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STRONGLY SUBEXPONENTIAL DISTRIBUTIONS 

AND BANACH ALGEBRAS OF MEASURES t) 
B. A. Rogozin and M. S. Sgibnev UDC 517.986.225 

1. I n t r o d u c t i o n .  An extensive bibliography is devoted to studies of various properties of subexpo- 
nential and related distributions (the so-called S('y)-distributions). 

DEFINITION 1. A probability distribution G belongs to the class S('y), 3, _> 0, if 
(1) G is concentrated on [0, oc) and G([x, co)) > 0 for all x > 0; 
(2) for every y E R, there is a limit 

lim G([x + y, cc)) = exp(-Ty); 
,~--,= C([=, oo)) 

(3) there is a finite limit 

lim G �9 G([z, oo)) = c. 
�9 - =  C( [= ,  oo)) 

The class S('y) with q, = 0 was introduced in the article [1], wherein the  basic properties of 
distributions of this class were studied. These distributions were later called subezponential [2]. In [1], 
it was postulated that the  constant c in (3) equals 2. The classes S(V) for ? > 0 were introduced 
in [3, 4] in a somewhat different but equivalent way. It was claimed in [3], with a reference to [4], that 
the constant c in (3) must equal 2 f o  e'rz G(dz) by necessity. We make some remarks on this question 
at the end of the  article. 

The "tails" of distributions in S(V) can be used as norming functions in the  construction of some 
Banach algebras of measures with the exact asymptotic behavior of tails [4-7]. The  scheme of these 
constructions is as follows: Fix some distribution G E S(~/) and put r (x)  = 1 - G(x). Now, in 
a Banach algebra, for instance, the Banach algebra of finite measures defined on the a-algebra B of 
Borel subsets of the real axis R, select a collection 6 [ ( r )  of measures u such tha t  

def Q(~) = sup 
�9 >_o ~(=) 

and there is a limit 
l(u) de=f lim u([x, oo)) 

, -oo ~(=) ~ r 

here lul(A) is the total variation of a measure u on A e B and C is the field of complex numbers. 
Defining the multiplication of elements in ~ [ ( r )  as convolution, we make the  collection ~[ ( r )  into 
a Banach algebra with some norm equivalent to the norm [ul(R) -{- Q(u) [6]. 

In the present article, we consider new classes of probability distribution, calling them strong 
S(^/)-distributions (see Definition 2), and consider the corresponding Banach algebras of measures 
with exact asymptotic behavior of tails. If u is a measure and y E R then we denote by uy the 

d e f { u ~ R : u  = ~ A } .  translation of v by y: uu(A ) ~f  u(A - y), A E B; here A + x = 
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DEFINITION 2. Suppose that 3̀  > 0 is a number. A probability distribution G is called a strong 
S(7)-distribution (symbolically, G E Sstr(')')) if 

(a) G is concentrated on [0, oo) and G([x, oo)) > 0 for all z >__ O; 
(b) for every y e R, there is a limit 

lim 1(7" - e'r'Gl([z'~176 = o; 
�9 - .~ a([=,oo)) 

(c) there is a constant c such that 

lira I a ,  G - cal([~, oo)) = 0. 
~-oo a@,oo)) 

The distributions of the class Sstr(3`) for 7 = 0 are called strongly subezponential. Cleaxly, ~str(~/) C 
s(7). 

The object of our consideration is the collections of measures similar to the Banach algebras 
~[ ( r )  which are constructed by means of the norming functions r ( z )  = 1 - G(z )  with a strong 
S(7)-distribution G. 

2. Banach  a lgeb ra s  and  the i r  p roper t i e s .  Fix a distribution G E S(7),  7 > 0. Put 
r ( z )  = 1 - G(x)  and suppose that 0 < 7' <- 7- Consider the following collection of complex-valued 
a-finite measures [7]: 

S(3 '̀,3`) = {v : f max(eCLe'~)lvl(dz) < oo}, 
R 

e(3`',,) = {~ e s(3`',3`): q(~) < oo}, 
{ I~l([=,oo)) } 

e o ( 7 ' , r ) =  v e e ( 7 ' , r ) :  lim = 0  

{ ~([~, oo))dof } 
e ~ ( ~ ' , ~ )  = ~ e e ( 7 ' , ~ ) :  3}ira ~(~) = I(~) e c . 

Given v e 6(7 ' ,  r), put 

/ llvll', = max(e'~ ,e") l~ l (az)  + q ( ~ ) .  

R 

If 3" = 3̀  > 0 then we additionally suppose that  the function r ( z ) e  ~x satisfies the condition 

r(~)e'~ _< C0~(=)e ~" vy > ~ > 0 (1) 

for some constant Co > I. 
Denote by ~)(s) the Laplace transform of a measure v e S(3`', 7): b(s) = fR exp(sz)v(dz) .  This 

integral converges absolutely with respect to the measure I~1 in the strip {7' < Re s < 7)- 
The collection 6(-)", r )  is a Banach algebra with some norm INII equivalent to the norm II~tl', and 

the collections 6o(7' ,  r )  and ~[(3`', r) are Banach subalgebras of ~(7 ' ,  r). If v, g E ~[(7 ' ,  r )  then 

l(~ �9 ~) = I(~)~(7) +/(~)~(3`) + ( c -  20(7))t(~)/(~) (2) 

(see [7, Propositions 1 and 2 and Remark 2] and [6, Proof of Proposition 2]). The needed changes in 
the proof of Propositions 2 in [6] and [7] for establishing equality (2) axe connected with the fact that 
in this case 

lira lira G ,  �9 G,([z, oo)) 2G(7), 
,-.oo,-oo ~(=) = c -  
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where Gn(A) = G(A N [n, co)), n _> 0. Observe also that if 0 < 7' < 7 then we always have 

r (y )e  ~'~ < Cor(x)e ~'= Vy > x > 0 (3) 

for an arbitrary G 6 8(7) and some Co _> 1 [7, Lemma 2]. For 7 = 7', inequality (3) transforms into 
condition (1). 

Given a distribution G in the class Sstr('/), we consider the following collection of measures: 

6,f~(7',~') = { u 6 ~ ( 7 ' , r ) : u = a a + w ,  a 6 C ,  w 6 60(7 ' , r )} .  

Obviously, ~0(7' ,  r)  C 6s  r) C ~[(7',  r), and l(u) = a for u = aG + w 6 ~2 (7 ' ,  r). Henceforth, 
given an element u = aG +w 6 62 (7 ' ,  r), the notation L(u) means that u = L(u)G + w 6 ~s  r),  
where w 6 60(7 ' ,  r). The distinction between the elements of ~ ( 7 ' ,  r) and those of the algebra 
6 [ (7 ' , r )  is as follows: for u e ~ ( 7 ' , r )  the total variatioi Iv - aGl([z, oo)) is "o-small" of ~-(x) as 
x ~ oo, whereas for u 6 6[(7', r) the difference u([x, oc)) - l(u)G([x, oo)) is "o-small" of r(x). 

The proofs of Propositions 1 and 2 and Lemma 1 exhibited below are modifications of the corre- 
sponding arguments in the proofs of Theorems 1-4 of [4] as applied to the "tail" algebras in question; 
moreover, in the proof of Proposition 1 we use a-finiteness of the measures under consideration. 

P r o p o s i t i o n  I.  Take G 6 S, tr(7). Then the collection 6.P.("/, r) of measures is a Banach sub- 
a/gebra of the algebra 6(7 ' ,  r). The relations G * w 6 6~(7 ' ,  r) and L(G �9 w) = &('/) hold for 

~ 60(7 ' ,  z). 
PROOF. Completeness of the normed space 6~(7 ' ,  r) can be proven routinely. Show that G , w  6 

| r) if w E S0(7' ,  r). We have 

IG , w - ~ ( 7 ) G l ( [ x ,  oo)) 1 / 
r(=) < ~ IGY - e't~GI([z' ~176 

- - 0 0  

N -N oo 

,.(=) I~ol(ey) + + = h + 12 + 13. 

-N - ~  N 

(4) 

By the dominated convergence theorem,/1 --* 0 as x --+ 0r since the integrand is dominated by the 
quantity 

a(C= - N, oo)) + ~','va([=, oo)) 
~-(=) 

~(=-N) 
which, in turn, is bounded by the number C + e ~N < oo, where C = sups>_0 r(=) " Estimate I2. For 

"~' < "y we use inequality (3) and for 3 / =  7, condition (1): 

-N -N 

--OO - -OO 

-N -N -N 

<_Co/e'/Yiwi(dy)+ I ev'iwi(dy) <_ (Co + 1 ) f  e'/Yl~i(dy). (5) 
- - 0 0  - - 0 0  ~ 0 0  

Estimate I3: 
OO OO 

h <_ ~ I~l(dy) + ~'~Yl~l(dy) = h + 15. (6) 
N N 
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Change the order of integration in 

to obtain 

~'(x) 
N ~-y 

OO OO ,,=/ / 
0 max{N,z-z} 

O0 

f M([max{N ,x -  z},cc))  a([maxlN, x -  z},ool)a(dz ) 

OO 

< sup I~l([u, oo)) / G([max{N,x- - . > u  ~(~) ~(~) z}'~176 �9 

0 

Change again the order of integration: 

I~1([~,~)) 14 _~ sup ~>1r ~(~) 

where 

OO 

f a([~ - ~, oo))v(ay) r (z )  < M sup 
u>N 

N 

I~1([~, oo)) 
~(~) ' 

M = sup G * G([x, oo)) < co. 
�9 _>0 r(~) 

(7) 

Assume that ~ > 0 is arbitrary. Take N so large that the right-hand side of (5) be less than e/4, the 
I~,1([~,oo)) integral/5 in (6) be less than ~/4, and sup~>N r(~) < ~ in (7). Afterwards, take z0 so large that 

11 < e/4 for x >_ z0. Combining the above estimates, we find that the left-hand side of (4) is less than 
for x >_ x0. Hence, G * w - ~('y)G E ~o(7' ,  r) .  It follows from condition (c) that G * G e ~.C(~,', r)  

and L(G,  G) = c. Finally, we conclude that ~ ( . y l ,  r)  is a Banach subalgebra of the algebra ~i('y ~, r). 
Now, we show that the constant c in condition (c) equals 2G(-y)... To prove that ~ o ( ~  I, r )  is 

a Banach subalgebra of ~ ( - / ,  r), we do not use the equality c = 2G('y) (see [7]). We put d = G('),). If 
G e Sstr('y) then conditions (2) and (3) of Definition 1 are satisfied. Therefore, the equality 

z/2 

G �9 G([x, oo) )=  2 f G ( [ x - y ,  oo))G(dy)+ G([x/2,oo)) 2 

o 

and Fatou's lemma yield the inequality c >_ 2G(-y). 

L e m m a  1. Assume that G e Sstr(7). Then the spectrum ~r G of the element G e G.C('y', r)  lies 
/~ the set {~ e C: I~1 -< d) u { c -  d}. 

PROOF. Let m : ~ ( - / , r  --, C be an arbitrary homomorphism and let m0 be the restriction 
of m to ~o(7'  , r). If m0(u) y~ P(V) for some u e ~o(~/, r) then we represent G * v as 

G .  ~ = ~(n)G + ~I, (S) 

where vl E 6o( ' / ,  r)  by Proposition 1. If m0(u) = ~('y) for every v E Go(7', r)  then we write 

G �9 G = cG + vv, VG 6 ~o(7' ,  r). (9) 
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By Theorem 1 and Remark 2 of [7], there is a homomorphism ml,  an extension of m0 to the basis 
algebra S(7', 7). Acting by the homomorphisms m~ and m on (8) and (9), we conclude that both 
quantities rn~(G) and rn(G) satisfy the equation 

or the equation 
x 2 = c.x + d ( d  - c ) .  (10) 

In the first case we have 
m0( l) 

re (G)  = m l ( G )  = m0( ) - 

and the integral representation for the homomorphism ml (see [8, Theorem 1]) implies that  Iml (G) l < 
d (put r = max(eV'X,e ~ )  in the indicated theorem) .  Thus, lm(c)I ___ d. In the second case 
equation (10) has the roots zl = d and x2 = c - d. If c = 2d then z = d is a unique root, m(G) = d, 
and the lemma is valid again. If c # 2d then re(G) = d or re(G) = s - d and the functional m has 
the form 

re(v) = ( c -  2d)L(v) + ~(7), v E G~('r ' , r) .  (11) 

(We verify immediately that the continuous functional defined by (11) is a homomorphism.) Lemma 1 
is proven. 

P ropos i t i on  2. The constant c in condition (c) equals 20(7). 
PROOF. Take a rectifiable Jordan contour F surrounding the set av f3 {]z[ < d} so that the point 

c - d lies outside F; for instance, let F be a circle centered at the origin with radius r E (d, c - d). We 
have 

def 1 J 
r 

since ir is the integral along F of the continuous function ($E - G)-IA with values in ~ ( 7 ' ,  r). Show 
that ~ = G. Take the continuous homomorphism h : ~,~(7', r) --~ C to be the value of the Laplace 

transform at an arbitrarily fixed point s with Res  = 0; i.e., h(v) ~ f  ~(s), v E ~ ( 7 ' , r ) .  Apply h to 
both sides of the defining equality for ~;. By continuity of h, we obtain 

,f lj ~ ( s ) = h ( ~ c ) = ~ r /  [ ) ~ - h ( G ) ] - l ~ c l ) ' = ~ i  [&-G(s ) ] - l ;~d~=G(8)"  

r i" 

Thus, the measures t; and G have the same Laplace transform. Hence, ~ = G. 
Now, suppose that m is the homomorphism (11). Apply m to both sides of the just established 

equality 

G = 2~i (,~E - G) -~d ,~  
r 

to obtain 

r e ( c )  = - = - ( c -  6)d  = 0. 

r r 

This contradicts the fact that re(G) = c - d > 0. Consequently, c = 2d. 
Fix G e Sstr(7). Recall that Sstr(7) C S(7) and ~5o(7', r) C ~s  r) C ~(7 ' ,  r).  As demon- 

strated in [7], the homomorphisms from the Banach algebras 6o('r ' ,  r) and ~(7 ' ,  r)  into the field C 
of complex numbers are the restrictions of homomorphisms of the basis algebra S(7 ~, 7) to ~o(3 ,j, r) 
and ~5('),',-r). 

We turn to describing the homomorphisms ~is , r) ~ C. 
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T h e o r e m  1. Take G E Sstr(7)- Then every homomorphism from the Banach algebra ~o~(7', r)  
into C is the restriction of some homomorphism from S("/', ~/) into C. 

PROOF. Put 
exp("/z), x < 0, 

~21(x) = exp('Tx) + ~ ,  x > O. 

Note that  the constant c in condition (c) equals 2G(7) by Proposition 2. Now, the arguments are the 
same as in [6]. 

We have the following assertion for the values of an analytic function at elements of the Banach 
algebra ~ ( 7 ' ,  r) (the terminology and general results we use below are contained in [9, w 11], see 
al,o [7]). 

T h e o r e m  2. Suppose that an analytic function f ( z )  applies to an element u E S(7', ~/) and that  
f (u)  e S(7','1), where f (u )  is the va/ue off(z)  at u e S(7';~/). If u e ~ ( 7 ' ,  r)  then f(v)  E ~Z(~/', ~') 
and 

L(f(v))  = f ' (P(7))"  L(v). (12) 

P r too r .  The membership f(p)  6 6s  r) is guaranteed by the preceding theorem and the 
general theory [9, w 11]. Since L(f(u))  = l(y(u)) and the functional l is defined on the ambient 
algebra ~t(7',~'), by Theorem 3 of [7] we have t( f(u)) = f'(D(7))" l(u) for u 6 6 s  C 6[(7 ' ,  r) ,  
which proves (12). 

3. Corol lar ies .  We give some consequences of the above results. 

C o r o l l a r y  1. Suppose that G is a distribution with density g and that g(x) -- 0 for z < 0. f f  

Z 

lira g ( x - Y ) = e ~ ' ,  !ira f 
�9 - =  g(=)  = = g(=)  

0 

for every y 6 R and some ~/ > 0 then G 6 $str(7) and b = 2G(7). 
PROOF. The distribution G with density g belongs to the class Sstr('7) with the constant c = b. 

Applying Proposition 2, we obtain b = 2G(7). 
Suppose that G is an arithmetic distribution concentrated at the points 0, 1,2, . . . .  If we take the 

domain of variation in Definitions 1 and 2 to be the set 7. of integers rather than •, then we arrive at 
distributions for which all corresponding assertions remain valid with obvious changes of statements. 
In particular, if g(n) = G({n}), n = 0, 1, 2 , . . . ,  7 > 0, and 

lim g(n-1) g(-~)k.~ ~ ,,,-..,oo g(n) = e~' l im g(n - k)g(k) n " ' - *  OO 
= b < o r  

t h e n  b = 
Corollary 1 is contained in [4] and its analog given above for arithmetic distributions, in [4, 10,11]. 

For instance, putting f ( n )  = g(n)e "m and r = z 2 and applying Theorems 3 and 4 of [i0], we obtain 
b = 2G(7). 

L e m m a  2. Suppose that G E S(7), 7 > O, and a = f o  r(z)  dx < oo. Then 

. ( / )  f ,(y)ey 
9 z 

as x .--~ ( ~ .  

968 



PROOF. We  have  

J = / G  
Z 

t3r Z 

* G ( [ z , c ~ ) ) d z = / / r ( z - y ) G ( d y ) d z + / r ( z ) d z .  
x 0 z 

If we change the  order  of integration in the  double  integral then  we come to 

) 7 J =  r(z)dz G(dy)+ar(z)+ r(z)dz. 
0 z 

Integrat ing by parts  in the  first integral, we obta in  

0 z 

If we use condit ion (2) of Definition 1 for G t h e n  we arrive at 

J =cfr(z)dz+o ~(z)az 
z 

as z --* ~ ;  whence the assertion of the l e m m a  follows. 

Corol lary"  2. I/" G E 3(3') and ~, > 0 then c = 2G(3') and  

lira 1 _ - 2 / 
Z"'-~ O0 ~ 

o o 

(13) 

PROOF. The  idea of the  proof is to reduce the  problem of the  value of the  constant  c for the  class 
S(3'), 3' > 0, to a similar problem for the  class ,gstr(3') which has already been solved. We do this by 
choosing a d is t r ibut ion G1 e Sstr(3') such t ha t  GI((x, ~ ) )  ~ c l r ( z ) ,  x ---* cr where cl > 0. 

Take 0 < 3" < 3' and a nonnegative measure  u such that  u([0, cr = 0 and u([x,0))  = - x / a  for 
x < 0 and a = f o  r (x )  dz. The measure u belongs to ~0(3", r) ;  therefore, by (2) ~ * G e ~ ( 3 " ,  7) 
and 

1 
l(v �9 G) = ~(3") = - -  (14) 

3'a 

Define the dis t r ibut ion G1 as follows: G l ( ( - c ~ , 0 ) )  = 0 and G I ( [ z , ~ ) )  = v �9 G ( [ z , ~ ) )  for z _> 0. 
Its density gl(x) equals r(z)/a for z >_ 0 and g l (z )  = 0 for z < 0. We have G1 E ~3[(3", r )  and 
l(G1) = 1/3"a by (14). Moreover, 

,~(~)- 1 
G1(3") = / e~Iygl (Y) dy -- 7 a 

o 

(15) 

Using L e m m a  2 and (14) we infer tha t  

z 

g l ( x  --  y ) g l ( y ) d y  = c -  2 
a 

o 
( ! )  .-- C ~  

gl(y)dy+o gl(y)dy 7 a (x)-i-O(gl(X)) 
Z 

(16) 
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as z ~ co. Moreover, for gl we have 

lim gl(z - y) 

for every y E R. Therefore, Corollary 1 together with (15) and (16) yields the equality (c - 2)/7a = 
2(6(7) - 1)/Ta; whence c = 2G(7) and (13) holds as well. 

4. R e m a r k s .  In [3], there was considered the class of probability distributions G concentrated 
on [0, co) for which the limits 

lim 1 - G * G(t) 
t-,oo 1-O(t) - - c < c o ,  (17) 

hm 1 - G(t - b) 
t.--,~ l -G ( t )  "-- ~/,(b) Vbe R (18) 

and the integral 

eTtdG(t) = d < co (19) 

0 

exist (from (18) we easily infer that r - exp(-i'b) for some ~, > 0). Also, it was emphasized in [3, 
p. 664] that  the following equality holds by necessity: 

c = 2d. (20) 

Moreover, it was indicated that, in the article [4] by the same authors, this equality was proven in the 
case of d = 1 and in the case of d > 1 only when G is a latticed or absolutely continuous distribution. 
Finally, the authors of [3] claimed that in fact the methods of the proof of Theorems 1 and 4 of [4] 
extend without changes to an arbitrary G concentrated on [0, co) and satisfying the conditions (17)- 
(19) and to arbitrary values d >_ 1, thereby establishing (20) in fuLL generality. This opinion is shared 
by the authors of some other articles (see, for instance, [12, Lemma 2.1; 13, 14, 6, 5]). 

REMARK 1. However, we have to say that, in Theorem 4 of [4], a somewhat different class 
of probability distributions was considered as compared to the class of distributions satisfying the 
conditions (17)-(19) for d = 1. We explain the difference. Put Tt = ( -co ,  - t ]  u (t, co) for t > 0 and 
To = R. Theorem 4 of [4] deals with the class of probability measures ~t on B such that ~t(Tt) > 0 for 
every t :> 0 and there exist limits 

lira #*  ~t(Tt) (21) 
t - .~  ~(Tt) = c < c r  

lim It - #r[(Tt) = 0 Vr E I(. (22) 

One of the conclusions of Theorem 4 of [4] is that the constant c in (21) must obey the equality c = 2. 
Clearly, (22) implies (18) with r -- 1. Therefore, if a probability measure/~ is concentrated on 
[0,co) and satisfies (21) and (22) then it meets (17)-(19) for d = 1. Condition (22) is essentially 
used in the proof of Theorem 4 of [4] but it does not follow from (17)-(19) for ~,(b) = 1 for distribu- 
tions G concentrated at integer points or their convolutions with the uniform distribution on [0, 1/2]. 
Therefore, the assertion of [3] that equality (20) was proven in [4] for d = 1 does not correspond to 
reality. 

REMARK 2. In the proof of the equality c = 2 [4, Theorem 4], the authors introduced the collection 
AL = {v = a/~ + w, a E C, w E .A0} of measures, where .A0 is the set of finite measures v such that 

snp < co, lira I I(T,) - - = 0 .  
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They defined the functional 

L(v) = L(a~ + w) dd lira v(Tt) 
- "  ~..-4.~ ~ ~ a 

on the set ,4L and claimed that the conditions (21) and (22) imply the relations ~ * # E ,4r. and 
L(~ * ~) = c. In our opinion, this assertion has to be proven or one should introduce the following 
condition instead of (21): 

l i m  * - c,l(T ) = 0 .  

It is the last condition that we use in Definition 2, Propositions 1 and 2, and Lemma I. 
Thus, there is a class distributions for which conditions (17)-(19) hold for d -- 1 and conditions (21) 

and (22) do not hold for d = 1; therefore, the assertion of [3] that equality (20) with d - 1 was 
established in [4] under the conditions (17)-(19) is incorrect. Preserving the Banach-algebraic methods 
of [4], one can prove that c = 2d for distributions in 8(7) with "y > 0 and for strongly subexponential 
distributions in the class Sstr(0). 
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