
Combustion, Explosion, and Shock Waves, Vol. 35, No. 5, 1999 

Ignit ion of a Cloud of  Meta l  Particles  in the C o n t i n u u m  Regime.  
I. Adiabat ic  Flow 

Y u .  A .  G o s t e e v  1 a n d  A .  V .  F e d o r o v  1 UDC 534.222.2; 662.612.32 

Translated from Fizika Goreniya i Vzryva, Vol. 35, No. 5, pp. 31-39, September-October 1999. 
Original article submitted December 27, 1998. 

A m a t h e m a t i c a l  m o d e l  is p r o p o s e d  t o  d e s c r i b e  t h e  m o t i o n  o f  a m i x t u r e  o f  a gas 
a n d  r e a c t i v e  m e t a l  p a r t i c l e s  in t h e  two-ve loc i ty ,  t w o - t e m p e r a t u r e  a p p r o x i m a t i o n  of  
m e c h a n i c s  of  h e t e r o g e n e o u s  med ia .  As an  a p p l i c a t i o n  o f  t h i s  m o d e l ,  a t h e o r y  o f  
wave  ign i t ion  in a m i x t u r e  o f  a gas a n d  m a g n e s i u m  p a r t i c l e s  is d e v e l o p e d ,  which  
e x t e n d s  N.  N. S e m e n o v ' s  t h e o r y  of  t h e r m a l  ex p lo s io n  to  t h e  case  o f  a m o v i n g  c lo u d  of  
pa r t i c l e s .  A c lass i f i ca t ion  o f  t h e  t y p es  o f  m i x t u r e  flows b e h i n d  t h e  s h o c k - w a v e  f ron t  
is g iven.  T h e  c a l c u l a t e d  i n d u c t i o n  p e r i o d  o f  t h e  c loud  c o r r e l a t e s  w i t h  e x p e r i m e n t a l  
d a t a .  S t ab l e  p r o p a g a t i o n  o f  a s t e a d y  ign i t ion  wave  a n d  t h e  p o s s i b i l i t y  o f  i ts  i n i t i a t i on  
a r e  d e m o n s t r a t e d .  

1. G O V E R N I N G  E Q U A T I O N S  

We consider a unit volume of the mixture, which 
is filled by a gas and solid particles of a metal cov- 
ered by an oxide film. We confine ourselves to the 
plane one-dimensional case, where all the parame- 
ters of the gas mixture depend on the spatial coordi- 
nate and time. We assume that  the following com- 
ponents are present in the mixture: the gas phase in- 
cluding an oxidizer (subscript 11), an inert gas (12), 
and gaseous products of metal oxidation (13) and the 
disperse phase including a metal (22), which enters 
a heterogeneous chemical reaction with the oxidizer, 
and a condensed product of this reaction in the form 
of an oxide film (23). We write the following con- 
servation equations for the mean parameters of the 
phases [1, 2]: 

Opl OplUl 
-- + - -  =v2J, 
Ot Ox 

( i . I )  
_ _  - -  ~ J  

Op2 Op2u2 --+ 
Ot Ox 

for mass conservation, 

Oplul O(plu 2 + mlp) 69?7% 1 
O----i- + Oz = P'-~-x + ~,27u2 + RI, 

(1.2) 
Op2U2 + O(p2u 2 + m2p) Ore2 

0----7, Ox = P--~-x -- ~2Ju2 + R2 
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for momentum conservation, and 

OplE1 O(plulE1 + mlulp) Ornl 
0---~ + Ox = p Ot 

+ ~ 2 J [ - ~ ( l + h l + - ~ ] + Q ~ + R ~ ( ~ u l + ~ u 2 ) ,  

OP2 E2 O(P2u2 E2 -5 rn2u2P) oqrn2 
0-----'~- + Ox = "p Ot (1.3) 

+ ~'2J[- x2 - h2 - U---~] + Q 2 +  R2(~Ul + #U2) 

for energy conservation. Here pi, ui, Ei, hi, and 
mi are the mean density, velocity, total energy, en- 
thalpy, and volume concentrat ion of the ith phase, 
p is the pressure in the mixture,  and Ri and Qi are 
the terms defining the force and thermal interaction 
of the phases. The remaining notation is explained 
below. 

The kinetic equations for the gas phase are 

dl~ll 
Pl dt = - ( v n + ~ 2 ~ n ) J ,  

vii +~2~11 ~12 
~n +~12+~13 = 1, 

where ~ij = PU/Pi is the mass fraction of the j t h  
component of the gas phase. 

We write the kinetic equations for the disperse 
phase in the form of the integrals 
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= 3, + 23 = 1, 
- , T o  

where ~2j = P2ffP2, a~ - -  / /22//)2,  and u2 = //22 - 
u23. Here v/j are stoichiometric coefficients of the 
oxidation reaction, which satisfy the relation 

/'11 -1- I'22 = /'13 -t- / '23, 

and r is the radius of the metal core of the particle, 
which is related to the total radius of the particle 
R = r + h (h is the oxide film thickness) through the 
integral 

R 3 - = - 

~, 0 /) 0 (a = 1 - 23P22/ 2P23). The following expression is 
valid for the source term J: 

3 p22 d2r 
J =  

r / ' 2 2  dr"  

We use the following closing relations: 

- -  the caloric equation of state in the form 

where 

( g z  is the universal gas constant) and 

po = p l / rn l ,  rnl + m 2  = 1, rn= = 4/3rrRan; 

- -  the thermal equations of state for internal energies 
of the phases 

3 

el ~- ~-~ ~lieli ,  e l i  = C v . l i ( V  1 --  TO) -[- e~  
i=1  

3 

= = - To )  + e ~  
j = 2  

- -  the relationships between the enthalpies and in- 
ternal energies in the form 

hli  = eli  -t- P t . ~ / =  cp , l i (T1  - To) + h~ 
P l i  

h ~ 1 7 6  ( i = l ,  2, 3); 

- -  the condition of incompressibility of the particles 

pO t =cons t  ( j - - 2 ,  3). 

Here cp,li is the heat capacity of the i th  component 
of the gas phase at constant pressure, C,,li is the 
same at constant volume, and c~,2j = Cp,2j is the 
heat capacity of the j t h  component of the disperse 
phase. 

In Eqs. (1.2) and (1.3), the conditions R1 = -R2 
and Q1 = -Q2  are imposed on the functions Ri and 

Qi (see also below); the expression Ei = ei + u2i/2, 
where ei is the internal energy, is valid for the total 
energy of a phase. The quant i ty /3  defines the frac- 
tion of heat released in the disperse phase due to the 
work of the friction force, and/3  = 1 - / 3  is a similar 
quantity for the gas phase. The parameters X1 and 
X2 are the accommodation coefficients and allow for 
distribution of the heat of the chemical reaction be- 
tween the phases. The values of Xi are found from 
the following condition of conservation of the total 
energy of the mixture: 

XI +X2 : hi - h2. 

By definition, the heat of the chemical reaction 
is 

q.  = V l l h l l  o r / ' 2 2 h 2 2  - u13h13  - / ' 2 3 h 2 3  

with aqq. going to the gas and (1 - c~q)q, going to 
the particles. Here aq is the fraction of the heat of 
chemical reaction that goes to the gas. We can easily 
obtain the following expressions 

X1 = [-Clqq. -t- (Vl l  - 1 - / )2~11)h l l  - b / ) 2 ~ 1 2 h 1 2  

- (u13 -/)2~13)h13]//)2, 

X2 = hl - h2 - X1- 

In contrast to [11, the heat of the chemical reac- 
tion is distributed between the phases in the present 
model in accordance with the quantity ~q. In addi- 
tion, it is not assumed here that the total radius of 
the particle remains constant, which is important for 
slow oxidation processes proceeding in the medium. 

In accordance with [3], we perform a thermody- 
namic analysis of the mathematical model proposed. 
For this purpose, we introduce the specific entropy of 
the mixture 

pS = p l S  1 -[- P2S2, 

where $1 and $2 are the specific entropies of the 
phases. This allows us to find the particle derivative 
of S, which characterizes the variation of entropy in 
a constant-mass volume of a two-phase medium: 

D S  dl S1 d2 $2 
P-D-7 = Pl--~-- + P2--7~ - / )2J ($2  - S,). 

Here, we take into account the equations of mass con- 
servation (1.1) for each phase. Assuming local ther- 
modynamic equilibrium within each phase, we can 
use the Gibbs relations 

T diSi diei m ip  dip ~ (i = 1, 2), 
Pi i - ~  =Pi  dt pO dt 

whose right sides can be determined using the follow- 
ing equations of heat addition to the phases: 
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dlel mip dip ~ = RIB(us  - ul)  
pi dt p~ 1 dt 

d2e2 rnsp dsp ~ 
. . . .  Rl~(u2 - ul) 

p2 dt pO dt 

- ~2Jxs + Q~. 

As a result, we find the change in the entropy of the 
mixture 

xl xs ("2-ul)s3 
- OsJ[- Ss + St + ~ + Ts 22"1 'J 

D(i) S D(~) S 
=P---D~ +P Dt ' 

where p D(~)S/Dt = 0 because of the neglect of mo- 
mentum and heat fluxes related to dissipation pro- 
cesses in the gas phase (viscosity and heat conduc- 
tivity) and RD(OS/Dt = a, where a = jRXR + 
j Q X Q  + j l s X l s  is the dissipation function. We have 
the following expressions for thermodynamic forces 
and fluxes entering into a: 

1 1 
XQ = T1 T s '  jQ = QI; 

x l  x2 (u s -u1 )  s 
X12 = -Si + Ss + ~ + Ts 2TI 

Jls = -~sJ. 

To establish the relationships between the fluxes and 
forces, we can use, for example,  the linear Onsager 
relations, where the force and thermal interactions 
between the phases are described in the form 

R 1 N ( u s - - u l ) ,  Q I ~ ( T s - T 1 ) .  

2. U N S T E A D Y  M O D E L  
O F  A N  I G N I T I O N  W A V E  

We consider the application of this mathemati- 
cal model to the problem of propagation of an igni- 
tion wave over a gas mixture  of metal particles. Let 
a one-dimensional space be filled by a mixture of a 
gas and magnesium particles. When a shock wave 

(SW) acts on the cloud, conditions for particle igni- 
tion can occur in the mixture. This phenomenon was 
previously studied within the framework of numeri- 
cal experiment [1, 4, 5]; laboratory experiments were 
conducted for a gas mixture of magnesium particles 
in oxygen [6]. Boiko et al. [4] and Medvedev et aI. [5] 
calculated the dependence of the ignition delay in the 
mixture on the SW Mach number, but the analytical 
criteria of cloud ignition were not determined there. 
The problems of initiation of an ignition wave in the 
mixture were not analyzed either. 

The theoretical s tudy of the ignition wave in a 
mixture of a gas and reacting magnesium particles 
moving behind the SW front, which is presented be- 
low, complements papers [1, 4, 5] in the aspect men- 
tioned above. 

We begin to construct  the theory of ignition of 
a cloud of particles from an asymptotic one-velocity 
variant of the flow of the gas mixture. We assume 
that the particles are rather  small and the difference 
in phase velocities can be ignored. Therefore, to de- 
scribe the motion of the mixture, we use the above 
generic mathematical  model in the one-velocity ap- 
proximation of mechanics of heterogeneous media in 
the form of the mass, momentum, and energy con- 
servation laws for the mixture as a whole: 

c~p Opu Opu O(Pu2 + P) =0,  
o~ +-b~-z =~ -~-+ oz 

(2.i) 
~op__E.E + a(pE + P ) u  = O. 

Ot 8z 
We write the equation of heat addition for the 

disperse phase in the nondivergent form 

uOT2] = G(T1,Ts) (2.2) 

and add the closing relations in the form of the 
thermal and caloric equations of state 

u 2 
E = e + ~ ,  e=a , , 1T l+e , , 2Ts+Q,  

(2.3) 
P =pT~. 

All the quantities here correspond to the partial  pa- 
rameters of the phases in the known manner  and are 
normalized to the initial state ahead of the SW front. 
The scales of density, pressure, and tempera ture  are 
PM = P0, PM = po, and TM = To. The characteristic 
velocity UM = V / ~ / p M ,  energy e/~l = u ~ ,  time tM, 
and length XM = UMt M are introduced. The  func- 
tion G(TI, T2) determines the addition of the heat of 
the chemical oxidation reaction of magnesium parti- 
cles at the stage of ignition and the interphase heat 
transfer: 

Ea x T G(T~,Ts) = Bs(Tm-T2)exp  ( - N ) -  A2 ( 2 - T J .  
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Fig. 1. Qualitative form of phase temperatures 
versus the velocity of the mixture [relation (3.4)]. 

Here 
3rn2Nul 2 A 1 tM 3~11P22qt M Koo 

A2 ---- B2 = 
2~2PMC.,2r 2 ' ~2PMC.,2 r 

Ko q. EA 
K 0 0 =  1 - a '  q v22 E ~ =  7~,T0' 

/to, q., and EA are the preexponent,  the thermal 
effect, and the activation energy of the oxidation re- 
action, respectively, the factor T m -  T2 is introduced 
in [7], ~2 = P2/P is the mass concentration of the 
disperse phase, P22 is the mean density of the metal 
component,  Nu12 is the Nusselt number  of the inter- 
phase heat transfer, and A1 is the thermal  conductiv- 
ity of the gas phase (see also [2]). We introduce the 
constants 

1 ~2 % 2  _ Q0 
e..,1 = "h 1' ~.,2 = = - - - - c . , 1 ,  Q , 

- -  ~ 1  ev,1 eM 

where Q0 = (2Q - (~lC.,z + (2c.,2)T0 + e~ For 
simplicity, we assume tha t  the entire heat of the 
oxidation reaction is released in the disperse phase 
(aq = 0). For the magnitude of heat release, we pro- 
pose the following statement.  

S t a t e m e n t  1. Let the following conditions be 
satisfied for the physicochemical and thermophysical 
parameters of the mixture: 

e~ = e~ = e ~ e~ = e ~ 13, 23, 

/./llep,ll = V13Cp,13 , V22Cp,22 = V23Cp,23 . 

The heat release due to the chemical reaction is de- 
termined in the form 

q. = u2Q - (ulac~,13 - UllC,,,ll)To = const, 

Q = e~ - e~ = const ,  

i.e., in this specific case, q. is a constant quantity 
independent of the phase temperatures .  

We show that system (2.1)-(2.3) with the corre- 
sponding initial and boundary  conditions allows the 
solution of the travelling ignition-wave type. 

Fig. 2. Dependence of the final equilibrium tem- 
perature of the disperse phase on the parameter 
a: curves marked by arrows indicate the direction 
of particle heating for a < a_  (I) and c~ > a+ (2). 

3. A D I A B A T I C  S T E A D Y  I G N I T I O N  W A V E  
I N  T H E  M I X T U R E  

3.1. G o v e r n i n g  E q u a t i o n s  and  F o r m u l a -  
t i on  of  t he  P r o b l e m .  We attach the coordinate 
system to the SW front and write the steady variant 
of Eqs. (2.1) and (2.2): 

pU = C1, CI U + P = C2, 
(3.1) 

U 2 P 
e + ~ - + - -  = C a ,  

P 

dT2 = B { ( T m -  T2)exp ( -  - ~ ) - a ( T 2 -  T1)}. 
d( 

(3.2) 

Here ~ = x - Dt  is a self-similar coordinate, D is the 
shock-wave velocity, CI, C2, and C3 are the fluxes of 
mass, momentum, and total  energy of the mixture in 
the initial state, a = A 2 / B 2 ,  and B = B2/C1. The 
following initial conditions are used for the mixture: 

= ~0 as ~-- ,  - ~  (3.3a) 

ahead of the front of a frozen SW, 

�9 = ~ ,  for r  (3.3b) 

behind the SW front, and the condition of steadiness 
at -t-o~ 

--* 0 as ~ ---, +r (3.3c) 
d( 

Here �9 is the vector of the solution [~ = 
(p, u, P, T1, T2)]. 

Thus, the problem of determination of the trav- 
elling ignition wave in the mixture reduces to the so- 
lution of boundary-value problem (3.1)-(3.3) in the 
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Fig. 3. Steady structure of the ignition wave for ~ = 0.276 �9 10 -4 < e_ = 1.58 �9 10 -4 and M/0 = 3.63. 

region ( - c o ,  +co).  We note that  system (3.1), (3.2) 
can be reduced to one differential equation for the 
temperature  T2 or velocity U. 

3.2.  C lass i f i ca t ion  o f  F low  R e g i m e s  of  t h e  
M i x t u r e .  Using (3.1), we can obtain the follow- 
ing algebraic expressions for the phase temperatures 
through the velocity of the mixture: 

TI (U)  = U(2U. - U), T2(U)  = a 2 U  2 - a l U  -b ao, 

c~ c 3 - 0  
u.-2c 1, ao--  fio,-----~' (3.4) 

al  2U. cv,1 -I- 1 Cv,1 -- 0.5 
---- , a2 ---- 

cv,2 cv,2 

It is useful to introduce the velocity of the mixture 
U~ in the case of temperature equilibrium TI(U~) = 
T2(U~) = T~, and also the velocities U1, /-72, and 
Um determined from the conditions TI(U1) = To, 
T2(U2) = To, and T2(U,~) = Tin. It can be easily 
seen tha t  U2 coincides with U, i.e., with the velocity 
of the mixture  behind the SW front. In what follows, 
we assume that  U m <  U~ (or T m >  T~). Relations 
(3.4) allow us to inspect the flow parameters of the 
mixture represented as functions of its velocity. It 
is necessary for the analysis of the final equilibrium 
states of the system (Fig. 1). We impose a natu- 
ral requirement: the final temperatures  of the phases 
Tl,fin and T2,fin cannot be lower than the tempera- 
ture of the initial state To. This allows us to conclude 
that the velocity of the mixture in the final state 
Ufin is within the interval from U1 to U2. To deter- 
mine whether  Ufin is greater or smaller than be, we 
construct a bifurcation diagram for the equilibrium 
states of Eq. (3.2) (Fig. 2). The  form of the depen- 
dence T2,fin = T2,fin(a) is known [7]. The difference is 
that the role of the temperature of external action be- 
longs now to the quantity Tr For T2,fin < T~ [which 
corresponds to the velocity of the mixture within the 
interval (U~, U2) in Fig. 1], thermal equilibrium is 

impossible: the heat-transfer parameter a becomes 
unphysical (negative). Therefore, from the fact that  
T2,fin cannot exceed T,~, we conclude that  the final 
velocity of the mixture Ufin belongs to the interval 
(Urn, U~). The final tempera ture  of the disperse phase 
is always greater than the final temperature of the 
gas phase: T2,fin > Tl,fin. For the value of T2,fin, 
using the analysis of the catastrophe/ignition mani- 
fold shown as cross sections T~ -- const in Fig. 2, we 
establish the following statement.  

S t a t e m e n t  2. If the bifurcation parameter 
in the ignition wave in the flow of the mixture is 
smaller than ~_,  then the final temperature of the 
particles T2,fin lies between T~+ and Tin. tf c~ > ~_,  
then the final temperature T2,fin lies between Te and 
T2-.  The first case (~ < ~_)  corresponds to the 
flow of the mixture behind the SW with ignition of 
the disperse phase (the course of particle heating is 
shown by curve 1 in Fig. 2); the second case (~ > a _ )  
corresponds to the flow with "regular" heating of the 
particles (curve 2). Here a •  are uniquely determined 
through the parameters of the initial state of the mix- 
ture. 

3.3. N u m e r i c a l  E x a m p l e s .  The following val- 
ues of the parameters are used in the calculations: 
P0 -- 1.2 kg/m 3, P0 = 105 Pa, P20 = 0.17 kg/m 3, 
r -- 5 . 1 0  -z m, tM = 10 -3 sec, Q -- 4 .107  J/kg,  
EA/TZ ,  = 104 K, and Ko -- 10-5-10 -4 m/(sec-K) .  

We give some numerical illustrations of steady 
flow structures of a gas mixture behind the SW. Fig- 
ure 3 shows the distribution of the parameters of the 
mixture behind the SW front for a flow with ignition 
of the disperse phase for Mach number My0 --- 3.63 
and c~. 10 a = 0.276 < ~_ .  10 a -- 1.58. During the mo- 
tion of the mixture, the particles are heated and ig- 
nited owing to energy extraction from the gas phase. 
Therefore, the profiles of temperature T1 and veloc- 
ity U are monotonically decreasing. The particle 
temperature 7"2 monotonically increases and has two 
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Fig. 4. Steady flow structure behind the shock wave upon regular heating of particles for a_  -- 1.58.10 - 4  < c~ = 

2.76 - 10 -4 and Mr0 --- 3.63. 

Fig. 5. Propagation of a steady ignition wave: (a) 
temperature of gas (1) and disperse (2) phases; (b) 
density of the mixture. 

Fig. 6. Propagation of the steady flow structure of 
the mixture upon regular heating of the disperse 
phase: (a) temperature of the gas (1) and disperse 
(2) phases; (b) density of the mixture. 

points of inflection. In accordance with the classical 
concepts, which are also valid for a moving medium, 
we associate the last point of inflection with ignition: 

dT2 ~=~ign d2T2 r d~ --* max, d~ 2 = 0. 

In this variant ,  the ignition coordinate i s  ~ign ~ 
0.055, SO the ignition delay is rig n ~ 100/~sec, which 
coincides wi th  experimental  da ta  [6] in order of mag- 
nitude. The  phase tempera tures  are significantly dif- 

ferent in the entire flow region, though there is an 
equilibrium temperature  point  TI = T2 = T~. How- 
ever, this point is unstable because of the presence 
of a chemical source of heat.  The  heat release from 
reacting particles does not have enough time to in- 
crease the gas tempera ture  to the point of ignition, 
since the characteristic t ime  of convective interphase 
heat  transfer is much greater  than the characteristic 
"chemical" time (a -1 >> 1). 
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Fig. 7. Initiation of an ignition wave: (a) temperature of the gas phase; (b) density of the mixture. 

Figure 4 illustrates the distribution of the pa- 
rameters of the mixture in a flow with "regular" 
heating of the disperse phase at Mr0 = 3.63 and 
a _ .  104 = 1.58 < a .  104 = 2.76. Temperature 
nonequilibrium of the phases is also observed here in 
the region behind the SW. Nevertheless, the profiles 
of the parameters are smoother  here than in the pre- 
vious case. In particular, there is no dramatic change 
in the particle temperature,  which corresponds to ig- 
nition of the disperse phase. The special feature of 
the flow structure is that  the pressure and other pa- 
rameters of the mixture reach equilibrium values ear- 
lier than the particle temperature.  

4. S T A B I L I T Y  A N D  I N I T I A T I O N  O F  A 
S T E A D Y  I G N I T I O N  W A V E  

The problem of initiation and stable propaga- 
tion of a steady ignition wave within the framework 
of the unsteady approximation of mechanics of het- 
erogeneous media is of significant interest. 

4.1. S t a b i l i t y  o f  t h e  I g n i t i o n  W a v e .  The 
stability was investigated by numerical simulation of 
the initial-boundary problem for unsteady equations 
(2.1) and (2.2) with a s teady solution of the travelling 
wave type as the initial conditions. The problem was 
formulated as follows. 

Find the vector of the solution �9 = 
(p,u,P, T1,T2), which, within the region {(x,t)  : x  E 
( -oo ,  cx)), t ~> 0}, satisfies system (2.1)-(2.3), the 
initial conditions 

'I%, x < 0, 
, I ,=  q'st(z), x />O 

for t = 0 and the boundary conditions 

= ~ 0  as 2:---*--co, 

0q, 
---*0 as 2:---.~+oo. 

Ox 

Here q'st (x) is a steady distribution of the parameters 
in a travelling ignition wave. 

The system of equations of nonequilibrium gas 
dynamics (2.1) was solved using a finite-difference 
TVD-scheme [8]. The kinetic equation of ignition 
(2.2) was integrated along the trajectory using the 
method proposed by Fedorov and Khmel'  [9]. The 
algorithm of the TVD-scheme was preliminary tested 
on the Riemann problem for a perfect gas and on the 
problem of propagation of a frozen SW in a gas mix- 
ture of inert particles (a two-temperature model). 

It was found that  the resultant steady struc- 
tures propagate steadily during the calculation pe- 
riod. Figure 5 shows the ignition-wave parameters 
(the temperatures of the phases and the density of 
the mixture) at different times with a time step 
At = 6.5.10 -3 (the data  correspond to Fig. 3). The 
leading shock wave in the structure of a steady ig- 
nition wave is located at the point x = 0 at t = 0. 
Figure 6 illustrates the stability of the steady struc- 
ture, which describes the "regular" heating of the 
disperse phase behind the SW (At = 6.46.10-3;  the 
data correspond to Fig. 4). We note that  conditions 
of the subsonic piston type were maintained at the 
right boundary of the flow region, which guaranteed 
the steadiness of the process. In experimental stud- 
ies, this is ensured by quasi-steadiness of the plug in 
the shock tube. 

4.2. I n i t i a t i o n  of  an  I g n i t i o n  Wave .  In a 
region of space filled by a mixture of a gas and parti- 
cles, a zone of elevated pressure and temperature of 
the gas phase is created at the initial time (for exam- 
ple, due to instantaneous localized heat release). We 
have to find under which conditions an ignition wave 
arises in the mixture. Mathematically, the problem 
consists in solving the problem of decay of an arbi- 
trary discontinuity for system (2.1), (2.2). 

We consider an example of initiation of an ig- 
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nition wave from the initial discontinuity whose pa- 
rameters are correlated with a steady structure, i.e., 
when all the parameters of the mixture in the high- 
pressure region are set equal to their  final equilibrium 
values in the wave: 

I ~0, x < O, 
= ~I~fin , X /> 0. 

The calculation results for this variant of the flow 
corresponding to the da ta  in Figs. 3 and 5, i.e., for 
the condition a < ~_ satisfied, are plotted in Fig. 7. 
The ignition wave is formed over a length of several 
dozen of its thickness and becomes practically steady 
at the time tl = 0.403. A per turbat ion  of the density 
of the mixture is seen in the tail of the wave. This 
perturbat ion lags behind the frozen leading SW with 
time and decays in terms of the amplitude. The ap- 
pearance of this per turbat ion  is probably related to 
the manner of initiation of the ignition wave by the 
method of a pushing piston. 

C O N C L U S I O N S  

The one-dimensional motion of a mixture of a 
gas and reacting metal particles has been consid- 
ered. A two-velocity, two-temperature  mathematical 
model has been proposed. This  model takes into ac- 
count the chemical oxidation reaction of the disperse 
phase with heat release in bo th  phases. 

On the basis of the model proposed, a theory 
of an ignition wave in a gas mixture  of magnesium 
particles has been developed, which extends N. N. 
Semenov's theory of explosion to the case of moving 
continua of reacting particles. The  flow of the mix- 
ture behind the shock-wave front has been classified 
into two basic regimes: 

�9 with ignition of the disperse phase by the 
method of thermal explosion; 

�9 without ignition, with "regular" heating. 

The calculated delay of ignition of the gas mixture 
corresponds to experimental  da ta  in order of mag- 
nitude. Within the framework of the unsteady ap- 
proach, a stable propagation of the resultant steady 
ignition wave over the mixture  has been demon- 
strated. A numerical example of ignition-wave initi- 
ation in a mixture with the help of a pushing piston 
is given. 
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