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ENTROPY SOLUTIONS TO THE

BUCKLEY-LEVERETT EQUATIONS
S. Luckhaus and P. 1. Plotnikov UDC 517.954

Introduction

We consider a mathematical model of flow of two immiscible fluids of different mobility in Hele-
Shaw cells [1] and a porous medium. The motion of fluids is described by the Buckley-Leverett
equations which can be written as follows (2, 3]:

st +v-VA(s) =0, (1.1)
divv+ f=0, v=-—k(s)Vp. (1.2)

Here s(z,t) is the saturation of one of the fluids, v(x,?) is the seepage velocity of the mixture, and
p(z,t) is the pressure. The fractional flow function A and the mobility k are given smooth functions
of the phase saturation. We suppose that

AkeC®R), 0<Cl<k(s)<C<oo, |A"(s)|>0. (1.3)

Observe that (1.1) and (1.2) constitute an elliptic-hyperbolic system of nonlinear PDE’s. Boundary
value problems for these systems are studied rather poorly. It is well known that the equations can be
simplified in the case of symmetry. Typical examples here are traveling waves and the 2-D Riemann
problem.

We consider the following boundary value problem which can be regarded as a generalization of
the boundary value problems for self-similar solutions. Let Q2 C R? be a bounded domain with smooth
boundary and let b(z) be a given vector field of class C2(2). The vector —|b|~!b defines the direction
of wave propagation and |b| is the wave speed. We denote by dQ* the set of all points z € Q2 such
that

at: b-n>0,

where n is the unit outward normal to Q. The problem is to find functions s € Lo (2) and p € H1(2)
and a vector-function v(z) satisfying the following equations:

) v-VA(s)—b-Vs=0,
" div(k(s)Vp) = f, v =—k(s)Vp,

(14)
oN: v-n=0, 0T: s=sp(z).
We suppose that f and sp are subject to the conditions
f € Lo(), so € Lip(052), /fdx = 0.
Q

We consider two kinds of generalized solutions to (1.4). The first is an entropy solution.
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DEFINITION 1.1. A vector field v € Ly(2) and a function s € Lyo(Q2) are called an entropy
solution to (1.4) if for arbitrary functions £&,7 : @ — R! and ¢, ®,¥ : R! — R! satisfying the
conditions

£€C®Q), neC®®Y, 120, sptyn(BQ\8Q%) =2,
peCYRY), ¢ >0, ¥ =a(s)p(s), ®=¢(s), a=A4A, (1.5)

the following relations are valid:

/ (T(s) - v = B(s) - b) - Vi = (8(s) div b + U(s) f)n) dz + / B(so)b-n>0,  (L6)
) oot

/(Vpr ck(s)— f&)dz =0, v=-k(s)Vp.
Q

Entropy solutions to scalar conservation laws were studied by many mathematicians. We only
note that existence and uniqueness of entropy solutions to the Cauchy problem were proven in [4, 5].
Well-posedness of boundary value problems in bounded domains was established in [6].

To define a measure-valued solution to (1.4), we introduce some notations. We denote by v
a family of probability Radon measures v, on R! x R? depending on z € [7]. We suppose that

(a) the mapping z — v, is weakly measurable from 2 into the space of Radon measures;

(b) there exist constants Mp and M; and an exponent r > 2 such that

sptvy C {s € R, g e R?: |s| < My}, /(1 +|q)" dvy < M;.

R3

These conditions imply that the function

2~ [ s,00du = (2)
R3

is measurable on  for a Borel function f(s,q) satisfying the inequality |f(s,q)| < ¢(s)(1 + |q|?).

e Vo) = / / qdve, Ag(A) = / / dv,. (1.7)

[A00) R2 [A,00) R2

These functions are left-continuous and have bounded variations in A almost everywhere in Q. It is
easily seen that the following identities are valid for a bounded Borel function ¢:

Je@adne == [e)ave, [ ols)dve == [o0ars(. (18)
R3 R! R3 R!
Now, we are ready to define a measure-valued solution to (1.4).
DEFINITION 1.2. A Young measure v; is called a measure-valued solution to (1.4) if the relations

/(P;'Vn—(é*divb+\ll*f)n)dx+ / ®(so)n-b-nds > 0,
Q

o (1.9)

div / dVz(\)=f rot f EY(\)dV(\) =0
R R



hold for all functions ¢, 1, €, ®, and ¥ satisfying (1.5), where

P! = / YNV r + / B()) dAs(A) - b(z),
R R!
3 = - (o)), T =- [T(0)dA().
/ /

The concept of measure-valued solutions to conservation laws was introduced in [7] and developed
in [8]. Observe that our definition differs from that of [7].
We also consider the following elliptic regularization of (1.4):

—eAs+v-VA(s) —bVs =0,
v=—k(s)Vp, divv+f=0,

eVs-n+vy(s—sp) =0, v-n=0. (1.11)
Here the nonnegative Lipschitz continuous function < is defined by the equalities
Nt :y=b-n, N\ :y=0.

The main results of the present article are the following theorems of existence and structure of
measure-valued solutions to (1.4).

Q: (1.10)

Theorem 1.1. Suppose that the above conditions are satisfied. Then
(i) for an arbitrary € > 0 the problem (1.10), (1.11) has a solution s,v € Ho(Q), a > 2, which
satisfies the inequalities

sl zooi@) + IVl Loy () < M, V|Vl Ly < M,

where the constant M is independent of ¢ and ro.= ro(k) > 2;

(i1) there exist a sequence (s., V¢) of solutions to the problem (1.10), (1.11) and a Young measure v,
such that, for an arbitrary function f : R3 — R, |f(s,q)| < c(s)(1 + |q|?), the sequence f(s.,Ve)
converges weakly in Ly, /5(f?) to the function

@) = / £(5,v) dug
R3

as € — 0. The measure v; is a measure-valued solution to (1.4).

To state the results on the structure of measure-valued solutions to (1.4), we introduce some
notations.

DEFINITION 1.3. Given ¢ € C'(R), the pair of the smooth functions

L]

O(s) = /cp()\) d\ +const, ¥ = /a()\)cp()\) d\ + const
0

is the entropy pair corresponding to ¢. Given s and v, the vector field P, = ¥(s)v — ®(s)b is the
flow corresponding to ¢.

The following theorem yields a relation between the functions Vz(A) and Az(A) which define
measure-valued solutions to (1.4).

Denote by v*(z) the weak limit of the sequence v.(z). We can represent the domain Q as the
union of two disjoint sets

Qo ={z:v*(z) xb(z) =0}, Q= {z:v*(z)x b(z) # 0}.
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Theorem 1.2. Under the conditions of Theorem 1.1, there exist a measurable function s*(z),
z € 4, and a family of functions p;()\), x € Qq, such that
(¢) the following relations hold:

V,,.(/\)=( oy - (/\)H(s (z) - A)) b(z) + H (s*(z) = \)v(z), z € Q, (1.12)

Vz(A) = pz(A)b(z), z € Q.
Here H(s) is the Heaviside function: H(s) =0 for s <0 and H(s) = 1 for s > 0.
(i) The sequence of flows P, , = U(s.)ve —®(s:)b converges weakly in L2(Ql) toPy, = U(s*)v*—
®(s*)b if p € CY(R).
Relations (1.12) have some symmetry property. Define

0= [ [ x= [ [dn

(~o0,)] R? (~o0,A] R2
1t follows from (1.7) that
Uz (A) =v* - TEI)\I}FOVE(T% Xz(A) =1~ T_lg‘f_l‘_oAr(T);

HO—s)=1— i *_ 7).
(A=s)=1 T_I_EIE*_OH(S T)

Inserting these relations into (1.12), we obtain

1 1
U = (e = g0 = 5°@) b0 + HO-s@)v'@. a1y
It does not follow from Theorem 1.2 that the function s* is the weak limit of the sequence s..
Our next proposition shows that, under some additional assumptions on the functions A and k, the
solutions to the regularized problem converge strongly on ; to an entropy solution to (1.4). To state
these additional assumptions, we introduce some notations. We denote by £ the family of parabolas
given by the formulas
y=0(2), pz)=22+qz+qp, ¢eR. .
We say that a function f : [c,d] — R! is strictly p-concave at a point z € (c,d) if it satisfies the
following condition:
Condition P. Fix a parabola py € I such that f(z0) = po(20) and f'(20) = py(20). Let z* € (c,d)
be an arbitrary point. If a line l || Tan,» py crosses the graph of the function f(z) at points (21, f(21))
and (22, f(22)) such that

Zr=An1+(1-AN)z, A€(0,1], 2z & (21,22),

then
Af(z1) + (1 = ) f(22) < po(z7).
The equality holds if and only if z* = z) = 23 = zg
Consider the family of the functions I', NV : [-—M M) — R! depending on a parameter o and given

by the formulas
K(a) K'(s)
=2 ¥ / o) *
@ (1.14)

by
NO) = [a KT ds, K(s) =K76)
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Denote by A = Z(z) the inverse of z = I'(A) and set

fa(x) = N(Z(2)), za=T(a)= f(ff.

Condition S. There is M > sup.sg ||5|1..(q) such that the function T : (—M, M) — R! is
strictly monotone and the function fq(z) is strictly p-concave at the point z, for every a € (=M, M).

ExAMPLE. Simple calculations show that

_dWKEQ) _ (log(K2(N)a(N)

fa(z) =T +a NKW),  fal@) =2 = Tomay = = (g ROy

where A = Z(z). Therefore, the inequalities X’ > 0 and (K ~2)’ > 0 imply Condition S.

We note that this condition is close to the stability condition k’'(s) < 0 (K'(s) > 0) [6] but does
not coincide with the latter.

Theorem 1.3. If the conditions of Theorem 1.1 are satisfied and the functions a and K are
subject to Condition S then

se — §* strongly in La(§Y1), ve — V™ strongly in La(1).

Corollary 1.1. Under the conditions of Theorem 1.3, the function s* and the vector field Vp* =
—k(s*)~1v* represent an entropy solution to (1.4) on an open set G C Q.

2. Proof of Theorem 1.1

We begin with proving solvability of the problem (1.10), (1.11). Consider the following family of
boundary value problems depending on a parameter 7 € [0, 1]:

Q: eAs=—1(a(s)k7(s)- VsVp+b-Vs),

MN: eVs-n+vy(s—7s) =0, (2.1)

Q: Ap=Hk(s)"Yrf — Vk-(s)VD)],
MN:Vp-n=0, (p1)=0.

Here the function k; and the operator II are defined by the formulas

f = f — (mesQ)7Hf,1), ke(s) =1+7(k(s) - 1),

(2.2)

and the given functions v, sp, and f satisfy the following conditions:

7,50 € Lip(0Q), f € Loo(), / fdz=1.
Q

First we prove a priori estimates for solutions to the problem (2.1), (2.2).

Lemma 2.1. Assume that (s,p) € W2(Q), r > 2, is a solution to (2.1). Then there exist
a constant ¢, independent of € and T, and an exponent vy > 2 depending on k such that

Vol @) + V2| Vsl Ly@) + sl ooty < c (2.3)
Proor. Multiplying both sides of (2.2) by &, we obtain the equality
div(k,Vs) = 7f — kr(mes Q)" 1k} (rf — VK- VD), 1).



Integrating this equations over 1 yields (k7 !(7f — Vk.Vp),1) = 0. Hence, we conclude that p is
a solution to the boundary value problem

Q: div(k,(s)Vp) =7f, : Vp-n=0.

The estimate for p is a consequence of the a priori estimates for solutions to second-order elliptic
equations with bounded coefficients.
The function s is a solution to the following boundary value problem for an elliptic equation:

Q: eAs+T1(a(s)k(s)Vp+b)-Vs =0,

0: eVs-n+vy(s—so7)=0. (24)

It follows from the conditions of the lemma that s, Vp, b€ C8(Q),0<fB<1,and 0 <y € Lip(69).
From here and the maximum principle we obtain the inequality min sp < s(z) < max sg which implies
boundedness of ||s|| . (q)-

Multiplying both sides of (2.4) by s and integrating over 2, we obtain the following estimates:

e VslEy) < 1divbs®lizy ) + 1 f0(5) | Ly + max{lysol} < ¢, w(s) = sa(s).

The lemma is proven.

Lemma 2.2. Under the conditions of Lemma 2.1, for an arbitrary r > 2 there is a constant c(r,€)
such that ||(s, p)llwzq) < c(r,e).
ProoF. Introduce the sequences A; and ng, k& > 1, of positive numbers as follows:

20:(2 =)7L i 2> N,

o1, . —
)‘k+1‘_2 ng; nk—{’nk_l‘l“l 1f2$)\k,

Al = (2_’1 + 7'6.1)_], niy = 1p.

Since A\ — 00, k — 00, it suffices to prove the estimates

I, Plwz (@) < c(Arre), k21 (2.5)
Observe that a solution to the Neumann problem

Q: Au=f, 90Q: Vu-n=g
satisfies the following inequality [9]:

lullwz@) < (€ A lliye) + lglwye) + lulle@), 1<A <o
From here and Lemma 2.1 we conclude that a solution to (2.1) satisfies the inequalities
II(S,P)"ng(n) < c(k)(IVsVpliL,, @ + IISHW)}k(Q) +1). (2.6)
It follows from Lemma 2.1 that
IVsVpliL,, @ S Vsl @l VPl @ <S¢ 1< <2

Therefore, (2.5) holds for ¥ = 1. On assuming that (2.6) holds for k, we prove the inequality for k£ + 1.
From the embedding theorem we obtain

(s, P)llwi, @) < c(Nl(s: Pz (@ < e(k), IVsliey,,, @ < clbislwg, (o) < (k).



Holder’s inequality implies
IVsVplL,,,, @ < RNVl L, @ IVPl L 0)-

Now, from the previous estimates and (2.6) we obtain (2.5) for k + 1. The lemma is proven.

Fix a number r > 2 and consider the nonlinear operator  : [0,1] x W2(Q2)? — W3(Q)? defined
by the following relations. Given 3,5 € W2(R)?, 7 € [0, 1], the pair (s,p) = ®(r, 5, p) is a solution to
the following linear boundary value problem:

Q: eAs=—7(a(3)k7(5) - ViVp +b-V3),

O : eVs-n+v(s—Tsp) =0, (2.7)
Q: Ap=kr(s)™ (7S = Vk:(3)V)),
o2:Vp-n=0, (2.8)

(p,1) = 0.

Denote by £ C W2(Q)? the closed ball that consists of the couples of s and p satisfying the
inequality [|(s,p)llw2q) < ¢(r) +1. Consider a sequence (7n,8n,Pn) € [0,1] X I, n > 1. Since the
embedding W2(2) — CY(Q) is compact; dropping down to a subsequence, we may assume that it
converges strongly in C1(Q)2 x [0,1]. Therefore, the sequences 7, (k(sn)Vpn + b)Vs, and 7, div((1 —
k(sn))Vpn) converge strongly in some space Lq(€2), & > 1. From here and the a priori estimates for
solutions to the Poisson equation we conclude that the sequence ®(7y, sn,ppn) converges in W2(1).
Hence, the operator ® is compact and continuous on [0, 1] x .

Since ®(0, s,p) = 0, the mapping I — &(0,-) : W2(Q)? — W2(Q)? is a homeomorphism.

If (s,p) = ®(r,s,p) is a fixed point then (s,p) is a solution to the problem (2.1), (2.2). By
Lemma 2.2, the pair (s, p) satisfies the inequality ||(s, p)|lwz(q)2 < c(r) and (s, p) € int Z. Therefore,
the operator ®(7,-), 7 € [0, 1], has no fixed point on the boundary of X.

By the Leray-Schauder fixed point theorem, the operator ®(1,,-) has a fixed point (s¢,p¢) € Z.
It is clear that (se,p:) is a solution to the problem (1.10), (1.11).

To complete the proof of Theorem 1.1, we show that a weak limit point of the set of solutions
to the problem (1.10), (1.11) is a measure-valued solution to (1.4). Consider a sequence (s¢,ve) of
solutions to the problem (1.10), (1.11). Dropping down to a subsequence, we may assume that, for
an arbitrary function F : R?® — R satisfying the inequality |F(s,q)] < C(s)(1 + |g|?), the sequence
F(s.,ve) converges weakly in L, /5(Q) to some F* € L(Q2).

The version in [10] of the fundamental theorem on Young measures implies that there is a weakly
measurable family of probability measures v in R? such that the equality

F*z) = / £(s,v) dvs
R3

holds almost everywhere in Q. It follows that weak limits of the sequences g(s;) and g(s¢)ve, g €
C(R!), have representations (1.7) and (1.8). '
Since the sequence (s, v:) is uniformly bounded in Loo(Q) x Ly, ()2, this measure satisfies con-
ditions (a) and (b).
It remains to prove that v, is a measure-valued solution to (1.4). To this end, we choose an ar-
bitrary smooth nondecreasing function ¢ : R! — R! and a nonnegative function n € C®() with
sptn N OQ C 8QF. Multiplying both sides of (1.10) by ¢(s:) and integrating over {2, we obtain the
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following identity:

-/PE -Vndz + / (®(se) divb + ¥(se) f)ndzx — / (8({2(55)%% + B(s¢)b - n)nds
Q Q an+

= —£ / @(3¢)Vse - Vndz — ¢ / ¢ (5¢)|Vse|*n da,
Q 0

Pg = Q(SS)VE bt @(Se)b-

Since ¢’ is a nonnegative function and n vanishes on 9Q \ 8Q7, we conclude that

-—/Ps'Vndx+/(®(sg)divb+\If(sa)f)~77da:
Q Q

- / (esa(se)%% +7¢(se)) nds < —¢ / ©(8)Vse - Vndz.
a0+ Q

It follows from the boundary conditions

and convexity of ® that

(?Q"” : w(sg)E% +7®(8e) = Y(P(se) — 9(s¢)(8e — 50))
—y (‘I’(So) + [t - o) dt) < 19(s0)-

From here and the previous inequality we obtain

-»/PEVnd:c + /(@{ss) divb + ¥(s¢)f)ndz — / ¥®(so)nds < —stsngga dz.
Q Q aat Q

It follows from the definition of a Young measure and the estimates for solutions to the problem (1.10),
(1.11) that

/ (®(se) divb + U(se) fnde — — / ( / (@(\) divb(z) + TN £(z)) dAx(A)) dz,
Q Q R!

/ P.-Vndz — / (- / TN dV, + / @(A)dAx()\)-b(m)) - VUndz
4] Q Bl R1
=/P;-Vndm,s/Vse-Vn(pdx->O
Q Q

as € — 0. Passing to the limit in the previous inequality, we see that v; is a measure-valued solution
to the first equation of (1.4).
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Multiplying the second equation of (1.10) by an arbitrary smooth function £(z) and integrating
over {2, we obtain the identity

/(vs-Vf-!-ff) dr = 0.
Q
It remains to note that the weak limit of the sequence Vp, = k:'l(sg)vE coincides with the function

T— - / EY(N)dVL(N), zeQ,
R!

and Theorem 1.1 is proven.

3. Proof of Theorem 1.2

1. Preliminaries. The proof of Theorem 1.2 bases on the compensated compactness principle
and splits naturally into several parts. Take an arbitrary function ¢ € C! and consider the sequence
Py, of the flows defined by the equalities

Pe, = ¥(s:)ve — O(se)b. (3.1)

Here (se, ve) are solutions to the problem (1.10), (1.11) and (¥, ®) is the entropy pair corresponding
to .

Lemma 3.1. Under the conditions of Theorem 1.2, the set of the functions divP¢,, € > 0, is
compact in Hy ().

ProoF. Consider the sequence of the functionals F : V(I)/'}(Q) — R given by the formula
(Feq) = /scp’(sE)IVsslzn dz + /(<I>(ss) divb + ¥(se) f)n dz.
Q Q

The estimates of Theorem 1.1 for the solutions to the problem (1.10), (1.11) imply the inequality

[(Fe,m)| < Clinll o)

Therefbre, {F.} C B, where B is a bounded subset of the space C*(2). From (1.10) we obtain the
following identity which is valid for a smooth compactly-supported function 7:

/ndiv P.pdr+ (Fepom) = —e/(p(sg)VssVn dx.
Q Q

Now, the estimates of Theorem 1.1 imply that the right-hand side satisfies the inequality

< CVEe|nll -

€ / Vs Vndz
Q

Hence, the sequence div Py ,+ F; converges to 0 in H;(Q2). Therefore, {divP. ,+F;} C A, where A is
a compact subset of H_1(€2). On the other hand, the set {P¢ ,} is bounded in L,(Q2), r > 2. Hence, the
functions div P, belong to some bounded set C C W,;~1(2). Thus, we have {divP,,} C (A—B)NC.
By Murat’s lemma [11], the family of the functions div P, is precompact in H_1(Q2) and the lemma
is proven.
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Take two arbitrary functions ¢; € C!(R!), i = 1,2. Now, Theorem 1.1 shows that the flows Py,
converge weakly in Lo(Q2) to some vector-functions P}{z) which have the representations

Pi(z) = - / Ti(AN)dVa(N) + / :(V)dAz()) bz). (3.2)
R

R

The functions
Qe =Peypy X Py = (Wa(se)P1(se) — W1(se)Pa(se))ve x b

converge weakly in L, /5(2), r > 2, to the function @*(z) given by the formula

@@ = [@WEM) - BT V2 x ba) (3:3)
R
Lemma 3.2. Under the conditions of Theorem 1.2, the following equalities hold at almost all

points of 2:
Q«(z) = Pi(z) x P3(z), w‘gin})(Vpe ‘Peg) = w'elif% Vp: - P;. (34)

PROOF. It follows from Lemma 2.1 that the set of the functions rot P, = div P, is compact

in H_1(Q). Theorem 1.1 implies that the sequences Vp; and P, are bounded in L-(Q2). From the
curl-divergence lemma we obtain

w-im (Pep; X Pepy) = w- lim (P, - Pey)

= w- hm P‘L

-w-limP = w-lim P x w- lim P
£, e—0 &,42 c—0 &,1 e—0 £,021

i P, o ’
w- Im(Vpe - Pe ;) = w- lim Vpe - w- lim Pe g,

which completes the proof.
Consider a collection of functions frm(a,s,v), k=12, m.>1, a,5 € R!, v € R?, which belong
to the first Baire class, are left- or rlght-contmuous in o, and samsfy the mequa.htles | fkm(a s,v)| £

c{a, s)(1+|v|F). Suppose that g(z, frm) is a continuous function such that |g(fi.m)| < c(1+]| f1m|2A+
| fom|). Put
Mm(@,5) = [ fom(@,5,0) e, Gla2) = 9m(@, ).
R!
Lemma 3.3. Under the above assumptions, the mapping r — G(a,z) is measurable for every
a € R!. If the inequality

/§(z)G(a, z)dr <0
Q

holds for arbitrary o € R! and 0 < € € C(Q), then there is a Borel set E C § such that mes(Q\E) =0
and G(a,z) < 0 for an arbitrary a € R! and z € E.
PROOF. Since fim are Baire functions, there is a sequence fim; of continuous functions having

the same bounds as fim, and such that frm; — fkm pointwise on R? x R2. From the Lebesgue
theorem we obtain

nkm(c,) = lim f fom(ts 3, ) dvs.
J—o0

Therefore, Nk m(a, ) and G(a,-) are measurable functlons, for they are pointwise limits of sequences
of measurable functions. Take a countable everywhere dense set {a;}i>1 C R!. By the Luzin theorem,
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for every a;, there is a Borel set Qi C Q such that the function G(«,-) is continuous on Qim and
mes(Q \ Qm) < m~127% From the conditions of the lemma we obtain G(a;,z) < 0 for z € Q. It
follows that G(ay,z) < 0 for arbitrary o; and € E = Up, Nj Q. Since G is left- or right-continuous
in @, this equality holds for every a € R! and the lemma is proven.

2. Proof of Theorem 1.2. We begin with proving item (%) of the theorem. Fix two arbitrary
numbers o < § and a function w € C®(R) satisfying the conditions

w(—8) =w(s), w(s)=0for|s|>1, / wdr =1,

-0

and set
v1,a(8) =nw(n(s—a)+1), @2n(s)=nw(n(s—FG)+1).

Let ¥;,, ®in be the entropy pair corresponding to the function ¢;,. Observe that the sequences ¥;p,
and ¥s, converge pointwise to the functions a(a)H(s — a) and a(B)H (s — ) and the sequences @1,
and ®9, converge pointwise to the functions H(s — ) and H(s — ().

We denote by P, i, the flow defined by (3.1) with ¥ and ® replaced with ®;, and ¥;,. We also
denote by P}, and @y, the weak limits of P.;, and their vector products given by (3.1) and (3.2).
Inserting ®;, and ¥;, into the identity

Qn(z) = Pi(z) x P3,(2)

and passing to the limit as n — oo, we obtain the following equality:

/( / (a(a) — a(B))dVz()\) x b(z) — Rz(a) x Rz(6)>£(x) dz = 0.

Q  [B,0)

Here £ is an arbitrary continuous function and the vector-function R;(s) depends on z € Q according
to the formula

R.(s) = —a(s) / dV4(\) + / dAs(Mb(z).
[s,00) [s,00)
Putting
+6 = [ H(s - 9)(a(@) - a(B)v x b(z)dv = Re(a) x Ra(6)
R3

and applying Lemma 3.3, we conclude that the equalities

[ (ate) = a(8)dV=(3) x bia) - Rafa) x Re(6) =0
[8,00)

hold at almost every point of  for arbitrary o and £.
We simply write R(s), V(s), and A(s) instead of Rz(s), Vz(s), and Az(s), unless confusion is
possible. We can rewrite the previous relations in the short form

(a(B) = a(a))V(B8) x b=R(a) x R(B), R(s) =a(s)V(s) - A(s)b. (3:5)

Denote by E the set that consists of all points 3 such that V(3) x b(z) # 0.
Suppose that F, # @. Equalities (3.5) imply R(a) x R(8) # 0 for all « < 3, 8 € E;. Next, we
prove that (—o0, 8] C E; for all § € E;.
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Since the vector-function V() is left-continuous, we can choose v < 3 such that R(7y) x R(8) # 0.
It follows from (3.5) that the equalities

R(a) x R(B) = (a(8) — a(a))V(B) x b, R(a) x R(y) = (a(7) —a(a))V(7) x b

hold for all @ < v < 3. We may consider these relations as a system of linear algebraic equations in
the components of the vector R(a). Since R(3) x R(7) # 0, this system is nondegenerate. It is clear
that its unique solution has the form R(a) = a(a)f + g, where the vectors f and g are independent
of o and satisfy the equations

fxR(a)=-V(f) xb, fxR(y)=-V(y)xb,
g xR(8) =a(B)V(8) xb, gxR(7)=a(7)V(y) xb.
Since the function a is monotone and V() x b, V(v) x b differ from zero, we conclude that the

vectors f and g are linearly independent.
Therefore, the vectors R(a) are linearly independent for & < 3. From here and the equality

(a(@) = a(a)) V() x b =R(a) x R(a), o <a<p,

we obtain R(o/) x b # 0. Hence, we conclude that o/ € E,; therefore, (—00,8) C E, for every
B € E,. This yields the inclusion (—o0, s*) C E;, s* = sup E,.

Our next claim is that the function V(o) x b is constant on the set E;. Take arbitrary elements
; € R! satisfying the inequalities oy < ag < v < . Relations (3.5) imply

(a(a1) — a(a2))f x g = —(a(1) — a(02)) V(a2) x b.

Since the vectors f and g are linearly independent and the function a is strictly monotone, we conclude
that V(az) x b is independent of ap. Therefore, the function V(o) x b # 0 is constant on E;. Due
to left-continuity of V(a) x b, we have s*(z) = sup E; € E; and E; = (—00, s*(z)]. It follows from
the definition of a Young measure and Theorem 1.1 that

V(o) =v*=w- lir%vs for a < —M,
&

where M = sup; ||s¢[|z,,(q)- From here and what was proven above we obtain
V(e xb=v"xbfora<s*, V(a)xb=0fora>s" (3.6)

Our next goal is to derive an explicit formula for the vector-function V(a).
Let (e1, e2) be an orthonormal basis for R? such that e; = |b|~!b and e; x e = 1. Denote by
Vi(a) the components of the vector V(a). From the above remark we obtain

v*xb
bl
Va(a) = 0 for a > s*.

Va(@)=v3 =~ # 0 for o < %,

From here and the definition of R(c) we infer that this vector-function has the representation R(a) =
g(a)e; + a(a)vjes for all a < s*. Inserting this representation into (3.5), we obtain the equality

(g(a)a(B) — g(B)a(@))vz = (a(B) — a(a))(~|blv3),

which is valid for all o« < 8 < s*. Hence, we conclude that g(a) = —|b| + Ca(a), where C is
independent of o < s*. Since R(a) = a(a)v* — b for a < —M, it follows that C = v}. We have thus
obtained the formula :

R(a) =a(a)v* -bfora < s*, R(a)=0 for s > s*,
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which, together with (3.5), implies

V(a)=v*+ éig()__')_'_lb for a <s%,
(3.7)
V(a) = 2((a))b for a > s*

If E; = @ then Vz(A) x b =0 for all A € R!. It follows that there exists a function p;()\) such

that
Vz(A) = pz(A)b. (3.8)
To complete the proof of item (i) of Theorem 1.2, we show that F; = @ for z € (Jp and E, # &
for z € Q;. If E; = & then V;(\) x b(z) =0 for all A € R!. Since V,(\) = v*(z) for every A < —M,
we have v*(z) x b(z) = 0 and z € Qo. If E; # @ then v*(z) x b(z) = V(~M) x b(z) # 0 by (3.6).
Thus, we obtain z € ; and come to the desired assertion.

. PROOF OF ITEM (ii). By Theorem 1.1, the definition of measure-valued solutions, and item (7)
of Theorem 1.2, the following equalities hold almost everywhere in Q;:

wlimPep = [ S dA() - b(@)— [ U AV, (3.9)

where As() — H(s*(z) = A)
T - S $ -
V.’L'(’\) - a(/\)

Since Az(A) =0 for A > M and Az(A) =1 for A < =M, we have

b(z) + H(s*(x) — A)v*(x). (3.10)

Az(A) — H(s*(z) = A) =0 for |A| > M.

Integration by parts yields

/\I, <Az()\) H(s*(z) - /\)>

a(A)
= - [0 - B(@) - N) dh = 85" () + [ 2(3) dAa(X). (3.11)
]Rl Rl
It is easy to see that
/ U(N) dH(s*(z) = \) = —T(s*(z)). (3.12)
R!

Combining (3.10), (3.11), and (3.12) we arrive at the relation
—/\I’(/\) dVz = ¥(s*(z))v*(z) — ®(s*(z))b(z) —/@(z\) dAz(A\) b.
1 R!
Inserting the right-hand side of the above equality into (3.9), we obtain
w-lim Pe, = ¥(s"(z))v"(z) — &(s"())bi(z)

and the assertion is proven.
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4. Proof of Theorem 1.3

1. Preliminaries. First we give an equivalent statement of Condition S. Given « € (—AM, M), we
denote by £} (£;) the sets of probability measures concentrated on the intervals [o, M] ([-M, al).
We consider the functions I'(A) and N()) defined by (1.14) and denote by A = Z(z) the inverse

z = I'(A). Recall that I'(A) and Z are smooth and strictly monotone functions.

Proposition 4.1. The following assertions are equivalent:
(a) The function fo(2) = N(Z(z)) is strictly p-concave at the point zo = I'(cr).
(b) The following inequality holds:

#21;_13 [(17(01))2 / Ndy~< / rd,uﬂ <0. (4.1)

[~ M, M) [—M,M)]
REMARK. Put ,
J(u) =(a)? + / Ndu—( / I‘du) )

[-M,M] [—-M,M]

For € 25 with m™()\) = p((—o0, A]) we have m~(A) =0 for A < =M and m~(A) =1 for A > «;
and integration by parts yields

/ KT d ( (S)) ( / I‘du)2=J(p). (4.2)

(‘°°1a (-oo,a]

For u € 2} with m*()\) = —u([), 00)) we have

/ K(A)F(A)d(”l?ﬁi‘)) —'( / I‘du)2=J(p).

[a,00) fe,00)

The proof of Proposition 4.1 bases on the following

Lemma 4.1. Each of the variational problems

J(p™)= sup J(u), p~ € 5, Jw')= sup J(u), p~ € F;
LEPS BEP S

has at least one solution which satisfies the following extremal relations:
TE(\) = N()) — 2p=T(A) = const, A € spt u¥, (4.3)
where
pE = / T dp*.
[~M,M]

PrOOF. We give the proof only in the case of u € £27, leaving the other case to the reader.
The existence of a measure pu~ is a consequence of weak continuity of the functional J and weak
compactness of the set #; C C*[—M, M]. If the support of the measure ;™ consists of a single point
then (4.3) is trivial. Assume that spt 4~ contains more than one point and prove that the equality
T()\) = const holds u~-a.e. Suppose to the contrary that T~ (\) # const y~-a.e. on the segment
[-=M, M]. It follows that there exist compact sets B;, ¢ = 1,2, such that

p~(B;) > 0, As:gT n) < ,\lenlg2 T=(\). (4.4)
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We put g(\) = (=1)'u~(B;)~! for A € B; and g()) = 0 for A € [-M, M]\ B;. Note that the equalities

{pe, ) = / eN)(1+eg(\)du™, w€C[-M M), le| <{ sup [gN)|}™
(8T, M] AE[—M, M|

define a family of probability measures p. € £ . It is clear that J(u.) — J(1~) < 0, which implies
the relations

Jim e ) I =2 [ TN du” <o
[—M,M]

From this fact and the definition of g we obtain the equality

1 - 1 _ -
o | T = iy [ T
B B

which contradicts to (4.4). Therefore, the function T7()) is equal to a constant y~-a.e. Since the
function T~ () is continuous, the equality 7~ ()\) = const holds on the support of the measure p~
and the lemma is proven.

We turn to proving Proposition 4.1 and establish the implication (a) = (b). Examine (4.1) in the
case p € &7 . Fix an arbitrary point a € (—M, M) and suppose that the function f,(2) = N(Z(z))
is p-concave at zo = I'(A). We set

A =infsptpu™, Ado=supspty”, z;=I(}j), *=p = / (A du™.
[=M, A1

Since I' is a strictly monotone and y~ is a probability measure concentrated on the segment
[-M, a], we have
=11+ (1-7)z, T€[0,1], 2a &(21,22)

Simple calculations show that
fa(za) = N(a) =0, fa(za) = N’(a)(I"(a))‘l =224.

Thus,
fa(za) = Palza), fc'x(za) = p:x(za)7

where po(2) = 22 — 22. With this notations, we can rewrite J(u™) as
g a o

W)= [ N =pa). (45)
[—M,M]
It follows from Lemma. 4.1 that
T~(A)=N(\) -2 T(\) =c=const, Ae&sptyu . (4.6)

From this and the equalities N(\;) = fa(2:), z = I'(A;), we obtain fo(21) — fal22) = 22*(21 — 23).
Therefore, the points (z;, fo(2;)) belong to some line ! such that { || Tan,« p,.
On the other hand, the equalities N(\;) = fa(2;) imply

¢ = falz) = 2272 = Tfalz1) + (1 = 7) fa(22) — 222
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Inserting these relations into (4.6), we obtain
N(A) = 7fa(z1) + (1 = 7) falz2) + 22°T(A) — 22*2.

Integrating both sides of the above equality with respect to the measure p~, we find that

Ndp™ = 7fo(21) + (1 = 7) fa(22).
[~M,M]

Combining this relation with (4.5), we obtain

J(W™) = sup J(u) = Tfolz1) + (1 = 7)fa(22) — palz").
ueP s

Since the function f, is strictly p-concave at z,, we conclude that J(u~) < 0 and the equality holds
if and only if 27 = 22 = z*. Note that 2; = 25 = 2* implies spt 4~ = {a} and the assertion is proven.
The same proof remains valid for the case u € &7}. '

Prove the implication (b) == (a). Fix an arbitrary point a € (—=M, M) and assume that in-
equalities (4.1) hold at this point. To obtain a contradiction, suppose that the function f,(z) is not
strictly p-concave at a. As was mentioned above, the parabola p, : y = 22 — 22 meets the graph of
the function f, at the point (24fa(2e)); and the graphs of the functions p, and f, have a common
tangent at this point.

By hypothesis, there exist 21 < 22 such that 2, & (21, 22), 2* =721 + (1 — T)29, T € [0, 1], and

fa(z1) = fa(22) = pu(2*)(21 — 22), Pa(2”) < Tfalz1) + (1 = 7) fal22). (4.7)

We put A\; = Z(z) and g = 76(A — A1) + (1 = 7)6(A — A2). Since the function Z(2) is strictly
monotone, we have either (A,A2) C [-M,a] or (A1, X2) C [a, M]; hence p € P, U PF. The
equalities fo(2;) = N(\), 2o =T'(@), and 2* = 7T()\1) + (1 — 7)T'(A2) imply that

2
pa(z*>=( / qu) ~TeP, thi)+0-Dha) = [ NN
[—~M,M] [ M, M]

From here and (4.7) we obtain

2
(o) + /‘N(,\)dﬂ—( / ]T‘du) >0,
[~ M, M] (~M,M]

which contradicts (4.2).

2. Proof of Theorem 1.3. First we prove that the sequence s. converges strongly in the
space L1(). It suffices to establish that the equalities Az()) = H(s*(z)—X) and () = H(A—s*(z))
hold almost everywhere on ;. Since the variation of the function Az()) equals 1, we only need to
show that the functions Az()) and (xz())) are constant on the intervals (—o0, s*(z)) and (s*(z), o0).

Consider the first case. Introduce the sequence ¥, ®, of entropy pairs as follows:

M M
Ta(\) = — / (h(n(a = s))K) ds, ®n()) = — / a=1(s) (h(n(a - s))K)' ds.
A A

Here h € C'(R?) is a smooth nondecreasing function such that A(s) = 0 for s < —1 and h(s) = 1 for
s > 0. Let P, = Un(3e)ve — Pn(se)b be the flow corresponding to this entropy pair.
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Observe that the sequences ¥, and ®, converge pointwise to the functions ¥(A) = K(A\)H(a—))
and ®(\) = T(\)H(a = ).
We conclude from the definition of ¥, that ¥,(s) > K(s)H(a — s). Since Vp, = —K(s¢)ve, we

have
|H (o - Se)K(ss)VElz =H(a - ss)lesP < = Un(5e)Vpere,

hence
|H(a — sE)K(SE)VE|2 < =Vpe - Pen — @, (s:)Vp:-b = D, (5:)K(se)ve - b— Vpe - Pc . (4.8)
By Lemma 2.1 and item (i) of Theorem 1.2, the relations -

w- ;il% (Vpe - Pen) = Vp* - w- ;irrtx) P.n = Vp* - (Un(s*)v* — &,(s")b)
hold almost everywhere on ;. Passing to the limit in (4.8) we obtain the inequality
w- ;in(l) |H (o — s¢) K (5¢)ve|? < w- ;m(x) O, (5c)K(se)ve - b — Vp* - (TUp(s*)V* — Dp(s*)b).  (4.9)

The definition of the vector-function Ug(\) implies

w-lim [H (@ — 52) K (s)vel? = / K2H(o — 3)|ql dvs
Fotaed
R3
Rl
Inserting these relations into (4.9) and applying Lemma 3.3, we arrive at the inequality
/ KqPdv, < / Ba(NENUs(N) - b = Vp*(Tn(s")v* — Sn(s)b)  (4.11)
(—~00,a]xR2 1

which holds at almost every point of §2; for all a and n. Using Cauchy’s inequality, we obtain -

‘ / K(\)dU, E| / K(\qdvs| < va((~00,0] x R?) / K2(\)|gl? dvs.

{—00,a] (—00,0] xR? (~o0,a] xR?

2

From this identity, vz((—00, a] x R?) = xz(a), and (4.11) we obtain

| [ Kava

(—oo,a]

2
< ( / Bn (MK (A)dUz(A) - b — Vp*(Tn(s™)v" - <I>n(8*)b)) Xz(a). (4.12)
B!

Fix £ € Q; and choose a < s*(z) such that the function x;()) is continuous at a. It is easy to
see that

Jim Wn(s*(2) = Jim, @n(s"()) = 0.
Passing to the limit in (4.12) as n — oo, we obtain

| [ kwau, / TNKN)dUs() - blz)xa(a).

(—o00,0] (—o0,0]
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It follows from (1.13) and the inequality o < s*() that the identity Uz(A) = xz(A)/a())b(z) holds
for every A < a. We have thus obtained the inequality

l / Kd(Xz(f\f\)))l < xz(@) /]KI’d<&a’i).

(—o0,a] (o0,

Using the identity

[ movs(58) - ] (5 [ Sa)on= [ rwaon

(~o0,0] (—~o0,0] (~00,0]

rewrite the above inequality as

(—o0,0 (—o0,a]

2
<ul@ [ Kore (). (413)

Suppose that xz(a) # 0. Under this assumption, the equalities

/dﬂ=ziT) / dxz(A), ECR},
E

(~o0,alNE

define a probability measure u such that spt u C [~M, o]. By the continuity of x,()) at o, we have
u({a}) = 0. It follows from (4.13) that ,

2
Krdm(’\)) ( /r )>.
[ wwa(Ty W) 20
—00,a - 00,0
Here m~(A) = p(—o00,A]. Observe that the functions a(s) and k(s) satisfy Condition S. Therefore,
the corresponding function f, is strictly p-concave at z,. From this fact and the assertion (b) of
Proposition 4.1 we conclude that u = 5(A ) which contradicts the equality u(c) = 0. Hence, xz(a)
vanishes at a. Since the function x, is monotone and continuous at almost every point of the real
axis, it follows that xz(a) = 1 — Az(a) = 0 for every a < s*(z) and the assertion is proven.

It remains to prove that A;(«) is constant on the interval (s*(z),o0). Consider the sequences ¥y,
®,, of the entropy pairs defined as follows:

A A
U,(A\) = /(h(n(s ~a))K(s)) ds, ®n()) = / a~}(s)(h(n(s — a))K)' ds.
-M -~M

It is easily seen that they converge pointwise to the functions
¥(s) = K(s)H(s — a) and ®(s) =T(s)H(s — a).

As in the proof of the equality xz(a) = 0 for a < s*(z), we show that the inequalities

w- lm | H (s — ) K (se)vel? < — / BnKdV4(A) — Vp*(Fa(s*)v* = Bn(5*)b)
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and
2
Az(a)w-;grg)lH(ss—a)K(se)VeI2Zl [ x0avan

[2,00)

hold at almost every point of ; for all o. Fix a point x € ; and choose a > s*(z) such that Az(\)
is continuous at . It is clear that

Jm n(s"(a)) = lm @(s"(@)) =0

and Vz(A) = a~}(A)Az(A)b for A > a. Due to the choice of @, we can rewrite the previous inequality

as follows:
/ K(\ (A’(A)) <- / @n(A)K(A)d@“E(;))).
Since .
/ T(A) dAz(\) = S / KA)d(A””(();))
i, [ 2008 wa(2) - 4 | roora( ),
we obtain ) o
([a Z; | r(\) dAz(,\)) < -[a [Q | I‘(A)K(A)d( o )

If Ay(a) # 0 then the relations

/du=—A—:(a-)- / dAz(\), EcCR!
E

[o,00)NE

define a probability measure p which is concentrated on the interval [, M]. We can rewrite the

previous inequality as
/ (A)K(A)d( ) (/r A)du)) > 0.
Rl

From this fact and the assertion (b) of Proposition 4.1 we conclude that o = §(A—a) which contradicts
the equality u(a) = 0. Therefore, Az(a) = 0 for all @ > s*(z), which proves Theorem 1.3.
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