegative solutions both for the class of porous medium equations (nonstationary filtration) 
with ~ > 0 and for the class of equations (1.3) with a negative exponent A in the nonlinear heat 
conductivity. In particular, this class contains the so-called equations of fast diffusion ( -1  < A < 0) 
and limit diifusion CA = -1 ,  n = 2). The above-obtained exact nonnegative solutions are mostly 
noninvariant under point transformation groups and Lie-Bw groups [36, 37]. 

The closest results were obtained in [8--10,12-16,18-20]. In particular, in [19] there was proposed 
a method for constructing an n-parameter family of exact nonnegative solutions u(x, t) to the Cauchy 
problem for the nonlinear diffusion equation 

ut = A u  "~, u ( x , 0 )  = u0(x) ,  x e R" ,  t > 0, 
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with initial data given in the form of a finite or infinite measure. Here m E R, m > 0, and n E N, 
n >_ 2. If 0 < m < 1 then the support of the measure is a hypersufface in R n, while for m > 1 
the initial measure is concentrated in a domain bounded by a second-order surface in R k, k < n. 
Moreover, in [19] new exact nonselfslmilar anisotropic (in the space variables) explicit nonnegative 
~lutions were given for the equation u~ = A logu, u = u(x,t), x E R n, which is the limit case of the 
fast diffusion equation. The cases were of n -- 2 (the limit diffusion equation) and n -- 3. A wello 
known property of nonstationary filtration type equations is finiteness of the speed with which the 
supports of their solutions change. The first general results on finiteness of the speed of the change of 
supports of solutions to nonstationary filtration type equations were established in [38-40]. Moreover, 
it was proven therein that convergence of the integral (1.2) is a necessary and sufficient condition for 
finiteness of the velocity of propagation of perturbations in the processes described by (1.3). In other 
words, if the integral (1.2) diverges then u(x, t) > 0 in Rn for all t E R +. 

2. Derivat ion of  the  resolving s y s t e m  for the  mul t id imens iona l  equat ion  of  nonl inear 
diffusion. Introduce the functions 

Zk(x, t) = 2(x, Ak(t)x) + (x, Bk(t)) + Ck(t), (2.1) 

where x e Rn; Ak(t) = [akij(t)] are (n x n)-matrices; Bit(t) = (bkl(t) , . . . ,  bkn(t))' is a column vector; 

Ck(t) is a scalar function; akij(t), bki(t), Ck(t) E C I ( ~  ") are real functions; k = 1, 2; i, j = 1, 2 , . . . ,  n; 
and (., .) is the inner product in R n. We search for a sohltion to (1.3) in the form 

~(x , t )  = [~[Zl (x , t ) ]~  + ~[Z2(x,t)l$]~+/~, (2.2) 
where A,p,q e IR, A # 0, and [.]+ = max{[.], 0}. Inserting (2.2) in (1.3), after simple transformations 
we arrive at 

p-1 0 + qZq_ 1 0 pZ~ -~Zl -~Z2 = (ApZ2p--1AZx + p[p(A + 1) - ~]z~'-2lvzll  2) 

+{aqZ~.-~zxz~ + q[q(a + 1) - alZg"-~ivz~l ~} 

+[~,pzf-~z~Azl + ~,p(p- 1)z f -~ lVZ~[  2 + :~qZfZ~-~Az~ 

+Aq(q - 1)zl'~-21vz212 + 2pqZf -1 z~2-1(vzt, vz2)] .  (2.3) 

To separate (2.3) with respect to the functions Z1 and Z2 of (2.1), we use the following reasons based 
on the order of homogeneity [41, p. 178] of each summand in (2.3). Observe that AZk(x, t) = trAk(t) 
and introduce the scalar functions Z3 -- [VZI[ 2, Z4 = IVZ2] 2, and Z5 = (VZ1, VZ2). The functions 
Zk(x, t), k = 1, 2 , . . . ,  5, in (2.3) have the same structure. Indeed, each of them has three summands: 
a quadratic form ~n,j= 1 rq(t)x~xj, a linear form Y']~ si(t)xi, and a scalar function h(t). Consider the 
order of homogeneity of each summand in (2.3). The first summand on the left-hand side of (2.3) 
has order p; the second, q; each of the summands in parentheses, (2p - 1); each of the summands in 
braces, (2q - 1); and, finally, each of the snmmands in brackets, (p+  q - 1). Looking at these orders, 
we easily see that Z1 and Z2 in (2.3) can be separated, for instance, at q = 1. In this case (2.2) takes 
the form 

1/,k (2.4) ~(x , t )  = [~[Z~(x,t)]~ + ~Z~(x , t ) ]+  , 

and (2.3) becomes 

~ - 1  0 0 P"I -~Z1 +-~Z2 = (ApZ2p"IAZ1 +p[p(A + 1 ) -  ,klZ2p-21VZll2 ) 

+{azj~z~ + IVZ~l ~} + [apZf-~z~zxz~ + ap(p- 1)zf-2z~lvz~l ~ 
+ AZf AZ2 + 2pZ~p"I (v  z~, VZ2)]. (2.5) 

Thereby, equating the summands with the same homogeneity order in (2.5), we arrive at a system of 
three equations in Z~ and Z2. Thus, the following holds: 
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Theorem 1. The multidimensional nonlinear diffusion equation (1.3) has an exact nonnegative 
solution of the form 

u(x,t)= A (x, Al( t )x)+(x,  Bl( t))+Cl(t)  +A (x, A2(t)x)+(x, B2(t))+C2(t) , 
+ + 

(2.6) 
provided that the matrices Ak(t) with entries akij(t) E Cl(~+), the column vectors Bk(t) with 

components bki(t) e CI(R-+), and the sca/ar fimctions Ck(t) e CI(~+), i, j = 1, 2 , . . . ,  n, k = 1, 2, are 
connected by the relations 

z2 = AZ:AZ: + [vz:[  2, 

p & ~ &  = pAZ~Z2n& + Az[nz: + Ap(p - 1)z21v&l 2 + 2pzl(v&, vz2) ,  

AZ1AZ1 + ~9(A -{- 1) - -  A]IVZll = = 0, (2.7) 
where Z1 and Z2 are defined by (2.1); A,p E R; and A ~ 0. 

Relation (2.7) is referred to as the resolving system for the nonlinear diffusion equation (1.3). 
Recalling the definition of Za, Z4, and Zs, we see that the first and third equations of the resolving 
system (2.7) have the homogeneity order 1 and the second equation, 2. 

Finally, note that equations like (2.3) in which all summands have the same homogeneity order 
appear and are separated by means of Hirota's method [42] which is an effective tool for constructing 
exact solutions to one-dimensional nonlinear evolution equations. In particular, this method (with 
minor modifications and the Pade approximation) was used in [41, pp. 177-209] for construction of 
exact one- and two-phase solutions to a broad class of homogeneous semilinear parabolic equations. 

We can call the solution (2.6) to (1.3) a solution of "finite-sum" form. In [12], a method of gener- 
alized separation of variables was proposed which enables us to construct particular exact solutions 

k 
~(~,t) = ~ ~i(t)f i(~) 

i=1 
for a broad class of nonlinear partial differential equations of the form 

~ ( v )  = z q ( v ) ,  

(s) 

(E)  
where TP(v) is a polynomial of degree p in the function v(x, t) and its derivatives with respect to 
t E R1; Xa(v)  is a polynomial of degree q in the function v(x,t) and its derivatives with respect 
to x E R1; and a/(t) and fi(x) are sought sufficiently smooth functions. Eventually, constructions (S) 
and (E) necessitate studying compatibility of two systems of ordinary differential equations (ODE) one 
of which involves only functions of t and the other, only functions of x. In other words, the systems of 
ODE resulting from inserting (S) in (E) are overdetermined [43] (the number of equations exceeds the 
number of sought functions). A representation for particular exact solutions in "finite-sum" form was 
used by some authors [1, 8-12, 14, 22, 25.44-46] for analysis of various classes of nonlinear equations. 

3. S tudy  of the  resolving sys tem of equations.  In the general case, study of the resolving 
system (2.7) causes great difficulties. Therefore, we consider a particular case in which (2.7) reduces 
to an overdetermined system (the number of equations is greater than the number of sought functions) 
of algebraic-differential equations (ADE) which is solvable under certain assumptions. 

Thus, put ~ = p(A + 1) - A and ~ ~ 0. Then (2.7) takes the form 

~ z2 = AZ2AZ2 + lVZ212, (3.1) 

0 Z -~  1 ----- aZ2AZ1 q- TZ1AZ2 -{- 2(VZ1, VZ2), (3.2) 

AZ1AZ1 + ~IVZI[ 2 = 0, (3.3) 
where a = pA/~; r = Alp; p, A e R; A ~ 0; and p ~ 0. 
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Theorem 2. Suppose that Ak ( t ) are symmetric matrices with entries aki j ( t ) e Cl(~+), Bk(t) are 
column vectors with components bk~(t) 6 CI(R+), and Ck(t) 6 C1(~ "4-) are scalar functions. Then the 
functions Z1 and Z2 defined by (2.1) satisfy (3.1)-(3.3)/land only / fAk( t ) ,  Bk(t), and Ck(t) satisfy 
the system of ADE 
"" /i2 = 2A22 + A(trA2)A2, (3.4.1) 

]32 = 2A2B2 + A(tr A2)B2, (3.4.2) 

r -[B212 + A(tr A2)C2, (3.4.3) 

A1 = 4AiA2 + r(tr A2)A1 + a(tr Ai)A2, (3.4.4) 

I31 = 2(AIB2 + A2B1) + v(tr A2)B1 + a(tr A1)B2, (3.4.5) 

Ci = 2(Bi, B2) + ~'(tr A2)C1 + a(trA1)C2, (3.4.6) 

A(trAi)Ai + 2~A 2 =0,  (3.4.7) 

A(tr A1)Bi + 2~AiBi = 0, (3.4.8) 

A(trA1)C1 + ~IBI[ 2 = 0, (3.4.9) 

where a = pA/~; r = Alp; p, A E R; A ~ O; p ~ O; ~ = p(A + 1) - A; ~ ~ O; and tr Ak = ~']~in=i akii(t) is 
the trace of the matrL~ Ak(t); k = 1, 2. 

PROOF. Suppose that Zi and Z2 defined by (2.1) satisfy (3.1)-(3.3). From symmetry of Ak(t) 
we then obtain 

[VZ~I 2 = (x, A2x) + 2(x, AkBk) + lBk[ 2, (3.5) 
(VZ1, VZ2) = (x, A1A2x) + (x, AIB2 + A2B1) + (B1, B2); 

moreover, 
VZk  = Akx  + Bk, AZk = V- (VZk) = trAk,  

~ Z ~ =  1 �9 ~(x, Akx) + (x,13k) +r  x E Rn; k = 1,2. 

In view of (3.5)-(3.7), from (3.1)-(3.3) we derive (3.4). 
Show that (3.4.1)-(3.4.3) in (3.4) imply (3.1). 

using (3.5) and (3.6), we obtain 

(3.6) 

(3.7) 

Assume that k = 2. Then, starting from (3.7) and 

~ Z2 = 1 [2A22 + A(tr A2)A2]x) + (x, 2A2B2 + A(tr A2)B2) 

] +lB212 + A(trA2)C2 = A(trA2) ~(x, A2x) + (x, B2) + C2 

+[(x, A22 x) + 2(x, A2B2) + ]B2[ 2] = AZ2AZ2 + IVZ2[ 2. 

Similarly, we can prove that (3.4.4)-(3.4.6) of (3.4) yield (3.2) and that (3.4.7)-(3.4.9) yields (3.3). 
The theorem is proven. 

Theorems 1 and 2 yield 

Assertion 1. I f  symmetric matrices Ak(t) with entries akii(t) E Cl(R-+), column vectors Bk(t) 
with components bki(t) E c i (R+) ,  and scalar fimctions Ck(t) E c l ( R  +) satisfy the overdetermined 
system (3.4) then (2.6)/s an exact nonnegative solution to the multidimensional nonlinear diffusion 
equation (1.3). 

Consider a solution u(x, t) to (1.3) of the form (2.4) for Zi(x, t) - O; i.e., 

[ [1 ]'] I/A 
u(x,t) = A ~(x, A2(t)x)+ (x, B2(t)) +C2(t)JJ+ . (3.8) 
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In this case we have Al(t) = 0,Bl( t )  = 0, and Cl(t)  - 0 in (3.4) and this system is reduced to the 
system of ODE 

A2 = 2A22 + A(tr A2)A2, I32 = 2A2B2 + A(tr A2)B2, C2 = [B2[2 + A(tr A2)C2 (3.9) 

which was derived and partially studied in [30]. Assume given, at t = 0, a real symmetric matrix 
A2(0) 6/~/n(R), a column vector B2(0) E Mn, I(R), and a scalar C2(0) 6 R, where ~kin(R) is the set 
of (n x n)-matrices with entries in R and Mn,k (R) is the set of (n x k)-matrices with entries in R [47]. 
Write down A2(0) as A2(0) = SD(O)S', where S 6 Mn(R) is an orthogonal matrix, SS' = S'S = I, I 
is the identity matrix, and D(0) = diag[dl(0), . . . ,  d,(0)] is a diagonal matrix, dl(0) 6 R, l = 1, 2 , . . .  n, 
are the eigenvalues of A2(0). It is well known that  every real symmetric matrix can be written in this 
form [47]. Show that  if A2(0), B2(0), and C2(0) are defined then solving the Cauchy problem for (3.9) 
is reduced to solving the Cauchy problem for some scalar nonlinear ODE. More precisely, prove one 
of the main results of the article: 

T h e o r e m  3. Suppose that A2(0), S 6/kin(R) are reM symmetric matrices, B2(0) e Mn,I(R)/s  
a columm vector, and C2(0) 6 R is a scalar. Let z(t) be area /  solution of the Cauchy problem 

n 

= I I [ 1  - 

/ = 1  

Then a solution to the Cauchy problem 

d 
z(O) = O, ~(t) = -~z(t). (3.10) 

~i2(t) = 2A22(t) + A[trA2(t)]A2(t), A2(t)lt=o = A2(0), 

]32(t) = 2A2(t)B2(t) + A[trA2(t)]B2(t), B2(t)]v=-o = B2(0), 

r = [B2(t)[ 2 + A[trA2(t)]C2(t), C2(t)[t=o = C2(0) 

has the form 
A2(t) = ~(t)SQ(t)S'A2(O), 

B2(t) = ~(t)SQ(t)S'B2(O), 

C2(t) = ~(t)[C2(0) + z(t)(Q(t)S'B2(O), S'B2(0))]. 

Moreover, Ae(t)/s a symmetric matrix for all t in its domain and 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Q(t) = diag[[1 - 2dl (0 )z ( t ) ] - l , . . . ,  [1 - 2dn (0)z(t)]-l]; (3.17) 

A2(0)=SD(0)S ' ;  A, dt(O) 6R;  A # 0 ,  dt(O)#O; l = l , 2 , . . . , n .  

Let A2(t), B2(t), and C2(t) be defined by (3.14)-(3.17). Show that  these functions give PROOF. 
a solution to the Cauchy problem (3.11)-(3.13). For convenience, introduce the notation v(t) = 
trA2(t) and calculate the trace of A2(t). From (3.14) we easily see that  

v(t) = tr A2(t) = tr(~(t)SQ(t)S'A2(0)) = tr(~(t)SQ(t)D(0)S') 

" d (0) (3.18) = ~(t)tr(Q(t)D(O))= ~(t) E 1 - 2dk(O)z(t)' 
k=--I 

where Q(t) is the diagonal matrix (3.17). On the other hand, since 1-2d~(O)z(t) # 0 for l = 1, 2 , . . . ,  n; 
involving the condition z(0) = 0 and differentiating (3.10) with respect to t, we obtain 

~=l dk(O) .] ~2(t)= Av(t)~(t); (3.19) ~(t) = A 1 -  2dk(O)z(t) 
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moreover, ~(0) = 1 and z(0) = 0. ~'hrthermore, differentiating (3.17) by directly, we can easily 
demonstrate that Q(t) satisfies the Cauchy problem 

(~(t) = 2~(t)D(O)Q2(t) = 2~(t)Q2(t)D(O), Q(t)lt=o = I.  (3.20) 

Sfiow that the matrix A2(t) of (3.14) satisfies (3.11). Indeed, differentiating (3.14) and using (3.18)- 
(3.20), we obtain 

A2(t) = ~(t)SQ(t)S'A2(O) + ~(t)SQ(t)S'A2(O) 

= Av(t)~(t)SQ(t)S'd2(O) + 2/~2(t)SQ2(t)D(O)S'A2(O) 

= Av(t)d2(t)  + 2~2(t)SQ(t)D(O)S'SQ(t)S'A2(O) 

= Av(t)A2(t) + 2~2(t) (SQ(t)D(O)S')  (SQ(t)D(O)S')  = A(tr d2(t))A2(t)  + 2A22(t). 

Verify that the col, iron vector B2(t) of (3.15) is a solution to (3.12). Differentiating (3.15) and using 
(3.18)-(3.20), we obtain 

f32(t) =  (t)sq(t)S'B2(O) +  (t)SO(t)S'B2(O) 
= Av(t)#(t)SQ(t)S'B2(O) + 2~2(t)SQ2(t)D(O)S'B2(O) 

= Av(t)B2(t)  + 2(~(t)SQ(t)D(O)S')(~(t)SQ(t)S 'B2(O))  

= A(tr A2(t))B2(t)  + 2A2(t)B2(t). 

According to (3.17), Q(t) = (I  - 2z(t)D(O))-l;  i.e., (I  - 2z(t)D(O))Q(t) = I or, what is the same, 

Q(t) = I + 2z( t )Q( t )n(o) .  (3.21) 

Finally, using (3.18)-(3.21), we easy see that C2(t) defined by (3.16) satisfies (3.13). Indeed, differen- 
tiating (3.16) and using (3.18)-(3.21), we find 

C72(t) = ~'(t)C2(0) + ~,(t)(B2(0), B2(t)) + z(t)(B2(O),B2(t))  

= Av(t)~(t)C2(O) + ~,(t)(B2(0), B2(t)) + z(t)(B2(O),2A2(t)B2(t)  + Av(t)B2(t))  

= Av(t)[~(t)C2(O) + z(t)(B2(O),S2(t))] + (B2(0), [#(t)I + 2z(t)A2(t)]B2(t)) 

= Av(t)C2(t) + (B2(0), #(t)S[I  + 2z(t)Q(t)D(O)]S'B2(t))  

= Av(t)C2(t) + (B2(0), ~(t)SQ(t)S'B2(t))  

= ) , v ( t ) c 2 ( 0  + ( (t)SQ(OS'B2(O), B2( t ) )  =  ,(tr A2(t))C2(*) + IB2(t ) l  2. 

Show that A2(t) is a symmetric matrix for all t in its domain. Let G(t) = SQ(t )S ' ,  where Q(t) is 
defined by (3.17). Clearly, G(t) is a nondegenerate symmetric matrix. Then A2(t) =/~(t)G(t)A2(O), 
where A2(0) is a real symmetric matrix. First, verify that A2(0) and G(t) commute. Indeed, in view 
of 

A2(O)G-I(t)  = A2(O)[SQ(t)S'] -1 = A2(O)SQ-I( t )S ' 

= A2(O)S [ I -  2z( t )D(O)]S'= A2(O) [SS' -  2z(t)SD(O)S'] 

=A2(0 ) [ I -  2z(t)A2(O)]=A2(O) - 2z(t)A2(O) = [ I -  2z(t)A2(O)]A2(O) = a- l ( t )A2(O) ,  

we have G(t)A2(O) = A2(O)G(t). Moreover, [G(t)A2(O)]' -- A'2(O)G'(t ) = A2(O)G(t); i.e., G(t)A2(O) is 
a symmetric matrix. Therefore, so is A2(t). The theorem is proven. 
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EXAMPLE 1. Suppose that n = 3 and dl = dr(0) e R, l = 1, 2, 3. Then for A -- - 1  a solution 
to the Canchy problem (3.10) is expressed in terms of the Jacobi elliptic functions [48]. Consider the 
case in which dld2d3 < 0. If z(t)  > ~ > ~ > L~3 then a solution to the Cauchy problem (3.10) has 
the form 

z(t) = d2 - 41 sn2(~/d2(dl - dz)t + sn - l (  x /d2/dt ,  k), k) . 

2did2 cn2(x/d2(dl - da)t + sn- l (x/g2/dl ,  k), k) ' (1) 

/ dl ( ds-d2 ) 1 1 moreover, in this case k - Vd2(d3-dl)" From the chain of the inequalities z(t) _> 2~1 > ~ > ~ we 
obtain 

z(t) = d3 - d l  cn2(~/d2(dl - d 3 ) t  + sn- l (~/ (d l  - d 3 ) / g l ,  k ) , k )  - (2) 

2did3 sn2(x/d2(41 - d3)t + sn-l(x/(41 - d3)/41, k), k) 

If, , > > z(O > then 

1 d3-d2 .sn2(x /d2(d l  - d 3 ) t  + s n - l ( ~ / d 2 / ( d ~ - d 3 ) , k ) , k ) .  
z(t) = "~3 + 242d3 

(3) 

Finally, for ~ > ~ > z(f:) >_ ~ we find that 

1 
z(t) = ~(dl - d3 + (d3 - d2)sn2(x/d2(dl - d3)t + sn-l(x/(d3 - dl)/(d3 - d2i, k), k)) 

1 
x 4~(41 - d3) + 41(43 - 42)Sn2(~/42(41 - 43)t + sn-1(~/(43 - 41)/(43 - 42),' k),' k'i" 

Examine the cases of degeneration of elliptic functions. For d2 = d3, from (1) and (2) we obtain the 
following solutions with trigonometric functions: 

z(0 = 
d2 - d l  sin2(~/d2(dl - d2)t + s i n - l ( ~ ) )  

2did2 cos2(x/d2(dl - d2)t + s i n - l ( v / ~ ) )  ' 

d2 - dl cos2(x/d2(dl d2)t + s in- l (v / (d l  - d2)/dl))  

z(t) = 2did2 sin2(~/d2(dl - d2)t + s in- l (v / (d l  - d2) /d l )  ) " 

If dl -- d2 then the two-dimensional problem has the following solutions in hyperbolic functions which 
result from (2) and (3): 

d3 - dl sech2(~/dl(dl - d3)t + arth(-v/(dl - d3)/di))  

z(t) = 2dld3 th2(~/dl(dl  - d3)t + arth( x / (dl  - d3)/dl)) 

1 d3 - dl  2 
z(t) = ~ 3  + 2did3 th(%/41(41 - d a ) t  + ar th(~ /g l / (d l  -43) ) ) .  

Thus, summing the results of Theorem 3 and Example 1, we easily obtain exact nonselfsimilar 
anisotropic (in the space variables) explicit nonnegative solutions to the equation 

/x 
 =Alogu, u=u(x,O:flxr- R +, xeR", 

for n = 2 and n = 3. 
REMARK 1. If we introduce the matrices 

D(~) = diag[dl (t), . . . ,  tin(t)], 
d r ( O )  . - -  

d z ( O  = 1 - (3.22) 
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that are connected with Q(t) of (3.17) by the relation 

D(t) = **(t)Q(t)D(O), D(O) = S'A2(O)S (3.23) 

then the solution (3.14)-(3.16) to the Cauchy problem (3.11)-(3.13) takes the form 

A2(t) = SD(t)S ' ,  (3.24) 

B2(t) = SD-I(O)D(t)S'B2(O), (3.25) 

C2(t) = ~(t)C2(0) + z(t)(B2(0), SD-I(O)D(t)S'B2(O)), (3.26) 

where dz(t) are the real eigenvalues of the matrix A2(t); l = 1, 2 , . . . ,  n. 
REMARK 2. It follows from Theorem 3 and the uniqueness theorem of [49] that (3.14)-(3.16) 

determine all solutions to the Cauchy problem (3.11)-(3.13) with a real symmetric initial matrix 
A2(0). Indeed, the only nonlinear equation in the Cauchy problem (3.11)-(3.13) under study is (3.11). 
Uniqueness of a solution to (3.11) ensues from the fact that the right-hand side of this equation 
satisfies the Lipschitz condition in every bounded subset of IR nxn and so the classical theorem applies 
of uniqueness of a solution to a normal system of ODE. 

From Assertion 1 and Theorem 3 we derive the following 

Asser t ion  2. /s a symmetric matrix A2(t), a column vector B2(t), and a scedar function C2(t) 
have the respective forms (3.14), (3.15), and (3.16) then the nonlinear diffusion equation (1.3) possesses 
the exact nonselfshnilar anisotropic (in the space variables) explicit nonnegative solution (3.8). 

Since A2(t), B2(t), and C2(t) are determined (see (3.14)-(3.16) or (3.24)-(3.26)), we turn to 
studying the system of ODE (3.4.4)-(3.4.6). 

4. Ex i s t ence  of  Solu t ions  to  the  C a u c h y  P r o b l e m  for (3.4.4)-(3.4.6) .  

Asser t ion  3. Suppose that the matrix As(t) has the form 

A2(t) -- ~(t)SQ(t)S'A2(O), (4.1) 

u(t) ---- t rAl( t ) ,  v(t) = tr A2(t); and AI(0),A2(0) E Mn(R) are rea/symmetric matrices. Then the 
Cauchy problem 

ft l( t)  = 4Al(t)A2(t) + rv(t)Al(t)  + au(t)A2(t), Al(t)lt=o = AI(0), (4.2) 

has the  following solution: 

[i ] Al(t)  = [~(t)] ~/~ a [~(~)]l-~u(~)G-l(zl)A2(O)drI+Al(O) G2(t), (4.3) 

where G(t) = SQ(t)S '  and u(t) is a function satisfying the linear Volterra integral equation 

t 

u(t) = a i K(t ,  ~?)u(n) &? 
0 

+ f( t )  (4.4) 

of the second kind with the kernel 

K(t,  T1) = z(~7)tr[Q2(t)Q-l(T1)D(O)] (4.5) 

and free term 
f( t )  = [~.(t)]r/~tr[Al(O)G2(t)]; (4.6) 
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here r = Alp, a = Ap/~, and ~ = p(A + 1) - A. Moreover, for Al(t) to be symmetric for all t in its 
domaia, it is necessary and sui~cien~ ~hat Ai (O) and A2(0) commute: 

Ai(0)A2(0) = A2(0)AI(0). (4.7) 

, PROOF. First of all, observe that, on using (3.17) and the relation A2(0) = SD(O)S', from (3.20) 
we obtain 

G(t) = 2i'(t)G2(t)A2(O), a(t)l,_-0 = s. (4.s) 
It is easily seen that G(t)A2(O) = A2(O)G(t) and G(t)G(t) = G(t)G(t). Finally, recall that, alongside 
(3.10), the function z(t) satisfies the ODE (3.19). Using this, demonstrate that  Ai(t) is a solution 
to the Cauchy problem (4.2). Indeed, differentiating (4.3), using (4.1), (4.2), and (4.8), and recalling 
that  r/A = l/p, p E R, and p ~ O, we obtain 

t 

[/[~(~l)]-~u(~l)G-l(rl)A2(O)d~l+Al(O)]G2(t) 2~(t) = l [~(O]~-b(t)  ~ i ' 

+a~(t)u(t)G-l(t)A2(O)O 2(t) 

[ Jo 1 1 1 1 
+2[i(t)l~ [i(~Dl -~u(,Da-~(n/A~(O)e,7+ A~(o) a(t)O(t) 

] 1 1 1 
=rv(t)[i(t)l~ [i(~)l -~u(rDG-t(v)A2(0) an + AI(0) G2(t) 

0 

+~u( t)i( t)a( t)A2(O) 

" ] +4[~(t)]~ 1 i [~(n)] -~u(n)G-I(~)A2(O) dn + Ai(O) G2(t)~(t)G(t)A2(O) 

= rv(t)Al(t) + au(t)A2(t) + 4Al(t)A2(t). 

Grounding on (4.3), we now calculate the trace u(t) of Al(t). The following chain of equalities is valid: 

i 1 i i 2 
u(t) = t rAl ( t )  = tr a [~(t)]~[~(r/)] -~u(rl)G-l(rl)A2(O)G2(t)drl+ [~(t)]~AI(O)G (t) 

0 

t 1 
ff~(t)l- 1 ---- a j [ ~ - ~ j  P ~(r/)tr[O-l(71)A2(O)O2(t)]u(n)dr 1 + [~(t)]~ tr[Ai(0)G2(t)] 

0 

J 7 - - ~  LiT  j ~(~l)tr[Q2(t)Q-i(~l)D(O)]u(~l)d~l+ f ( t ) - - a  K(t,71)u(rl)d~l+ f(t).  
o o 

It follows that u(t) satisfies the linear Volterra integral equation of the second kind (4.4) with kernel 
(4.5) and free term (4.6). Thereby we have demonstrated that Ai(t) is a solution to the Cauchy 
problem (4.2). To complete the proof, we have to validate that  (4.7) is a necessary and sufficient 
condition for symmetry of Ai(t) for all t in its domain. 

Suppose that  (4.7) holds. Observe that A2(0) - SD(O)S' and G(t) - SQ(t)S'  is a nondegenerate 
symmetric matrix. We easily see that the matrices Ai(0) and G- i ( t )  commute. Indeed, the following 
chain of equalities holds: 
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AI(O)G-I( t)  = AI(O)[SQ(t)S'] -1 = AI (O)SQ- i ( t )S  ' 

= A i ( O ) S [ I -  2z(t)D(O)]S'= A i ( O ) [ S S ' -  2z(t)SD(O)S'] 

= A I ( 0 ) [ I -  2z(t)A2(O)] = AI(0) - 2z(t)Al(O)A2(O) 

= AI(0) - 2z(t)A2(O)Al(O) = [I - 2z(t)A2(O)]Al(O) = G-I( t)AI(O).  

Consequently, AI(O)G(t) = G(t)Al(O) and AI(O)G2(t) = G2(t)Ai(O). Since 

[Ai(O)O2(t)] ' = [G2(t)]'[AI(O)]' = [G'(t)]2[AI(O)]' = O2(t)dl(O) = Al(O)O2(t), 

the matrix AI(O)G2(t) is symmetric. The. relation A2(O)G(t) = G(t)A2(O) was validated above. 
Thereby A2(O)G2(t) = G2(t)A2(O). Hence, symmetry of A2(O)G2(t) is immediate. Indeed, we have 

[A2(O)a2(t)]'= [G2(t)]'[A2(O)] ' =  [G'(t)]2[A2(O)]'= G2(t)A2(O) = A2(O)G2(t). 

Using these results and rewriting A1 (t) in the form 

1 1 1 1 
Al( t )  = (r[~(t)]~ [~(~)] -~u (~ )Q- l (~ )d~  A2(O)G2(t) + [~(t)]~Ai(O)G2(t), (4.9) 

we easily see that Ai (t) is symmetric for all t in its domain. 
Prove the converse. Suppose that Al(t).of (4.9) is symmetric. Since A2(O)G2(t) is a symmet- 

ric matrix, the matrix Ai(O)G2(t) as well is symmetric. By symmetry of AI(0) and G2(t), this 
amounts to their commutativity Ai (0)G 2 (t) = G 2 (t)Al(0). Hence, we have the relation G -2 (t)Ai (0) = 
Al(O)G-2(t); i.e., G-2(t) and Ai(0) commute. Recall that G - i ( t )  = S Q - i ( t ) S  ' = I - 2z(t)A2(O). 
Hence, G-2(t) -- I - 4z(t)A2(O) + 4z2(t)A2(O). We thus arrive at the relation 

[I - 4z(t)A2(O) + 4z2(t)A2(O)]Ai(O) = AI(0) [I - 4z(t)A2(O) + 4z2(t)A2(O)]. 

Removing the brackets and recalling that z(t) ~ O, we obtain 

A2(0)AI(0)-  z(t)A22(O)Al(O) = AI(0)A2(0)-  z(t)Al(O)A2(O). 

Since z(0) = 0; putting t = 0, from the last relation we derive (4.7). The assertion is proven. 
Theorem 3 and Assertion 3 yield 

T h e o r e m  4. Suppose that A2(t) and Al(t) are real symmetric matrices o[the [orm (4.1) and (4.3) 
satisYying (3.4.1) and (3.4.4) and defined at t = O; i.e., A2(t)lt=o = A2(0) E Mn(R) and Al(t)lt= o = 
AI(0) E Mn(R). Then there e.~st real diagonal matrices D(0) = diag[di(0),. . . ,dn(0)] and A(0) = 
diag[Ai(O),..., An(O)] and an orthogonal matrix S E/14n(R) such that 

A2(t) = ~(t)SQ(t)D(O)S' ,  (4.10) 

I: 1 1 l . 
Al(t) = [~(t)]~.S a [~(r/)] -~u(rl)Q-l(~)D(O) drl + h(0) Q2(t)S', (4.11) 

0 

where u(t) is a solution to the linear Volterra integral equation (4.4) of the second kind with kernel 
(4.5) and [ree term 

f ( t )  = [~(t)]~ tr[A(0)Q2(t)]; (4.12) 

here Q(t) is the diagonal matrs of (3.17). 
PROOF. It is clear that the real symmetric matrices A2(t) and Ai( t )  of (4.1) and (4.3) satisfy 

the Canchy problems (3.11) and (4.2). Moreover, A2(0) and AI(0) commute; i.e., (4.7) holds. On 
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the other hand, under certain assumptions two real symmetric commuting matrices A2(0) and AI(0) 
can be reduced to a diagonal form simultaneously. Indeed [47], a necessary and sufficient condition 
for existence of a real orthogonal matrix S such that S'Az(O)S - A(0) and S'As(O)S = D(O) is the 
commutation of AI(0) and A2(0). Hence, AI(O) - SA(O)S' and As(0) = SD(O)S'. Inserting these 
expressions in (4.1) and (4.3), we arrive at (4.10) and (4.11). Moreover, (4.6) implies (4.12). The 
theorem is proven. 

Since the functions Bs(t), As(t), Al(t), v(t) = t rAs(t) ,  and u(t) - t rAl ( t )  are now determined, 
we prove the following 

Asser t ion  4. Suppose that a column vector Bs(t) and matrices As(t) and Al(t) are defined by 
(3.15), (4.10), and (4.11). Moreover, suppose that v(t) has the form (3.18) and u(t) is a solution to 
the linear Volterra integral equation (4.4) of the second kind with kernel (4.5) and free term (4.12). 
Then the Cauchy problem 

]31(t) = [2As(t) + ~'v(t)I]Bl(t) + [2Al(t) § o.u(t)I]Bs(t), Bl(t)[tffi0 ---- BI(0) (4.13) 

possesses the solution 

" ) Bl(t)  [~(t)]~SQ(t) [~,(r])]-~u(vl)Q-l(rl)&l Q(t)S'B2(O) 

+2z(t)O(t)i(O)S'B2(O) + S~BI(0)]. (4.14) 

PROOF. Introduce the column vector 

1 1 B~(t) = o. [~(t)l -~u(rl)Q-~(rl)~rl Q(t)S'B2(O) + 2z(t)Q(t)A(O)S'B~.(O) + S'Bd0) .  (4.15) 

Then (4.14) takes the form 
1 

= [~(t)]~SQ(t)Bl(t). B1(t) (4.16) 

Differentiating (4.16) with respect to time, we arrive at the relation 
' . 

Bl(t)  = [i(t)]~-l~i(t)SQ(t)Bl(t) + [~(t)l~(SQ(t)Bl(t) + SQ(t)BI(t)). 

Using (3.19) and (3.20), we obtain 

]Bl(t) = [2A2(t) + ~'v(t)I]Bl(t) + [~(t)]~SQ(t)Bl(t). (4.17) 

Grounding on (4.15), we calculate Bl(t): 

(oJ ) _!  i 1 
]~l(t) - o.[~(t)] 1 pu(t)S B2(0) + 2o. [~(rl)]l-~u(rl)Q-1(~?) d~ ~(t)Q2(t)D(O)S'B2(O) 

+2]:(t)Q(t)A(O)S'B2(O) + 4z(t)~(t)Q2(t)D(O)A(O)S'B2(O). 

By (3.21), we have 

1-!  ]31(t) ----- O.[Z(t)] "u(t)S'B2(0) + 2~,(t)Q2(t)A(O)S'B2(O) 

1 1 +2o- [i(rl)] -~u(~?)Q-I(rl) drl ~'(t)Q2(t)D(O)S'B2(O). 
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Now, we easily see that 

1 ~ 

[~,(t)]~ SQ(t)BI (t) = cu(t)9.(t)sq(t)S'B2(O) 

(J ) 1 1 1 
+2[~(t)]~S a [~(rl)] -~u(rl)O-l(rl)D(0)drl O2(t)S ' x ~(t)SQ(t)S'B2(O) 

0 

+2[~(t)]~SA(0)Q2(t)S'x "2"(t)SQ(t)S'B2(O) = au(t)'2,(t)SO(t)S'B2(O) 

1 1 1 
+2[~(t)]~ S [~(rl)l -~u(rl)O-l(rl)D(0) dr/+ A(0) O2(t)S ' x "2"(t)SQ(t)S'B2(O) 

= au(t)IB2(t)  + 2Al(t)B2(t)  = [2Al(t) + au(t)Z]B2(t). 

Hence, (4.17) takes the form 

131 (t) = [2A2(t) + rv( t ) I]Bl( t )  + [2Al(t) + au(t)I]B2(t). 

Thereby the function Bl(t)  of (4.14) is a solution to the above equation. Finally, recalling that 
z(0) -- 0, ~(0) = 1, and Q(0) = I, we can easily verify that  the solution (4.14) satisfies the initial 
condition. So, Bl(t)  is a solution to the Cauchy problem (4.13). The assertion is proven. 

Thus, we are ready to turn to studying solvability of the Cauchy problem for ODE (3.4.6). We 
prove 

Asser t ion  5. Suppose that the column vectors B2(t) and Bl(t)  and the scalar function C2(t) 
are defined by (3.15), (4.14), and (3.16). Moreover, suppose that the function v(t) = tr A2(t) has the 
form (3.18) and u(t) = t rAl( t )  is a solution to the linear Volterra equation (4.4) of the second kind 
with kernd (4.5) and free term (4.12). Then the Cauchy problem 

e l ( t )  = rv(t)Cl(t)  + au(t)C2(t) + 2(Bl(t),B2(t)),  Cl(t)[t=0 = el(0),  (4.18) 

has the solution 

C1(t) = [~(t)]~ C1 O) + 2z(t)(Q(t)S'BI(O),S'B2(O)) 

( / )  1 1 
+2z2(t)(Q2(t)A(O)S'B2(O), S'B2(0)) + o" [,~(rl)] -~u(rl) drl 

x [C2(0) + z(t)(O(t)S'B2(O), S'B2(0)) + z(t)[O(t)S'B2 (0)12] 
t 

l , 
where z( t ) / s  defined by (3.10) and satisfies (3.19). 

PROOF. To simplify (4.19), introduce the notation 

(4.19) 

Cl(t) = CI(0) + 2z(t)(Q(t)S'BI(O),S'B2(O)) 

(oJ,) 1 1 
+2z2(t)(Q2(t)A(O)S'B2(O),S'B2(O)) + a ~(rl)] -~u(r/) drl 
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• [C2(0) + z(t)(Q(t)S'B2(O),S'B2(O)) + z(t)lQ(t)S'B2(O)[ 2] 

( 0 J )  - a  z(r/)[~(r])] -~u(r]) dr/ IO(t)S'B2(O)l 2. (4.20) 

Then (4.19) takes the form 
1 

cl(t) = [ ~ ( t ) ] ~ C l ( t ) .  (4.21) 

First of all, observe that  z(0) = 0 and ~(t) = 1. Thus, we easily see that  the function (4.19) satisfies 
the initial condition Cz(t)[t=o = Cz(0). Differentiating (4.21) with respect to time and using (3.19) 
and (4.20), we obtain 

1 �9 

Cl(t) = rv(t)Cl(t) + [~(t)]~Cl(t). (4.22) 

Grounding on (4.20), we now calculate Cl(t).  Using (3.20), we obtain 

Cl(t) = 2~(t)(Q( t)S'BI (O), S'B2(O) ) + 4z( t)~( t)( Q2(t)D(O)S'BI (O), S'B2(O) ) 
+4z(t)9.(t)(Q2(t)A(0)S'B2(0), S'B2(0)) 

+8z2(t)~(t)(Q3(t)A(O)D(O)S'B2(O),S'B2(O)) 

( r  1 1 1 1 +~r[~(t)l -~u(t)[C2(o) + z(t)(O(t)S'B2(O), S'72(0))] + o- [~(r])] -~u(r]) dr] 

x {i'(t)(Q(t)S'B2(O),S'B2(O)) + 2z(t)~(t)(Q2(t)D(O)S'B2(O),S'B2(O)) 
+~(t)lO(t)S'B2(0)l 2 + 4z(t)~.(t)(Q3(t)D(O)S'B2(O),S'B2(O)) } 

-4a/z(t)(joZ(rl)[z(rl)]l-~u(rl)d(7)(Q3(t)D(O)S'B2(O),S'B2(O)). 

We can simplify the expression in braces. Indeed, using (3.21), we easily see that  

~(t)(Q(t)S'B2(O),S'B2(O)) + 2z(t)it(t)(Q2(t)D(O)S'B2(O),S'B2(O)) 
+~(t)[Q(t)S'B2(O)[ 2 + 4z(t)~(t)(O'~(t)D(O)S'B2(O),S'B2(O)) 

= 2~(t)(Q3(t)S'B2(O), S'B2(0)). 

Thus, 

Cz(t) = 2~(t)(Q(t)S'BI(0), S'B2(0)) + 4z(t)~(t)(q2(t)D(O)S'Bi (0), S'B2(0)) 

+4z(t)~,(t)(Q2(t)A(O)S'B2(O), S'B2(0)) 

+8z2(t)~(t)(QS(t)A(O)D(O)S'B2(O),S'B2(O)) 
1 1 

+a[~(t)] -~u(t)[C2(O) + z(t)( Q(t)S'B2(O), S'B2(0))] 

+2a~(t)<~[~(r])]1-~u(r])dr])(Q3(t)S'B2(O),S'B2(O)) 

(oJ ii ) --4as z(r])[~(r])l-~u(r])dr] (Qs(t)D(O)S'B2(O),S'B2(O)). 
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1 
Multiplying the last relation by [~(t)]~ and using (3.21), we easily see that 

I .  1 1 
[~(t)]~Ct(t) = 2[~(t)]~ + (Q(t)[I + 2z(t)Q(t)D(O)]S'Bt(O),S'B2(O)) 

1 1 ~" +4z(t)[~(t)]~ + (Q2(t)A(O)[I + 2z(t)Q(t)D(O)]S'B2(O),S'B2(O)) 

( r  1 1 +o'u(t)C2(t) + 2~[~(t)l~ § [~(V)] -~u(rl)aV (Q~(t)S'B2(0),S'B2(0)) 

_4a[~(t)]~+l 1 1 Z(rl)[~O?)] -~u(~)d~ (Q3(t)D(O)S'B2(O),S'B2(O)) 

! 1 = au( t )C2( t )  + 212,(t)]p + (Q2 ( t )S 'B I (O) ,S 'B2 (O) )  

1 1 +4z(t)[~(t)] ~+ (Q3(t)A(O)S'B2(O),S'B2(O)) 

( r  1 1 1 +2cr[~(t)l ~+1 [,~(rT)] -~u(r/) dv (Q3(t)S'B2(O),S'B2(O)) 

z(~)[~(~)l-~u(~) an (Q3(t)D(O)S'B~(O),S'B2(O)) 

= au(t)C2(t) + 2(Bl(t),  B2(t)). 

Inserting this expression in (4.22), we arrive at the ODE 

Cl(t) = rv(t)Cl(t) + ~ru(t)C2(t) + 2(Bl(t), B2(t)). 

Thus, Ct(t) of (4.19) is a solution to the Cauchy problem (4.18). The assertion is proven. 
REMARK 3. It is easy to verify that if we consider the function 

1 
uo(t) = u(t)[#(t)]-~ 

instead of u(t) then uo(t) satisfies the linear Volterra integral equation of the second kind 

t 

a / Ko(t, ~?)uo(r]) d~l + fo(t) u o ( t )  
~ g  

0 

with the kernel 

and free term 

Ko(t, rl) = k(rl) tr[Q2(t)q-l(rl)D(O)] 

(4.23) 

(4.24) 

(4.25) 

fo(t) = tr[Q2(t)A(0)]. (4.26) 

Moreover, the matrices Ak(t), the column vectors Bk(t), and the scalar functions Ck(t), k = 1, 2, take 
the form 

A2(t) = ~(t)SQ(t)D(O)S', (4.27) 

B2(t) = ~(t)SQ(t)S'B2(O), (4.28) 

C2(t) = r:(t) [C2(0) + z(t) (Q(t)S'B2(O),S'B2(O))], (4.29) 
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Al(t)=[~(t)]~S[affo~(rl)uo(rl)Q-l(ri)D(O)drl+A(O)]Q2(t)S', (4.30) 

E(o} ) Bl(t) = [~(t)]pSQ(t) ~ ~(r/)uo(r/)Q-lO?)dr/ Q(t)S'B2(O) 

+2z(t)Q(t)A(O)S'B2(O) + S 'BI(0) ] ,  (4.31) 

v 
[2(t)]~/C1(0) + 2z(t)(Q(t)S'BI(O),S'B2(O)) Cl(t) 

L 

+2z2(t)( Q2(t)A(O)S'B2(O), S'B2(0)) 

+ a  ~(rl)~(rl) drl [C2(O)+z(t)(Q(t)S'B2(O),S'B2(O)) 

1 . 
(4.32) 

REMARK 4. It is obvious that if we introduce the matrix A(t) = diag[)il(t),..., )In(t)] with the 
real eigenvalues 

)ik(t) = 
1 1 dk(t) [1 -- 2dk(O)z(rl)][](rl) ] -~u(rl) &l + )ik(0) 

2 1 x[1--  2dk(O)z(t)]- [~(t)]~, k = 1 , 2 , . . . , n ,  

then (4.30) becomes 
Al(t) = SA(t)S', (4.30') 

A(t) = [~(t)l~ [i(ri)l~-~u(ri)Q-~(ri)D(O) dr1 + A(O) Q2(t). 
o 

Finally, note that  diagonalization of square matrices A(X) = [o4j(X)], i , j  = 1, 2 , . . . ,  n, whose entries 
are holomorphic functions in the complex variable X is discussed in w 2 of [50, Chapter II]. 

5. P rope r t i e s  of  solut ions to (3.4.7)-(3.4.9) .  The results of Sections 3 and 4 enable us 
to continue studying solvability of the overdetermined system (3.4). This is a rather complicated 
problem. Therefore, we subordinate the study of (3.4) to examining solvability of equations (3.4.1)- 
(3.4.9) in a certain order. It is well known [43] that overdetermined systems of equations may have no 
solutions at all. For this reason, we show that (3.4), which is a overdetermined system, has solutions 
other than the trivial solution Ak(t) = 0, Bk(t) = 0, Ck(t) = O, k = 1, 2. 

Our nearest purpose consists in studying solvability of the algebraic equation (3.4.7) in the class 
of diagonal matrices of the form (4.3(/). It follows from (3.4.7) and (4.30') that  

Ak(t)[)i~(t) + 2~)ik(t)] = 0, 
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where 
n 

u ( t ) = t r A l ( t ) = E A i ( t ) ;  ~ = p ( A + I ) - A ;  ~ # 0 ;  A ~ 0 .  
i----1 

Thereby for every k = 1, 2 , . . . ,  n we have Ak(t) = 0 or Ak(t) = -2~u(t). Consequently, all nonzero 
Ak(t) are equal to one another. Put  ,2" = {k : Ak(t) # 0} = m < n. Then the relation Au(t)+2~u(t) = 
0 implies the dependence 

n 

+  k(t) = o.  
i----1 3C 

Since 
n 

E Ai(t) = E Ak(t)= t rAl( t )  # 0, 
i = 1  3 C  

we have A rank AI(t) + 2( = 0. If we consider the function 

m = rankAl(t) ,  

t rAl( t )  
~(t) = - u(t) = rankAi(t)  

then it is clear that A(t) = ~v(t)Em and Al(t) = ~(t)SEmS', where E m =  diag[e l , . . . ,  en] and 
ek e {0,1}. 

Thus, the following holds: 

Asse r t ion  6. Suppose that Al(t) = ~(t)SEmS' # O, E m =  diag[el , . . . ,en] ,  ek E {0, 1}, k = 
1 ,2 , . . .  ,n, rankEm = m 6 {1,2, . . .  ,n}, ~(t) is an arbitrary tea/function such that ~(t) # 0 for a/l 
t in the domain orAl(t), and S 6 Mn(~,) is a real orthogonal matrix. / s  = -2~/A then Al(t) is 
a solution to (3.4.7) and the following relation holds: 

rankEm = rankAl(t)  = ___2~ (5.1) 
A'  

where ~ = p(A + 1) - A, ~ # 0, and A, p E $[, A # 0, p # 0. 

PROOF. Clearly, each of the matrices Em is equivalent [47] to the matrix diag[1, . . . ,  1 ,0 , . . .  ,0], 
where ek = 1 for k = 1, 2 , . . . ,  m and ek = 0 for k = m + 1 , . . . ,  n. Thus, without loss of generality we 
suppose below that E m =  diag[1, . . . ,  1, 0 , . . . ,  0]. We easily see that Era = E2; i.e., the matrix Em 
is idempotent. Since Al(t) and Em are connected by the relation Al(t) = ~(t)SEmS' and, moreover, 
Al(t) # 0 and ~(t) # 0; the matrices Al(t) and Em are equivalent too. On the other hand, it is well 
known that for equivalence of two real (n x n)-matrices, it is necessary and su~cient that they have 
the same rank. Observing that rankEm = m and m = - ~ ,  we now derive (5.1). Finally, recalling 
that 

m = - - ~ ,  E m = E  2, T( t )#O,  

we easily verify that the matrix Al(t) -- ~(t)SEmS' satisfies (3.4.7). Indeed, we have 

A(trA1)A1 + 2~A 2 = Am~2(t)SEmS ' "4- 2~2( t )SE2  S ' =  Am~v2(t)S( Em - E2)S  ' = O, 

where A E R, A # 0, and m E {1,2, . . .  ,n}. It is clear that  Al(t) E Mn(R) is a rea l  symmetric matrix. 
The assertion is proven. 

Since, on the one hand, ~ = - - ~  and, on the other hand, ~ = p(A + 1) - A; the parameters of the 
system of ADE (3.4) under study are connected by the relation 2p(A + 1) = A(2 - m). In this case 
r = ~ ,  a=-2-2m, A#O,  a n d p # O .  
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REMARK 5. If A = _ 2  then the dependence 2p(A + 1) = A(2 - m) implies that m = 2 or p = 1, 
m E {1,2, . . .  ,n}. Thus, i f m  = 2 then A -  -1 ,  T = _1,  a = --p, a n d ~  = 1; f f p  = 1 then 

) ~ = r = a = - ~  a n d S =  1. 
In view of the dependence m = - ~  and the shape of Az(t), equations (3.4.8) and (3.4.9) take the 

following form: 
(I-  Sm)S 'Bl ( t )  = 0, (5.2) 

IB~(t)l = = 2~(t)C1(t). (5.3) 

We return to studying validity of (5.2) and (5.3) after finding the column vector Bt( t)  and the scalar 
function C1 it). 

Below we search a solution to (3.4) for a fixed m E {1, 2 , . . . ,  n}, assuming that  AI( t )=~(t )SEmS' .  
Further study (3.4) splits into two independent cases: p = 2 and p ~ 2. 

Before passing to the case p ~ 2, we state the following 

Asser t ion  7. Assume p ~ 2. Then for the matrices 

A l ( t )  --  ~ ( t )SEmS ' ,  (5.4) 

A2(t) = r  (5.5) 

to be a solution to the overdetermined system of equations (3.4.1), (3.4.4), (3.4.7), it is su~cient that 
%o(t) and ~(t) satisfy the system of ODE 

@(t) = (rm + am + 4)~(t)~(t) ,  (5.6) 

4(t)  = (Am + 2)~2(t), (5.7) 

where v~(t) # 0 for a11 t in the domain orAl( t ) ;  r # 0 for all t in the domain of A2(t); v = ~; 

a =  -~'m, A e R; and m e {1 ,2 , . . . , n} .  

PROOF. By Assertion 6, Al(t) in (5.4) is a solution to (3.4.7). Inserting Al(t) in the matrix 
equation (3.4.4), using (3.24), and making simple transformations, we arrive at the equality 

%b(t) vtrA2(t)]  E m =  [4Era + a m I ] D ( t ) ,  

where D(t) is the matrix of (3.22). In view of the shape of Era, the above relation splits into two 
equalities: 

~(t) TtrA2(t) = (am+4)dk(t ) ;  k =  1 , 2 , . . . , m ;  

O--r k = m +  l , . . . , n ;  

moreover, am + 4 = 2(2 - p) ~ 0. Since am = - 2 p  ~ 0, we have dk(t) -- 0 for k = m + 1, . . .  ,n. 
Thereby if k = 1 ,2 , . . .  ,m then the eigenvaiues dk(t) of A2(t) are independent of k and have the form 

1 r~(t ) tr A2(t)] z~ dk(t) = am +------~ L ~ ( t )  - ~ = r  (5 .8 )  

i.e., D(t) = r Thus, if A2(t) is defined by (5.5) then trA2(t) -- me( t ) .  Now, (5.8) enables us 
to obtain (5.6). On the other hand, it is easy to see that (3.4.1), together with (5.5), yields (5.7). The 
assertion is proven. 
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C o r o l l a r y  1. /fA2(/:) is defined by (5.5) then 

d ~  t SEreS'; As ( t )=  l _  ( )  ( )  (5.9) 

moreover, 
r  = r - 2r (Am+2)~2, (5.10) 

where A 6 R, A # 0, m 6 {1, 2 , . . . ,  n}, r  # 0, and d(0) # 0. 

PROOF. In t roducing the  nota t ion  qk(t) = [1--2dk(O)z(t)] -1, we rewrite (3.17) as Q(t) = diag[ql(t), 

�9 . . ,  qn(t)]. By Assertion 7, dk(O) -- 0 for k = m + l , . . . ,  n and dk(O) = r ~ d(0) for k = 1, 2, .... ,m.  
Therefore, qk(t) = [1 - 2d(O)z(t)] -1 for k = 1, 2 , . . . ,  m and qk(t) = 1 for k = m + 1 , . . . ,  n. Here we 
have used z(0) = 0. Thereby 

q(t)  = [1 - 2d(O)z(t)]-lEm + ( I -  Era). (5.11) 

On the other hand,  using (3.22), from (5.8) we infer tha t  

~( t )  = d(0)[1 - 2d(O)z(t)] -l~(t),  (5.12) 

where ~(t) is defined by (3.10), taking in our case the  form 

#(t) = [1 - 2d(O)z(t)] -~m/2, z(O) = O. (5.13) 

Thus,  (5.5) and (5.12) imply (5.9). Moreover, (5.12) and (5.13) lead to (5.10). T h e  corollary is proven. 

REMARK 6. If Am + 2 ~ 0 and p ~ 2 then  the  Cauchy problem (5.13) has  the  solution 

1 1 [1 "(Am+2)d(0)t]2+/(Am+2); (5.14) 
z ( t )  = 2d(0) 2d(0) 

moreover, 
r  ---- r - (Am + 2)r -1. (5.15) 

If A = - ~  and p ~ 2 then  a solution to the  Cauchy problem (5.13) is defined by the  formula 

1 
z(t) -- 2d(0)[1 - exp(-2d(0) t ) ] ;  (5.16) 

moreover, r  ---- r  Here A 6 R; A # 0; r  -- d(0) # 0; and m 6 {1, 2 , . . . ,  n}. 
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