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E N T R O P Y  S O L U T I O N S  T O  T H E  

B U C K L E Y - L E V E R E T T  E Q U A T I O N S  

S. L u c k h a u s  and  P. I. P l o t n i k o v  UDC 517.954 

In troduct ion  

We consider a mathematical model of flow of two immiscible fluids of different mobility in Hele- 
Shaw cells [1] and a porous medium. The motion of fluids is described by the Buckley-Leverett 
equations which can be written as follows [2, 3]: 

s t + v .  V A ( s )  =0 ,  (1.1) 

d i v v + f = 0 ,  v = - k ( s ) V p .  (1.2) 

Here s(x, t) is the saturation of one of the fluids, v(x, t) is the seepage velocity of the mixture, and 
p(x, t) is the pressure. The fractional flow function A and the mobility k are given smooth functions 
of the phase saturation. We suppose that 

A, k e C~176 O < C - l  < k(s) < C < c~, IA"(s)l > O. (1.3) 

Observe that (1.1) and (1.2) co,lstitute an elliptic-hyperbolic system of nonlinear PDE's. Boundary 
value problems for these systems are studied rather poorly. It is well known that  the equations can be 
simplified in the case of symmetry. Typical examples here are traveling waves and the 2-D Riemann 
problem. 

We consider the following boundary value problem which can be regarded as a generalization of 
the boundary value problems for self-similar solutions. Let ~ C R 2 be a bounded domain with smooth 
boundary and let b(x) be a given vector field of class C2(12). The vector - I b i - l b  defines the direction 
of wave propagation and lbl is the wave speed. We denote by 0n  + the set of all points x E 0n  such 
that 

012 + :  b - n > 0 ,  

where n is the unit outward normal to 12. The problem is to find functions s E Loo(~) and p E Hi(m) 
and a vector-hmction v(x) satisfying the following equations: 

v . V A ( s )  - b -  Vs = 0, 
~ : div(k(s)Vp) = f ,  v = - k ( s ) V p ,  (1.4) 

O n :  v . n = O, O n  + : s = s o ( x ) .  

We suppose that f and so are subject to the conditions 

f e Lc~(12), so e Lip(0n), / f  dx = O. 

We consider two kinds of generalized solutions to (1.4). The first is an entropy solution. 
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DEFINITION 1.1. A vector field v E L2(12) and a function s E L ~ ( ~ )  
solution to (1.4) if for arbitrary functions ~,~/ : ~ --. R 1 and to, (I), kO : ]~1 
conditions 

are called an entropy 
R 1 satisfying the 

0 

~ECCr 7/eCCC(m2), v / _ 0 ,  s p t T / N ( 0 ~ \ 0 1 2 + ) = ~ ,  

to e CI(R1), !o' _> 0, ~'  = a(s)to(s), @'=tp(s), a -  A', (1.5) 

the following relations are valid: 

f((+(s),  v -r  v ~ -  (+(~)divb + +(+)f)~) d~ + f +(~0)~b.- > 0, 
f~ o12+ 

/ (VpV~-k(s) - f~) dx = O, v = -k(s)Vp. 
12 

(1.6) 

Entropy solutions to scalar conservation laws were studied by many mathematicians. We only 
note that existence and uniqueness of entropy solutions to the Cauchy problem were proven in [4, 5]. 
WeU-posedness of boundary value problems in bounded domains was established in [6]. 

To define a measure-valued solution to (1.4), we introduce some notations. We denote by u= 
a family of probability Radon measures ux on R 1 x R 2 depending on x E ~ [7]. We suppose that 

(a) the mapping x --+ u= is weakly measurable from ~ into the space of Radon measures; 
(b) there exist constants/~I0 and M1 and an exponent r > 2 such that 

spt vx C {s E R I, q E R 2 : Isl ~ M0}, /(1 + IqlY dvx ~ Mr. 

R3 

These conditions imply that  the function 

x --* / f i  s, q) du= - f* (x) 
~3 

is measurable on ~ for a Borel function ](s,q) satisfying the inequality If(s,q)l <_ c(s)(1 + [q[2). 
Define 

[~,~)  m 12 {;~,oo) m2 

These functions are left-continuous and have bounded variations in ~ almost everywhere in ~. It is 
easily seen that  the following identities are valid for a bounded Borel function to: 

/ tp(s)q d u = = -  /V~()~)dV~(~), / ~ ( s ) d u x = - / ~ ( ~ ) d A x ( ) ~ ) .  (1.8) 

R3 R l Ra R1 

Now, we are ready to define a measure-valued solution to (1.4). 

DEFINITION 1.2. A Young measure vx is called a measure-valued solution to (1.4) if the relations 

/" / (P~. VTl-(@*divb+ kO*f)~l)dx + @(so)Tl.b.nds >_O, 

i "  r On+ (1.9) 
div I rot 0 

~ ,#  , J  

RI R I 
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hold for all functions ~, ~?, ~, (I), and q satisfying (1.5), where 

/ p ,  - _ ~(A)dVz,;~ 

R1 

R1 

+ f r b(x), 
R1 

�9 * = - / ~ ( A )  dAx(A). 

R 1 

The concept of measure-valued solutions to conservation laws was introduced in [7] and developed 
in [8]. Observe that our definition differs from that of [7]. 

We also consider the following elliptic regularization of (1.4): 

--eAs + v .  VA(s) - bVs = 0, (1.10) 
f) : v = -k(s)X7p, divv + f = 0, 

e V s . n + 7 ( s - s o ) = O ,  v . n = 0 .  (1.11) 

Here the nonnegative Lipschitz continuous function 3' is defined by the equalities 

0 f ) + : 7 = b ' n ,  012\0f)  + : 7 = 0 .  

The main results of the present article are the following theorems of existence and structure of 
measure-valued solutions to (1.4). 

T h e o r e m  1.1. Suppose that the above conditions are satisfied. Then 
(i) for an arbitrary e > 0 the problem (1.10), (1.11) has a solution s, v 6 Ha(~),  a > 2, which 

satisfies the inequaJities 

Ils[IL~(n) + HVHLro(n ) < M, ~I/2HVSI[L2(n ) < M ,  

where the constant M is independent ore and ro.= ro(k) > 2; 
(ii) there eas t  a sequence (st, re) of solutions to the problem (1.10), (1.11) and a Young measure vx 

such that, for an arbitrary function f : R 3 ~ R, [f(s,q)[ <_ c(s)(1 + [q[2), the sequence f(s~,v~) 
converges weakly in Lro/2(f~) to the function 

= [ f(s,v) f*(x)  dux 

Ra 

as e -* O. The measure ux is a measure~valued solution to (1.4). 

To state the results on the structure of measure-valued solutions to (1.4), we introduce some 
notations. 

DEF[NITXON 1.3. Given ~o E CI(R), the pair of the smooth functions 
8 8 

�9 (s) +cons t ,  �9 + c o n s t  
t /  

0 0 

is the entropy pair corresponding to ~. Given s and v, the vector field P~  = ~(s)v - *(s )b  is the 
flow corresponding to ~o. 

The following theorem yields a relation between the functions Vx(A) and Ax(A) which define 
measure-valued solutions to (1.4). 

Denote by v*(x) the weak limit of the sequence re(x). We can represent the domain f~ as the 
union of two disjoint sets 

f~o={x :v* (x )  x b ( x ) = 0 } ,  f~ l={X:V*(x)  x b ( x ) # 0 } .  
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Theo rem 1.2. Under the conditions of Theorem 1.1, there exist a measurable function s*(x), 
x E f~l, and a family of functions Pz(A), x 6 flo, such that 

(i) the following relations hold: 

Vz(A) = (a~A)Ax(A)-  a ~ A ) H ( s * ( x ) - A ) ) b ( x ) + H  ( s * ( x ) - A ) v * ( x ) , x 6  fh ,  (1.12) 

Vz(A) = pz(A)b(x), x 6 flo- 

Here H(s) is the Heaviside function: H(s) = 0 for s < 0 and H(s) = 1 for s > O. 
(ii) The sequence of flows Pe,~ = ff2(se)ve - r  converges wealdy in L2(f~l) to P~ = ~(s*)v* - 

(I)(s*)b i f~  6 e l ( R ) .  
Relations (1.12) have some symmetry property. Define 

u z ( ~ ) =  f f q d ~ ,  x z ( ~ ) =  f f dvz. 
(-~,A] R2 (-~,A] R2 

It follows from (1.7) that  

U z ( A ) = v * -  lira Vz(~'), Xz(~) = 1 -  lira Az(T), 
"r-.*A+O r--.*A+O 

H ( A - s * ) = I -  lim H ( s * - v ) .  
v-'*A+0 

Inserting these relations into (i.12), we obtain 

1 A Ux(A) = (a--~Xz(  ) - a - ~ H ( ~ -  s*(x))) b(x) + H ( A -  s*(x))v*(x). (1.13) 

It does not follow from Theorem 1.2 that the function s* is the weak limit of the sequence se. 
Our next proposition shows that, under some additional assumptions on the functions A and k, the 
solutions to the regularized problem converge strongly on fh to an entropy solution to (1.4). To state 
these additional assumptions, we introduce some notations. We denote by E the family of parabolas 
given by the formulas 

y = p(z), p(z) = z 2 + qlz + q2, qi 6 R 1. 

We say that a function f : [c, d] --. R 1 is strictly p-concave at a point zo 6 (c, d) if it satisfies the 
following condition: 

Condi t ion  P. F/x a parabola po 6 E such that f(zo) = po(zo) and f'(zo) = p'o(ZO). Let z* 6 (c, d) 
be an arbitrary point. If  a line I 1[ Tan z. t90 crosses the graph of the fimction f ( z) at points ( zl, f ( zl ) ) 
and (z2, f(z2)) such that 

then 

z* = AZl + (1 - A)z2, ), 6 [0,1], z0 • (Zl,Z2), 

+ (1  - _< po(z*). 
The equality holds ff and only ff z* = Zl = z2 = zo. 

Consider the family of the functions F, N : [ - M ,  M] --* R 1 depending on a parameter a and given 
by the formulas 

A 

A 

= f a-l(s)(K(s)r(s)) ' ds, K(s) = k-1(s). 

(1.14) 
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Denote by A = Z(z)  the inverse of z = F(A) and set 

fa(z)  = N ( Z ( z ) ) ,  za = g ( ~ )  " 

C o n d i t i o n  S. There is M > sups>0 IlsellL~c(n) such that the function F : ( - M ,  M) --* R 1 is 
strictly monotone  and the function fa ( z )  is strictlyp-concave at the poin t  za for every a E ( -M,  M). 

EXAMPLE. Simple calculations show that 

a'(A)K(A) (log(K-2(A)a(A)) ' 
f ' ( z )  = F(A) + a- ' (A)K(A) ,  f~(z )  = 2 = ' 

where A = Z(z ) .  Therefore, the inequalities K'  > 0 and (aK-2) t > 0 imply Condition S. 

We note that this condition is close to the stability condition kt(s) < 0 (Kr(s) > 0) [6] but does 
not coincide with the latter. 

T h e o r e m  1.3. I f  the conditions o f  Theorem 1.1 are satisfied and the functions a and K are 
subject to Condition S then 

s~ -* s* strongly in L2(ffl), ve --* v* strongly in L2(fll). 

Corol lary  1.1. Under the conditions o f  Theorem 1.3, the funct ion s* and the vector field Vp* = 
- k ( s * ) - l v  * represent an entropy solution to (1.4) on an open set G C f f l .  

2. P r o o f  of  T h e o r e m  1.1 

We begin with proving solvability of the problem (1.10), (1.11). Consider the following family of 
boundary value problems depending on a parameter T 6 [0, 1]: 

fl : r  = --v(a(s)kr(s)  . V s V p  + b . Vs), 

Off : c V s .  n + 7(s - TSO) = 0, (2.1) 

ff : A p  = r I [kr ( s ) - l (T f  - Vkr (s )Vp)] ,  (2.2) 

O f ~ : V p . n - - - O ,  (p, 1) = 0. 

Here the function kr and the operator II are defined by the formulas 

I'If = f - (mesff ) - l ( f ,  1), kr(s) = 1 + v ( k ( s )  - -  1), 

and the given functions 7, so, and f satisfy the following conditions: 

7, so e Lip(Off), f e Lcc(ff), f f  dx 1. 

fl 

First we prove a priori estimates for solutions to the problem (2.1), (2.2). 

L e m m a  2.1. Assume that (s,p) E Wr2(ff), r > 2, is a solution to (2.1). Then  there exist 
a constant c, independent  ore  and v, and an exponent ro > 2 depending on k such that  

[[VP[[L~0(f~) + 81/2[[VO[[L2(~) "b [[8[[Zoo(f~ ) ~ C. (2.3) 

PROOP. Multiplying both sides of (2.2) by kr, we obtain the equality 

div(krVs)  = T f  - kr(mes ff)-l(k~l(~'f  - V k r V p ) ,  1). 



Integrating this equations over f~ yields ( k ~ l ( r f  - V k r X 7 p ) ,  1) = 0. Hence, we conclude that p is 
a solution to the boundary value problem 

f~: div(kr(s)Vp)  = v f ,  Off : V p .  n = O. 

The estimate for p is a consequence of the a priori estimates for solutions to second-order elliptic 
equations with bounded coefficients. 

The function s is a solution to the following boundary value problem for an elliptic equation: 

12 : ~As + v (a ( s )k ( s )Vp  + b ) .  Vs -- 0, 

012 : eVs -  n + 7 ( s -  s0r) = 0. (2.4) 

It follows from the conditions of the lemma that  s, Vp, b E CZ(~), 0 </3 < 1, and 0 <_ 7 e Lip(0f~). 
From here and the maximum principle we obtain the inequality rain so <_ s(x) <_ max so which implies 
boundedness of [[S[[L~c(fl). 

IvIultiplying both sides of (2.4) by s and integrating over 9t, we obtain the following esthalates: 

eHVs[[~2(12) <__ Hdivbs2[[Ldf2) + I[fr + m~x{]TS01} <_ c, r  = sa(s). 

The lemma is proven. 

L e m m a  2.2. Under the conditions of  Lemma 2.1, for an arbitrary, r > 2 there is a constant c(r, e) 
such that II(s,p)lIw~(n) < c(r,e). 

PROOF. Introduce the sequences Ak and nk, k > 1, of positive numbers as follows: 

2Ak(2 - -  Ak) -1 if 2 > Ak, 
"~k+l " -  2-1nk; nk = 

nk-1  + 1 if 2 <: Ak, 

A l = ( 2  - l + r o l )  -a, n l = r o .  

Since Ak --* c~, k --* c~, it suffices to prove the estimates 

IJ(s,p)JJw~k(n) < C(Ak,e), k > 1. (2.5) 

Observe that a solution to the Neumann problem 

f~: A u = f ,  Of~: V u . n = g  

satisfies the following inequality [9]: 

I lul lw~(n) _< c(n,:~)(l l/ l lL~(n) + Ilgllw~(n) + I lul lL,(n)),  1 < :~ < or 

From here and Lemma 2.1 we conclude that a solution to (2.1) satisfies the inequalities 

II(s,P)H~c~(la) -< c(k)(llVsVPllL~(i~) + HSHw~k(~) + 1). (2.6) 

It follows from Lemma 2.1 that 

IlVsVPlIL~,,(n) <_ IlVslIL=(n)IlVPlIL,o(n) <-- c, 1 < ~ < 2. 

Therefore, (2.5) holds for k = 1. On assuming that  (2.6) holds for k, we prove the inequality for k + 1. 
From the embedding theorem we obtain 

H(s,p)llw~k(n ) < c(k)H(s,p)llw~,k (l~) <_ c(k), IIVsllLak+~(n) < c(k)llS[Iw~ k (i~) < c(k). 
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HSlder's inequality implies 

IlVs PItL  + (a) c(k) llVsllL  (a)lWPllL  (a). 

Now, from the previous estimates and (2.6) we obtain (2.5) for k + 1. The lemma is proven. 
Fix a number r > 2 and consider the nonlinear operator �9 : [0, 1] x W2(~) 2 2 2 W~(f~) defined 

by the following relations. Given $,15 ~ W2(f~) 2, r 6 [0,1], the pair (s,p) = r ~,15) is a solution to 
the following linear boundary value problem: 

a :  eAs = -v(a(g)kT(g) . V~V15 + b-  V~), 

Of~ : eVs .  n + 7(s - rso) = O, _ (2.7) 

a :  = 

0 f l : V p . n = 0 ,  

(p,l> =o .  
(2.s) 

Denote by E C W2(f~) 2 the closed ball that consists of the couples of s and p satisfying the 
inequality [[(s,p)][w~(n ) <_ c(r) + 1. Consider a sequence (~'n, sn,pn) E [0,1] x E, n > 1. Since the 

embedding W2(~) ~ cl(f~) is compact; dropping down to a subsequence, we may assume that it 
converges strongly in cl(f~) 2 x [0, 1]. Therefore, the sequences Tn(k(sn)Vpn + b)Vsn and 7n d i v ( ( 1 -  
k(sn))Vpn) converge strongly in some space La(f~), a > 1. From here and the a priori estimates for 
solutions to the Poisson equation we conclude that the sequence ~(T,, sn,pn) converges in W2(~). 
Hence, the operator �9 is compact and continuous on [0, 1] x ~. 

Since ,I~(0, s,p) = O, the mapping I -  ~(0,-) : Wr2(~) 2 ~ W2(~) 2 is a homeomorphism. 
If (s,p) = ~(T,S,p) is a fixed point then (s,p) is a solution to the problem (2.1), (2.2). By 

Lemma 2.2, the pair (s,p) satisfies the inequality I[(s,p)[[w$(~)2 < c(r) and (s,p) E int ~.. Therefore, 
the operator ~(r ,  .), r E [0, 1], has no fixed point on the boundary of E. 

By the Leray-Schauder fixed point theorem, the operator ~(1,.,-) has a fixed point (s~,p~) E ~. 
It is clear that  (s~,p~) is a solution to the problem (1.10), (1.11). 

To complete the proof of Theorem 1.1, we show that a weak limit point of the set of solutions 
to the problem (1.10), (1.11) is a measure-valued solution to (1.4). Consider a sequence (ss, v~) of 
solutions to the problem (1.10), (1.11). Dropping down to a subsequence, we may assume that, for 
an arbitrary function F : R 3 ~ R satisfying the inequality IF(s, q)] < C(s)(1 + [q[2), the sequence 
F(se, v~) converges weakly in Lr0/2(f~) to some F* E L2(f~). 

The version in [10] of the fundamental theorem on Young measures implies that there is a weakly 
measurable family of probability measures vz in R 3 such that the equality 

F*(x) = f f (s ,  v) dvx 

Ra 

holds almost everywhere in f~. It follows that weak limits of the sequences g(s~) and g(s~)ve, g E 
C(R1), have representations (1.7) and (1.8). 

Since the sequence (se,v~) is uniformly bounded in L ~ ( ~ )  x Lr0(~) 2, this measure satisfies con- 
ditions (a) and (b). 

It remains to prove that vx is a measure-valued solution to (1.4). To this end, we choose an ar- 
bitrary smooth nondecreasing function ~ : R 1 --* R 1 and a nonnegative function r/ E CC~(fl) with 
spt r/M 0f~ C 0f~ +. Multiplying both sides of (1.10) by ~(s~) and integrating over f~, we obtain the 
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following identity: 

-/P~ V, dx+ f (r // Os~ 
fl fl Off+ 

fl fl 

P~ = k~(sr - r162  

Since p '  is a nonnegative funct ion and rl vanishes on Of] \ Of~ +, we conclude t h a t  

-/ 
Off+ 

- / P ~ .  v ,  dx + /(~(s~)div b + ~(s,)I)-,dx 
fl fl 

fl 
It follows from the boundary  conditions 

and  convexity of �9 t ha t  

~S~ 
c ~  = -~ ( s t  - s0) 

o ~ + :  v ( s ~ ) ~  + 7r = 7(~(s~) - v ( s ~ ) ( s ~ -  so)) 

From here and the previous inequality we obta in  

fl f~ Off+ fl 

It  follows from the definit ion of a Young measure and the  es t imates  for solutions t o  the  problem (1.10), 
(1.11) tha t  

f (r div b 

fl 

+ r - / ( /(r d i v b ( x ) +  r dx, 
fl R1 

~ RI R* 

=fP~.V~ldx, efVs~'Vrlpdx-"*O 
fl fz 

as e ~ O. Passing to the  limit in the  previous inequality, we see that  y= is a measure-va lued  solut ion 
to the  first equation of (1.4). 
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Multiplying the second equation of (1.10) by an arbitrary smooth function ((x) and integrating 
over f~, we obtain the identity 

= dx O. 

n 

It remains to note that the weak limit of the sequence Vps = k- l (se)vs  coincides with the function 

f  ea, 
R1 

and Theorem 1.1 is proven. 

3. P r o o f  of  T h e o r e m  1.2 

1. Pre l iminar ies .  The proof of Theorem 1.2 bases on the compensated compactness principle 
and splits naturally into several parts. Take an arbitrary function qo 6 C 1 and consider the sequence 
P~,~ of the flows defined by the equalities 

Pe,~ = ~I'(ss)v6 - O(ss)b. (3.1) 

Here (se, vs) are solutions to the problem (1.10), (1.11) and (~I,, r  is the entropy pair corresponding 
to %s. 

L e m m a  3.1. Under the conditions of Theorem 1.2, the set of the functions div Ps,~, e > 0, is 
compact in H21(f2). 

0 

PROOF. Consider the sequence of the functionals F~ : wrS(f~) --* N given by the formula 
o 

= d x  d iv  b + 
~ g  

f) f2 

The estimates of Theorem 1.1 for the solutions to the problem (1.10), (1.11) imply the inequality 

Therefore, {F~} C B, where B is a bounded subset of the space C*(f~). From (1.10) we obtain the 
following identity which is valid for a smooth compactly-supported function rl: 

r/div Pe,~ dx + <Fe,q0, r/> = -~  / q0(s~)Vs~Vr ! dx. 

f2 f2 

Now, the estimates of Theorem 1.1 imply that the right-hand side satisfies the inequality 

n 

Hence, the sequence div Pe,~ +F~ converges to 0 in Hi(f)). Therefore, {divPe,~ +Fe} C A, where A is 
a compact subset of H-l(f~). On the other hand, the set {P~,~} is bounded in Lr(f)), r > 2. Hence, the 
functions divP~,~ belong to some bounded set C C Wr"l(f~). Thus, we have {divP~,~} C ( A - B ) N C .  
By Murat's lemma [11], the family of the functions divPe,~ is precompact in H-l(f~) and the lemma 
is proven. 
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Take two arbitrary functions ~i ~ C~(R1), i = 1, 2. Now, Theorem 1.1 shows that the flows P~,v~ 
converge weakly in L2(~) to some vector-functions P~(x) which have the representatioim 

P;(x) = - / ~i(A)dVz(%)+ / *,(A)dAz(A) b(x). 
Ir R 

(3.2) 

The functions 
Q~ = P~,v~ x P~,~ = ($2(s~)~l(S~) - ~l(8e)r162 X b 

converge weakly in Lr/2(~t), r > 2, to the function Q*(x) given by the formula 

L e m m a  3.2 .  
points of ~: 

PROOF. 
in H-I(~)). 

= • b ( x ) .  (3 .3)  

R 

Under the conditions of Theorem 1.2, the following equalities hold at almost; all 

O.(x)  = P~(x) x e~(x), w- l~(Vp~ �9 Pe,00i) = w- lim Vpe- P~'. (3.4) 
U ~'-'-+0 

It follows from Lemma 2.1 that the set of the functions rot P~Vl = divP~,~ is compact 
Theorem 1.1 implies that the sequences Vpe and Pe,~o~ are bounded in Lr(f~). From the 

curl-divergence lemma we obtain 

w- h~(P~,~l • P~,~) = w-~--.olim(P~ -,~1 "P~,~2) 

---- w-limP~- .w-~i~P.,~ 2 ='w-llmP.,,~ 1 x w-limP.,~2 , 
~'-"~0 ,~Ol ~'- '~0 '~" ~"-"~0 

w- ~h~(Vpe �9 P~,~) = w- s-~olim Vp~ .w-  e-~olim P~,v, 

which completes the proof. 
Consider a collection of functions fkm(a, s, v), k = 1, 2, m .>  1, a, s E R 1, v E R 2, which belong 

to the first Baire class, are left- or right-continuous in a, and satisfy the inequalities [fkm(c~', s, v)l _< 
c(a, s)(1 + Iv[a). Suppose that  g(x, fk,m) is a continuous function such that [g(fk,m)l <- c(1 + [flm 2 + 
If2m[). Put 

/ *  

rlk,m(a,X) =/ fkm(C~,s ,q )dvz ,  G(a,x)  = g(~?k,m(a,x)). 

R1 

L e m m a  3.3. Under the above assumptions, the mapping x ~ G(a,x)  is measurable for every 
a E R 1. I f  the inequality 

f <_ o 
n 

holds/'or arbitrary o~ E R 1 and 0 <_ ~ E C(f~), then there/s a Betel set E C f~ such that m e s ( ~ \ E )  = 0 
and G(a, x) <_ 0 for an ~rbit;rary c~ E R 1 and x E E. 

PROOF. Since fk,m ere Baire functions, there is a sequence fkmj of continuous functions having 
the same bounds as fk,m and such that f~mj "* fk,m pointwise on R 2 x R ~-. From the Lebesgue 
theorem we obtain 

P 

q) dux. 
3 " * ~  . I  

Therefore, ~k,m(~, ") and G(~, .) are measurable functions, for they are pointwi~e limits of sequences 
of measurable functions. Take a countable everywhere dense set {o~}~1 C R 1. By the Luzin theorem, 
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for every cq, there is a Borel set ~im C ~ such that the function G(cq,-) is continuous on i2~m and 
mes(~ \ Gim) < m-12-i. From the conditions of the lemma we obtain G(c~i,x) ~ 0 for x E ~im. It 
follows that G(c~i, x) < 0 for arbitrary c~i and x E E = LJm I'll ~irn. Since G is left- or right-continuous 
in c~, this equality holds for every c~ E R1 and the lemma is proven. 

2. P r o o f  of T h e o r e m  1.2. We begin with proving item (i) of the theorem. Fix two arbitrary 
numbers ~ < ~ and a function w E C ~ (R) satisfying the conditions 

= w(s) = 0 for Is] > 1, 

o ~  

w d x =  1, 
- - 0 0  

and set 
~Ol,n(s ) : n w ( n ( s - c ~ )  + 1), qO2,n(S) -- ruz(n(s- j3)  + 1). 

Let @in, @in be the entropy pair corresponding to the function qain. Observe that the sequences ~in 
and ffJ2n converge pointwise to the functions a(c~)H(s - c~) and a(l~)H(s - t3) and the sequences @in 
and @2n converge pointwise to the functions H(s - (~) and H(s - ~). 

We denote by P~,in the flow defined by (3.1) with @ and @ replaced with @in and kDin. We also 
denote by P~n and Q* the weak limits of Pe,in and their vector products given by (3.1) and (3.2). 
Inserting @in and @in into the identity 

* x P~n(x) Qn( ) = P~n( x) x 

and passing to the limit as n --* oo, we obtain the following equality: 

/ (  / (a(c.)-a(/3))dVx(A) x b(x)-it~:(o~) •  

n [Z,or 

Here ~ is an arbitrary continuous function and the vector-function Itz(s) depends on x E ~ according 
to the formula 

I t x (S )=-a ( s )  / dV=(A)+ / dAx(Alb(x). 

[s,oo) [s,or 

Putting 

+G = / H(s - ~)(a(c~) - a(fl))v x b(x)dvz - Rz(~) x Rx(f~) 
Ra 

and applying Lemma 3.3, we conclude that the equalities 

/ (a(c~) - a(j3))dVx(A) x b(x) - Rx(C~) x -- R~(~) 0 

[~,oo) 

hold at almost every point of (2 for arbitrary c~ and ;3. 
We simply write i t(s),  V(s),  and A(s) instead of R=(s), Vx(s), and Ax(s), unless confusion is 

possible. We can rewrite the previous relations in the short form 

(a(f~)- a(c~))V(j3) x b =  R(c~) x R(~), i t (s)  =a(s)V(s)  - A(s)b. (3.5) 

Denote by E= the set that consists of all points ;3 such that  V=(~) x b(x) ~ 0. 
Suppose that E= ~ 0.  Equalities (3.5) imply It(c~) • R(~) ~ 0 for all ~ < ~, ~ E E=. Next, we 

prove that (-c~, f~] C Ex for all f~ E Ex. 
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Since the vector-function V ( a )  is left-continuous, we can choose ~/< 3 such that  R(7) x R(f~) # 0. 
It follows from (3.5) that  the equalities 

R(a )  x R(~)  = (a(~) - a(a))V(~)  x b, I t (a )  x I t (7 )  = Ca(7) - a(a))V(7)  x b 

hold for all a < 7 </3.  We may consider these relations as a system of linear algebraic equations in 
the components of the vector R(a ) .  Since R(/3) x R.(7 ) # 0, this system is nondegenerate. It is clear 
that  its unique solution has the form I t (a)  = a ( a ) f  + g, where the  vectors f and g are independent 
of a and satisfy the equations 

f x I t ( a ) = - V ( j S ) x b ,  f x R ( 7 ) = - V ( 7 ) x b ,  

g x R(~) = a(~)V(/~) x b, g x R(7)  -- a(7)V(7) x b. 

Since the function a is monotone and V(~) x b, V(7  ) x b differ from zero, we conclude that  the 
vectors f and g are linearly independent.  

Therefore, the vectors R(a)  are linearly independent for a < ~. From here and the equality 

(a(a) - a (a ' ) )V(a ' )  x b = I t (a ' )  x i t ( a ) ,  a '  < a < B, 

we obtain I t (a ' )  x b ~ 0. Hence, we conclude that  a '  E Ez; therefore, (-cx), ~) C E= for every 
f~ 6 Ez. This yields the inclusion ( -c~ ,  s*) C Ez, s* = sup Ez. 

Our next claim is that  the function V(a)  x b is constant on the set Ez. Take arbitrary elements 
ai 6 R 1 satisfying the inequalities a l  < a2 < 7 < B. Relations (3.5) imply 

(a(al)  - a(a2))f  • g = - ( a ( a l )  - a(c~2))V(a2) x b. 

Since the vectors f and g are linearly independent and the funct ion a is strictly monotone, we conclude 
that  V(a2)  x b is independent of c~2. Therefore, the function V(c~2) x b # 0 is constant on E~. Due 
to left-continuity of V(a)  x b, we have s*(x) - supEx E E= and  E= = (-cx~, s*(x)]. It follows from 
the definition of a Young measure and Theorem 1.1 that  

V ( a )  = v* - w- lira v ,  for a < - M ,  
r  

where M = sup, Hsei]L~c(n). From here and what was proven above we obtain 

V(a)  x b = v * x b f o r a < s * ,  V ( a )  x b = 0 f o r a > s * .  (3.6) 

Our next goal is to derive an explicit formula for the vector-function V(a) .  
Let (el, e2) be an orthonormal basis for R 2 such that  e l  --- [b i - lb  and el  x e2 = 1. Denote by 

V/(a) the components of the vector V(a) .  From the above remark  we obtain 

v * x b  
V2(~) = v~ - Ib-----~ # 0 for a < s*, 

VH(a) = 0 for c~ > s*. 

From here and the definition of I t ( a )  we infer that  this vector-function has the representation R(a )  = 
q(a)el  + a(a)v~e2 for all a < s*. Inserting this representation into (3.5), we obtain the equality 

(q(a)a(j3) - q(B)a(a))v~ = (a(/~) -- a(a)) ( - lb lv~) ,  

which is ~Aid for all a < ~ <_ s*. Hence, we conclude tha t  q(a) = - Ib l  + Ca(a) ,  where C is 
independent of a < s*. Since R ( a )  = a(a)v* - b for a < - M ,  it follows that  C = v~. We have thus 
obtained the formula 

R(a)  = a(a)v* - b for a < s*, R((x) ---- 0 for s > s*, 
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which, together with (3.5), implies 

V(a)  = v* + A(a) - 1 b for c~ _< s*, 

a(a)  (3.7) 
A(c~)h s*. = for > 

If Ex = O then Vx(A) x b = 0 for all A E R i. It follows that there exists a function px(A) such 
that 

Vx(A) = px(A)b. (3.8) 

To complete the proof of item (i) of Theorem 1.2, we show that Ez = O for x E f~0 and ~ ~ O 
for x �9 fli. If Ex = O then Vx(A) x b(x) = 0 for all A �9 R 1. Since Vx(A) = v*(x) for every A < - M ,  
we have v*(x) x b(x) = 0 and x �9 f~0. If Ez ~ O then v*(x) x b(x) = V x ( - M )  x b(x) ~ 0 by (3.6). 
Thus, we obtain x �9 f~i and come to the desired assertion. 

PROOF OF ITEM (ii). By Theorem 1.1, the definition of measure-valued solutions, and item (i) 
of Theorem 1.2, the following equalities hold almost everywhere in f~i: 

w-~olim P~,~ -- f @(A)dA~(A) �9 b(x) - f @(A)dV~,A, (3.9) 

Ri Ri 

where 
V=(A) = Ax(A) - H(s*(x) - a(A) A)b(x) + g(s*(x) - A)v*(x). 

Since Ax(A) = 0 for A > M and Ax(A) = 1 for A < - M ,  we have 

(3.10) 

A x ( A ) - H ( s * ( x ) - A ) = 0  for IAI>M. 

Integration by parts yields 

fAx(A) H(s*(x) - 

f q d ( A ) d \  a(A) a(A) A)) 
R1 

= - f ~(A)(Ax(A) - g(s*(x) - A))dA = O(s*(x)) + / O(A)dAx(A). 

R I R1 

(3.11) 

It is easy to see that 

/ @(A)dH(s*(x)-  A) = -@(s*(x)). 

R1 

Combining (3.10), (3.11), and (3.12) we arrive at the relation 

(3.12) 

- / = - - J b. 

Ri Ri 

Inserting the right-hand side of the above equality into (3.9), we obtain 

w- lim P~,~ = @(s*(x))v*(x) - @(s*(x))b(x) 
r 

and the assertion is proven. 
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4. P r o o f  of  T h e o r e m  1.3 

1. P re l iminar ies .  First we give an equivalent statement of Condition S. Given a E ( - M ,  M), we 
denote by 2 + ( ~ - )  the sets of probability measures concentrated on the intervals [a, M] ( [ -M,  a]). 
We consider the functions F(A) and N(A) defined by (1.14) and denote by A = Z(z) the inverse 
of z = F(A). Recall that F(A) and Z are smooth and strictly monotone functions. 

P r o p o s i t i o n  4.1. The following assertions are equivalent: 
(a) The function fa(z) = N(Z(z)) is strictly p-concave at the point z~ = F(a).  
(b) The fo//owing inequality holds: 

 up_ N e . -  _ r e .  <_0. 

[-M, iVl] [-M,M] 

REMARK. Put 

J ( # ) = F ( a ) 2 +  / N d# - ( f F d # )  ~. 

[-M,M] [-M,M] 

For # E ~,~" with m-(A) = # ( ( -c~ ,  A]) we have re-(A) = 0 for A < - M  and re-(A) = 1 for A _> c~; 
and integration by parts yields 

f rd ) = (4.2) \ a(A))-(  / 2 J(#). 
(-~,a] (-~,~1 

For # E 2~ + with m+(A) = -#([A, c~)) we have 

f K(~)r(~)d (m+(~) )--( / 
[a,r162 [,~,oo) 

2 

F d# = J(/~). 

The proof of Proposition 4.1 bases on the following 

L e m m a  4.1. Each of the variational problems 

J (# - )  = sup J(#),  # -  E ~.~-, J(/~+) = sup J(#), # -  E ~.q~ 

has at least one solution which satisfies the following extremal relations: 

T~(A) = N(A) - 2p• = const, A e spt#  • 

p• = / F d# +. 

[-M,M] 

where 

(4.3) 

PROOF. We give the proof only in the case of # E ~.~', leaving the other case to the reader. 
The existence of a measure # -  is a consequence of weak continuity of the functional J and weak 
compactness of the set ~ -  C C*[-M, M]. If the support of the measure/~- consists of a single point 
then (4.3) is trivial. Assume that spt # -  contains more than one point and prove that the equality 
T(A) = const holds #--a.e. Suppose to the contrary that T-(A) r const #--a.e .  on the segment 
I -M,  M]. It follows that there exist compact sets B/, i = 1, 2, such that 

# - (Bi )  > 0, sup T-(A) < inf T-(A). (4.4) 
,~EB1 AEB2 
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We put g(A) = ( -  1)i# - (Bi) -1 for A E/3/and g(A) = 0 for A e [ - M ,  M] \ Bi. Note that  the equalities 

f 0 (#e,9~>---- qo(A)(l+xg(A))d#-, ~EC[-M,M] ,  I~1~{ sup Ig(A)I} -~ 
Ae[-M,M] 

[-M,M] 

define a family of probability measures #~ E ~ - .  It is clear that  J(#e) - J (# - )  _< 0, which implies 
the relations 

l~l-i(J(#~)- J(#-))- 4- ] T-(A)g(A)d#- lira < O. 
e--*• J 

[-M,M] 

From this fact and the definition of g we obtain the equality 

,-(B1) ,-(B2) 
B1 B2 

which contradicts to (4.4). Therefore, the function T-(A) is equal to a constant #--a.e.  Since the 
function T-(A) is continuous, the equality T-(A) = const holds on the support of the measure # -  
and the lemma is proven. 

We turn to proving Proposition 4.1 and establish the implication (a) .'- (b). Examine (4.1) in the 
case # E ~ - .  Fix an arbitrary point c~ E i - M ,  M) and suppose that  the function fa(z)  = N(Z( z ) )  
is p-concave at za = F(A). We set 

f 
A1 ---- i n f s p t # - ,  A2 = s u p s p t # - ,  zj = F(Aj), z* = p -  -- ] F(A) d# - .  

[-M,M] 

Since F is a strictly monotone and # -  is a probability measure concentrated on the segment 
[ -M,  a], we have 

z*=,-Zl+(1-,-)z2, ~ e [ 0 , 1 ] ,  z~r  

Simple calculations show that  

f,~(z,~) = N(oO = 0, f ' ( z ,~)  = Y'(a)(r ' (a))  -1 = 2z~. 

Thus, 
f , , ( zo )  = p~(za) ,  f ' ( ~ , )  = p ' ( z ,~) ,  

where p~(z) = z 2 - z 2. With  this notations, we can rewrite J ( # - )  as 

f 
J ( # - )  ] N d # -  -pa(z*) .  (4.5) 

[-M,M] 

It follows from Lemma 4.1 that  

T- (A)  - N(A) - 2z*r(A) = c = const, A e s p t # - .  (4.6) 

From this and the equalities N(Ai) = fa(zi), zi = F(Ai), we obtain fo~(Zl) -- fa(z2)  =- 2Z*(Zl  --  Z2). 
Therefore, the points (zi, fa(zi)) belong to some lilm I such that  l [[ Tan... Pa. 

On the other hand,  the  equalities N(Ai) = fa(zi) imply 

c = f~(~) - 2~* z~ = .f~(;,) + (I - .)f~(z2) - 2~*~. 
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Inserting these relations into (4.6), we obtain 

N(A) = Tfo,(Zl) ~- (i - -  7")fa(z2) + 2z*r(~) - 2Z .2. 

Integrating both sides of the above equality with respect to the measure # - ,  we find that 

N d # -  = ~'fa(Zl) + (I - r)fa(z2).  

[-M,M] 

Combining this relation with (4.5), we obtain 

J ( # - )  = sup J(#)  = r fa ( z l )  + (i - v)f~(z2) - pa(z*). 

Since the function fa  is strictly p-concave at za, we conclude that J ( # - )  <: 0 and the equality holds 
if and only if zl -- z2 = z*. Note that zl = z2 = z* implies spt # -  = {a} and the assertion is proven. 
The same proof remains valid for the case/z E 2 +. 

Prove the implication (b) ~ Ca). Fix an arbitrary point a E ( - M ,  M) and assume that  in- 
equalities (4.1) hold at this point. To obtain a contradiction, suppose that the function f a ( z )  is not 
strictly p-concave at a. As was mentioned above, the parabola Pa : Y = z 2 - z 2 meets the graph of 
the function fa  at the point (zafa(za)); and the graphs of the functions Pa and fa have a common 
tangent at this point. 

By hypothesis, there exist Zl <_ z2 such that z~ ~ (Zl, z2), z* = rZl  + (1 - r)z2, r e [0, 1], and 

fo (~ l )  f~ ( - : )  ' * - - = p . ( z  ) (~1  - z2 ) ,  p . ( z * )  < ~ f . ( z ~ )  + (1 ~ ) f . ( z ~ ) .  (4.7) 

We put Ai = Z(z i )  and I~ = rh(A - ~1) Jr (1 - 7")5(~ - ~2)-  Since the function Z(z )  is strictly 
monotone, we have either (A1, ~2) C [ -M,  a] or (A1, A2) C [a, M]; hence # E ~r tJ 2 +. The 
equalities f~(zi)  = N(Ai), za = F(a), and z* = r r ( ~ )  + (1 - r ) r(~2)  imply that 

/ p a ( z * ) =  Fd/~ - F ( a )  2, r f a ( Z l ) + ( 1 - r ) f a ( z 2 ) =  Y(A)d#. 

[-M,M] [-M, AI] 

From here and (4.7) we obtain 

F(a)2+ / N(A)d#-( / Fd#)2>0, 
[-M,M] [-M,M] 

which contradicts (4.2). 

2. P r o o f  of  T h e o r e m  1.3. First we prove that the sequence se converges strongly in the 
space Ll(121). It suffices to establish that the equalities Ax(A) = H ( s * ( x ) - A )  and Xz(A) - H ( A - s * ( x ) )  
hold 'almost everywhere on 121. Since the variation of the function Ax(A) equals 1, we only need to 
show that the functions Ax(A) and (Xx(A)) are constant on the intervals ( - c r  s*(x)) and (s*(x), cr 

Consider the first case. Introduce the sequence @n, (I)n of entropy pairs as follows: 

M M 

= - = - f 

A 

s) )K) '  ds. 

Here h E CI(R 1) is a smooth nondecreasing function such that h(s) = 0 for s < - 1  and h(s) --- 1 for 
s _> 0. Let P~,n = @n(se)ve - @n(s~)b be the flow corresponding to this entropy pair. 
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Observe that the sequences qn and On converge pointwise to the functions q(A) = K(A)H(a-  A) 
and O(A) = r(A)g(a- ~). 

We conclude from the definition of ~ ,  that '~n(s) >_ K(s)H(a - s). Since Vp~ = - K ( s , ) v , ,  we 
have 

I g ( a  - s,)g(s~)v,t 2 = H(a - s~)[Vp~l 2 < -~ , ( s , )Vp ,  v,, 

hence 

I H ( a  - s , ) K ( s , ) v ~ l  2 < - V p ,  . P,.n - On(s~)Vp,. b = On(s~)K(s,)v, . b - Vp, -P , ,n .  (4.8) 

By Lemma 2.1 and item (ii) of Theorem 1.2, the relations. 

w- ~i~(Vp~. Pe,n) = Vp*.w- ~--.olim P~,n = Vp*-(~n(s*)v* - On(s*)b) 

hold almost everywhere on ~tl. Passing to the limit in (4.8) we obtain the inequality 

w- lim I H ( a  - s , ) K ( s ~ ) v d  2 < w- lim On(se)K(s,)ve. b - Vp*-(~n(s*)v* - On(s*)b). 
$---*0 - -  e---*0 

The definition of the vector-function Uz(A) implies 

(4.9) 

w- ,--.olim I H ( a  - s~)K(s~)vd 2 = f K 2 H ( a  - s)lql 2 dvx 
R 3  

= w- �9 lim n u On(s~)K(se)v, = / K(A)On(A) dUz(A). 

R1 

(4.10) 

Inserting these relations into (4.9) and applying Lemma 3.3, we arrive at the inequality 

[ K21ql 2dvx <_ f On(A).h.'(A)dUx(A). b - Vp* (qn(s* )v*  - On(s*)b) 
, I  ~g  

(--OO,O~] X ~:{2 R1 

which holds at almost every point of fll for all a and n. Using Cauchy's inequality, we obtain �9 

(4.11) 

. 2 

(-oo,~] (-oo,alxR2 

K(A)qdvz 2 f < ~,x((-oo, ~] x R 2) 

( -~,~1 x R 2 

From this identity, uz((-oe,  a] x R 2) -- xz(a), and (4.11) we obtain 

K2(A)[q[ 2 dvx. 

2 

* c, 

(-oo,a] •1 

Fix x E f~l and choose a < s*(x) such that the function xx(A) is continuous at a. It is easy to 
see that 

lim q,(s*(x))  = lira On(s*(x)) = 0 .  
n--~OO n-'~OO 

Passing to the limit in (4.12) as n --* oc, we obtain 

I f K(A)dUx(A)[ 2<- f F(A)K(A)dUx(A).b(x)xx(a). 

(-~o,~1 (-oo,~1 
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It follows from (1.13) and the inequality c~ < s*(x) that  the identity Uz(A) = Xz(A)/a(A)b(x) holds 
for every A < c~. We have thus obtained the inequality 

(-~,~] (-~,~,l 
Using the identity 

A 

(-oo,~1 (-r162 ~ (-~,~1 
F(A) dxx(A), 

rewrite the above inequality as 

[ / r(~)dx*(~)l 2<xx(a) / 
(-oo,~] (-~,~1 

K(~)F(~) d ( ~ ) .  (4.13) 

Suppose that Xz(a) # 0. Under this assumption, the equalities 

dit = Xz(a----- ~ dXz(A), E C R 1, 
E (-c~,a]NE 

define a probability measure it such that  spt it C [-M, a]. By the continuity of Xz(A) at a, we have 
it({a}) = 0. It follows from (4.13) that  

(-c~,a] (-oo,a] 

Here re-(A) = # ( - o c ,  A]. Observe that  the functions a(s) and k(s) satisfy Condition S. Therefore, 
the corresponding function fa is strictly p-concave at za. From this fact and the assertion (b) of 
Proposition 4.1 we conclude that # = 6(A - c~) which contradicts the equality #(c~) = 0. Hence, Xz(a) 
vazfishes at a.  Since the function Xz is monotone and continuous at almost every point of the real 
axis, it follows that  Xz(a) = 1 - Az(a) = 0 for every a < s*(x) and the assertion is proven. 

It remains to prove that Ax(a) is constant on the interval (s*(x), oo). Consider the sequences ~'n, 
On of the entropy pairs defined as follows: 

A A 

- M  - M  

c 0 ) K  )' ds. 

It is easily seen that  they converge pointwise to the functions 

qt(s) = K(s)H(s  - a) and 6/,(s) = r (s )H(s  - a ) .  

As in the proof of the equality Xz(a) = 0 for c~ < s*(x), we show that the inequalities 

w- ~-.olim [H(s~ - ~)K(s~)v~[ 2 _< - / CnKdVx(A) - Vp*(~Pn(s*)v" - ~I'n(s*)b) 

RI 
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and 

[~,cr 

hold at almost every point of f h  for all a.  Fix a point x 6 f h  and choose a > s*(x) such that  Ax(A) 
is continuous at a.  It is clear that 

lim On(s*(x) )= lim ~ n ( s * ( x ) ) = O  

and V=(A) = a-I(A)Az(A)b for A ~ a. Due to the choice of a,  we can rewrite the previous inequality 
as follows: 

[ f K(A)(A=(A)~ 2< d\ a(A)] - - f ~ " ( a ) K ( A ) d ( ~ ) "  
[~,00) ~I 

Since 

[~,0r [a,o~) 

~1 [a,oo) 

we obtain 

[~,o~) [~,0r 
If Ax(a)  # 0 then the relations 

1 / dAx(A), E C R  1 d # =  Ax(a) 
E [a,oo)NE 

define a probability measure # which is concentrated on the interval [c~, M]. 
previous inequality as 

We can rewrite the  

From this fact and the  assertion (b) of Proposition 4.1 we conclude that  # = 5 ( A - a )  which contradicts  
the equality #(a )  = 0. Therefore, Ax(a) = 0 for all a > s*(x), which proves Theorem 1.3. 
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