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Representation of the  Space of Polyanalytic  Functions as a Direct Sum 
of Orthogonal Subspaces. Application to Rational Approximations  

A. K. Ramazanov UDC 517.5 

ABSTRACT. Suppose t h a t  D = {z : tz] < 1},  L2(D) is t he  space of functions square~integrable  over area in D ,  
Ak(D ) is the  set of all k -ana ly t i c  functions in D, (AI(D) = A(D) is the set of all ana ly t ic  functions in D),  
AkL2(D )--  L2(D)NAk(D),  A1L2(D)= AL2(D), 

Ok_: } 
AkL~ = f :  f(z) = Oz----ff~_l ((1 - z2)k-lF(z)) . ,  F E A(D), f E AkL2(D) . 

It  is proved t ha t  the  subspaces  AkL~ k - 1, 2, . . .  , are or thogonal  to one ano the r  and  t he  space AmL2(D) 
is the  direct sum of such subspaces  for k -- 1 ,2 ,  . . . ,  m .  The  kernel of the or thogonal  p ro jec t ion  operator  from 
the  space AmL2(D) on to  its subspaces AkL~ is obta ined.  These  results are appl ied to  the  s tudy of the  
propert ies of polyrat ional  funct ions of best approximat ion  in the  metric L2(D). 

KEY WORDS: polyanalyt ic  function, direct sum of or thogonal  subspaces, ra t iona l  approx imat ion ,  ex t remum 
problem, Bes'sel's inequality, polyrat ional  function. 

A function f(z) that has continuous partial derivatives with respect to x and y up to order m > 1 
inclusive in the domain G is called a polyanalytic function of order m (m-analytic) in the domain G if 
in this domain it satisfies the generalized Cauchy-Riemann equation Ore f~02 m ---- O. 

It is well known that any m-analytic function in the domain G can be uniquely expressed as (see [1]) 

/ ( z )  = v0(z) + + . - -  + em-l m-l(z), (1) 

where the ~k are hotomorphic in G. For the case in which G -- D := {z : ]z I < 1}, relation (1) can be 
reduced to the form (see [2]) 

f(z) = P(z, 5) +go(z) + (1 -Izl~)gl(z)  +. . .  + (1 -Izl2)m-lgm_l(z), (2) 

where the gk are holomorphic in D, P(z, 2) = Po + 5Pl(z) +-. .  + 2m-lPm_l(z), Po = const, Pk(z) 
for k > 1 is a polynomial in z of degree at most k - 1. 

In what follows, the functions ~k and gk will be called holomorphic components of the polyanalytic 
function f(z).  

Polyanalytic functions were treated in [1]. In the papers by Dolzhenko and Danchenko [2-6], the bound- 
axy behavior of polyanalytic functions was studied using the representation (2) and integral representations 
for polyanalytic functions were obtained. In this paper we study various properties of polyanalytic func- 
tions from the space L2(D). 

w R e p r e s e n t a t i o n  of  p o l y a n a l y t i c  func t ions  as a d i r ec t  s u m  

Let us introduce some notation. L2(D) denotes the space of complex-valued functions f with the 
ordinary norm 

HfH2 = { / /D ,f (z).2 dx dy} W2 ", (3) 
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Ak(D) is the set all k-analytic functions in D (A~(D) = A(D) is the set all analytic functions in D); 
AkL2(D) = L2(D) N Ak(D), AIL2(D) = AL2(D); 

{ ~ } 
A~L~~ = f :  f ( z / -  0z~-~ ((1 - z~)~-~F(z)) ,  F e A(D/,  f e AkL~(D) ; 

C ( '~(9)  denotes the class of n-times continuously differentiable functions on D For n = ec, this class 
will be denoted by C a ( D ) .  

In what follows, we use the notation 

= k ! ( n - k ) ! '  = 0  f o r k > n a n d f o r k < O .  

We shall also use Green's formula 

l z _  

which is valid for all functions f ,  g E CI (D) .  

T h e o r e m  1. The polyanalytic function 

ok--1 
f(z) -- Ozk_ 1 ((1 - zS)k-lF(z))  

belongs to the space AkL~ if and only if F E AL2(D). 

C o r o l l a r y  1. a) The system of functions 

1 ~ k  0 k-~ 
( k - l ) !  Ozk_l (1 - - z2 )k - l z '~ ,  { } n = O ,  1 . . . .  , 

forms an orthonormal basis of polynomials in the space Ak L~ D ). 
b) If for some positive integer k the polyanalytic function 

ok-1 
Ozk_ 1 {(1 - z~,)k-lg(z)} 

belongs to the space AkL~ and 

g(z)= Zb~z~, z E D ,  

then 
i / D  Ok_ i 2 ~ ib,]2 

0 - - ; ~ { ( 1  - z~lk-lg(z)}  dxdy=~((k-1)!)~n+k. 
~----0 

(4) 

T h e o r e m  2. The subspaces AkL~ (k = t, 2 , . . .  ) are pairwise orthogonal and the space AmL2(D) 
is the direct sum of the first rn of them, i.e., 

AmL2(D) = A1L2(D) @ A2L~ @.. .  @ AmL~ 

R e m a r k  1. Theorem 2 was announced without proof in [7]. 
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C oro l l a ry  2. If f �9 AmL2(D) , then the functions (1 - Izl2)rn-:~j(z), j = O, 1 , . . . ,  m - 1, belong 
to the space L2(D),  where y~j is the corresponding component of the polyanalytic function f in the 
representation (1). 

Co ro l l a ry  3. The system of functions 

( k  - 1)!  Ozk_:{(1--z:)k-:zn}, k =  1 , 2 , . . . , m ;  n = 0 , 1 , . . . ,  

forms an orthonormal basis of polynomials in the space AmL2( D). 

R e m a r k  2. In [8], the proof of the completeness of the system from Corollary 3 by means of the 
orthogonalization method  is outlined. Apparently, the proof given in the present paper is simpler. 

For the s tatement  of the next theorem, let us introduce the following additional notation: 

_ 1 02(a-:) { } 
TC~ ~) -- ~'((k 1)!) 20zk_:Ofk_: (I -- z2)k-:(l -- (:~)k-: (k - I)(i - z~) + I ' :f: ' 

m 

7~m(z,~)=ET~~162 z , r 1 4 9  
k = l  

Obviously, 7~~ ~) -- n ~  z) and for fixed ~ �9 D the polyanalytic function T/~ ~) belongs to the 
space AkL~ 

Let us introduce the following integral operator: 

pO(f)(~) _~ / / D  f(z)~~ ~) dxdy, fEL2(D) ,  ~ e D ,  z = x + i y .  (5) 

Denote by Pro(f) the operator obtained by substituting TOm(z, ~) for the kernel TC~ ~) in (5). 
Then the following theorem holds. 

T h e o r e m  3. pO(f) (Pro(f)) is the orthogonal projection operator from the space L2(D) onto its 
subspace AkL~ ( dmLa(D) ). 

Theorem 2 implies that  any polyanalytic function f from AmL2(D) can be uniquely expressed as 

m Ok_: 
f(z) = E Ozk-: {(1 - zS)k-:Fk_:(z)}, Fk-1 e AL2(D). 

k = :  

Then, using Theorem 3, we obtain the following result. 

C o ro l l a ry  4. If f E AmL2(D), then 

/D 0k- :  - f(z)TC~ ~)dxdy O~k_ 1 [(1 - - k - :  

~k 
C oro l l a ry  5. Suppose that ~(z) = ~-~ {(1 -z=~)kF(z)} belongs to the space Ak+:L~ Then 

o, f/o } g(=)(~) = ~(k!)----- ~ ~(z)0-~  (1--z2)k:'~k(l(1 5 ~ ) + n + 1  _ 5~)n+2 dx dy, 

~ E D ,  n = 0 , 1 ,  . . . .  
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R e m a r k  3. From Corollary 4 it follows that  R~ C) is the kernel of the orthogonal projector  from 
the space AmL2(D) onto its subspace AkL~ For k -- 1, this kernel coincides with the well-known 
Bergmann kernel for the disk D. In [8], another representation for T~m(Z, ~) is given (without proof), 
namely 

r n - - 1  

7~(z,  r = ~(1 -zC) ~m ~ (-1)J 
j=0 j + l  

C o r o l l a r y  6. We have 

0 V / z) ~ / ~  1 1 
IIT~,~II2 = T ~ ~  = 1 - I z l  ~-' = ~ m .  

Theorem 3 can be used to obtain growth estimates of polyanalytic functions as the point z approaches 
the  boundary of the disk. Indeed, the following theorem is valid. 

T h e o r e m  4a. 1) / f  the function ~ belongs to AkL~ then 

1 1 
- - 1 - I=1 ~ I1~11~, = E D. (7) 

2) If the function f belongs to AmL2(D), then 

m 1 
I f ( z ) l  < v ~ 1 - I z l  211f112' z E D. (8) 

Inequalities (7) and (8) are exact. The  equality sign is attained, respectively, for 

~(z) = 7~~ r and f(z) = Tim(z, r = ~ 7~~ r 
k----1 

Now let us apply Theorem 3 to extremum problems. Suppose that  r E D is a fixed point and  

M~(k) = { f  �9 Akn~ : f(~) = 1}, Mc(m) = { f  e AmL~(D) : f ( ( )  = 1}. 

Then,  using inequalities (7) and (8), we obtain the following theorem. 

T h e o r e m  4b.  1) The cxtremum problem I]f]]2 --+ inf, f E M~(k), has the unique solution fo : 

~~ C) 
llfol12 = ~2----~ ( 1 - CC), z, C E f0(~) = 7~o(c, C)' D. 

2) The extremum problem [Ifll2 -+ inf,  f E Mc(m ) , has the unique solution f0: 

n,.(z, C) 
.fo(:) = rim(C, ~:)' 

where T~m(z, ~) = E L I  7~~ z, C), z, C E D. 

l lfoll~ = --~---~ (I - ~C), 

Note that  inequality (8) and section 2) of Theorem 4b were obtained in [8], using the representation (6) 
for the kernel T~m(Z, ~). 

For the proof of these theorems, some lemmas are required. 
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O k -  1 
L e m m a  1. If hk,~(z) = oT=-r-~{(1 -- zb)k-lz~}, k = 1, 2 , . . . ,m;  n = O, 1 , . . . ,  then 

//o {o, hk,n(z)hl,j(z) dx dy = O, k # l, hk,,~(z)hk,j(z) dx dy = ,~((k_l)!)~ (9) 
n + k  ' T~ = j .  

Proo f  of L e m m a  1. Let k < I. Since hk,n E AkL~ we have 
0l--1 

o z_ 1 { h k , n ( z ) }  = O. 

Therefore, applying Green's formula to the scalar product on the left-hand side of relation (9) l - 1 times, 
we obtain (9). 

Now let k = l. Then, similarly, using Green's formula once again, we obtain 

/ /D lID Ok-1 {Z'~+k-1}(1- ]Z[2)k-lZJ dxdy hk,n(z)hz,j(z)dxdy = (k - 1)! Ozk_ 1 

( n + k - 1 ) !  [[_  
n! (1 -Izl2)k-lznz 5 dxdy. (10) (k 1)! 

For n 7 ~ j ,  the last integral is zero. But if n = j ,  then, passing to polar coordinates, from (10) we obtain 

/ /D  hk,n(z)ht,j(z)dxdy (k 1)! rrB(k,n + 1), (11) 
(n + k 1)! 

n! 

where B(k, n+ 1.) = n!(k - 1)!/(n ~- k)! is the Euler integral of the first kind (see [9, p. 750]). Substituting 
the value B(H, n + 1) into relation (11), we conclude the proof of Lemma 1. [] 

L e m m a  2. a) If n >_ k, then 

E ( _ l ) m  ~ ( ~ ) ( n + J k  ) ( i n k - j )  ( n+m-jk = 1 ,  (12) 
m=0 j=0  

E (_ l )m m ~ n + j  k n + m - j  =2k(n+l) .  (13) 
k m - j  k 

m = O  j = O  

b) If n <_ k, then 

2k ( ~ (  k ) ( k + j )  ( k ) ( k + m - j ) )  =1, (14) 
E ( -x)m n - j  k n - m + j  k 

m = O  j = O  

K-',,_l,mm k k + j  k k + r n - j  ~ 2n(]~ ~.- 1)o (15) n - j  k n - m + j  k 
m = O  j = O  

P r o o f  of  L e m m a  2. Consider the generating function 
1 

g ( t ) = ~ { ( ( 1 - - t ) k t ~ ) ( k ) }  2, where t e ( - e c , e c ) .  

Suppose that n _> k. Then we have 

1 k~ g(t) = (kl) 2 ( - 1 ) k - 5 ~  (1 - t) j : ' j)!t  n-3 , (16) 
5=0 

,....,2k (-1)  m ( ( ; ) ( ~ ) (  ) (  ) )  @ n + j n + m - j 
k mk- j  k g(t) t2(n-k) t m (17) 

m = O  j = O  

Assuming t = 1, from relations (16) and (17) we obtain (12). Next, calculating the derivative g'(t) from 
relations (16) and (17) and equating the resulting values of g'(1), in view of relation (12), we obtain (13). 
The proof of relations (14) and (15) is similar if we consider the same function g(t) for n _ k. [] 
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P r o o f  o f  T h e o r e m  1. Consider a polyanalytic function f E AkL~ and let 

o o  

F ( z )  = bnz 
n=O 

Then, using Lemma 1 and Bessel's inequality, we obtain 

f f~,  ~ Ibnl: I f (z) l  2 dxdy >_ 7r((k - 1)]) 2 n=0 n + k '  

i.e., F e AL2(D). 
L~t us prove the sufficiency. 
It is readily shown that if F 6 AL2(D), then for any positive integer j the function (1 - Izl2)JF(J)(z) 

belongs to L2(D). Then, writing the polyanalytic function 

o k - 1  
f(z) = ~ ( ( 1  - z2)k-lF(z)) 

a s  
k - 1  

f ( z ) = E ( - 1 ) ( k - l - j ) ( k - 1 )  (k-1)]sk-l-J(1 
j_-0 3 7! -N~/F(~)(z) '  

we conclude the proof Theorem 1. [] 

P r o o f  o f  T h e o r e m  2. Tile orthogonality of the subspaces AkL~ follows from Lemma 1. We prove 
the theorem by induction. Suppose that it is proved for m = l. Let us express the space Az+IL2(D) as 
the direct sum of the subspace AIL2(D) and its orthogonal complement B.  By the induction hypothesis, 
we obtain 

At+IL2(D) = AIL2(D) @ A2L~ @... @ AtL~ @ B. 

Let us prove that the subspace B coincides with AI+IL~ To do this, it suffices to prove that  any 
function ~ from B A Cr162 orthogonal to all subspaces AkL~ k = 1, 2 , . . . ,  l + 1, is identically 
zero in D.  

Suppose that  the polyanalytic function ~ E B N C ~ (D) has the representation 

~(z) = E zPgP(z) = E 2p E a,~,pZ'L 
p = 0  p=0  n = 0  

Taking into account the orthogonality of the function ~ to the subspaces AkL~ 
we obtain 

lID Ok-1 ~{(1-z~)'~-l~"}~(zlexey=o, , = 0 , 1 , . . . .  

For k = 1, relation (18) acquires the form 

k =  1 , 2 , . . . , / + 1 ,  

(18) 

o o  

/ /DS~'ESPEan,pzndxdy=O, 
p----0 n = 0  

v = 0, 1, . . . .  

Hence, passing to the polar coordinates and calculating the last integral, we obtain 

l 
1 

E u + p + l av+P,P 0, 
p=0  

u = O, 1 , . . . .  (19) 
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For k > 2, using Green's formula, from relation (18) we obtain 

l p an pz ) ffD (1 -- z2)k-15 "~' ~ (p -- k + 2)2, p-k+l dxdy 
p=k--1 

k = 2 , 3 , . . . , l + 1 ;  u = 0 , 1 ,  . . . .  

= 0 ,  

Just  as above, passing to polar coordinates and calculating the integral on the left-hand side of the last 
relation, we obtain the following system of equations, together with relation (19), for the coefficients of 
the components of the polyanalytic function qo: 

l 

p . . .  (p - k + 2) 1) av+p-k+l,p 
p=k--1 

= 0 ,  k =  1 , 2 , . . . , / + 1 ;  v = 0 , 1 ,  . . . .  (20) 

For each fixed v, system (20) is of triangular form. Solving this system, we obtain an,p 
0, 1, . . . ,  l and n = 0, 1, . . . ,  which proves the statement. [] 

P r o o f  o f  T h e o r e m  3. Consider the following 5-functional in the space AkL~ 

= 0  f o r p =  

5(qo(z)) = qo(~), ~ E D, ~ e AkL~ 

Using Corollary 1, it is easy to prove the continuity of the 5-functional in the metric defined by 
relation (3) for functions from the space AkL~ Therefore, the theorem on the general form of a linear 
continuous functional in Hilbert space implies that there exists a function from the space AkL~ that 
determines this functional. Denote this function by ~O(z, ~). Then we obtain 

/ / D  T!Z)TE~ (z, ~)dx dy = qo(~), ~ e D, (21) 

for any function qa E AkL~ 
The function 7~~ ~) is called the reproducing kernel of the space AkL~ Taking into account 

relation (21), let us expand the kernel ~o  (z, ~) in its Fourier series with respect to the orthonormal system 
of functions (see Corollary 1) ek,,~(z) from the space AkL~ 

(DO 

(22) 
n : O  

After simple calculations, from relation (22) we obtain the required representation for the kernel 
7E ~ ~), which, together with relation (21), concludes the proof of Theorem 3. [] 

P r o o f  o f  Coro l l a ry  2. It follows from Theorem 2 that for any function f E AmL2(D) there exist 
functions Fk-1 E AL2(D), k = 1, 2 , . . . ,  m,  for which the following relation is valid: 

m ,  
S(Z) = Ozk_ 1 {(1 - zS)k-lFk_l(z)} = E 5J(--1)J E k -  1 

k=l j = 0  k=j+l J (zJFk-l(z))(k-1)" 

Hence, using the representation (1) for the polyanalytic function f ,  we obtain 

m ( )  qoj(z) = ( -1 )  j ~ k -  1 (k-l) k=j+l J (zJFk-l(z)) , j = 0, 1 , . . . ,  m -- 1. (23) 

It is readily verified that the condition g E AL2(D) is a necessary and sufficient condition for the 
function (1- Iz l2)k- lg  (k-l) (z) to belong to the space AkL2(D) for any fixed positive integer k. Therefore, 
relation (23) implies the assertion of Corollary 2. [] 
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P r o o f  o f  C o r o l l a r y  6. It is more convenient to find the norm of o T~k+l(z, ~). Using relation (22), we 
obtain 

cr k 

7r']~~ C)= 7r ~ ek,n(C)ek,n(C) = Z (n + k + i) 

+ 

n = 0  n=0  

m = 0  j = 0  

Z ( n + k +  1) 

n = k + l  

~(-1)~ ~ 
m=O j=O 

k n - m + j  k 

( n + J )  ( i n k _ j )  ( n + m - J ) ) t m } t ' ~ - k  
k k ' 

where t = ] ~ ] 2 ,  ( E D .  
Introducing the notation v = m + k - n for n _< k and v = m + n - k for n > k and rearranging the 

summation signs, we have 

or k i k +n 
7rT~~162 Z ( -1)~+n-k  

v----O n=O v = k - n  

k 
u = m + l  j=O 

v=O n = k - u  j=O --  k - v 

+ Z (_l)m(V__ m + 2k + 1) ~ v + k - j  k v + k - m + j  k m - j k t~ 
v = l  k m = 0  j = 0  

( ( ; ) ( ) (  )( ))} + ~ ~ ( _ l ) m ( v _ m + 2 k + i )  ~_~ v + k - j  k v + k - m + j  t" 
k m - j  k ~=:k+l  m=o j=0 (24) 

For v _> 2k + 1, from (24) we obtain 

a ~ =  ~ ( -1 ) re (v - -  m + 2k + 1) v + k - j  k v + k - m + j  
k m - j  k " 

m=O j=O 

(25) 

Hence, taking into account the simplest properties of binomial coefficients, we obtain 

)( )) a . =  ~-~ ( -1)m(v  + m + 1) v + k - j  k v - k + m + j  
k 2k - m  - j  k 

m=O j=O 

( ) ( )) = k j )  k+  
- r n -  k 

= j=k--rn 
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+ ( -1 )m(~  + m  + 1) . + k - j  
k 2 k -  m=kA-1 j = 0  

m - j  k " 

Further, setting n = j - (k - m), we have 

at., ( l:ll II I( I) = E ( _ l ) m ( u + m + l  ) ~ u + n  k v + m - n  
m=o n=o k m - n k 

Z_.,2k t ~j t -~ - r l )  ( ~ ( ) (  ) (  ) (  ) )  
x-" , _ l , m , ~ . , ~ .  k , + n  k ~ + m - n  + 

n k m - n  k " m=kq.-1 n=m-k 

Since ( ~ . ) = 0  f o r j > n a n d j < O ,  i t fo l lows that form>kwehave  

~ ( k n )  ( u + n  + m -  ~k 
~o ~ ) ( m  ~-~)(~ ~ ~ (:)(~ 

+ 

n=rn-k k 
n )  ( m k _ n ) ( U + k - n )  �9 

Therefore, for the coefficients a . ,  v > 2k + 1, we obtain 

( ( : ) / ) (  )( /) a,,= ~_ , ( -1 )m(v+m+l)  ~ v+kn k v + m - n  
m=O n=O m -- n k " 

Hence, in view of relations (12) and (13), for v >_ 2k + 1 we obtain 

a. = v + 1 + 2k(v + 1) = (2k + 1)(v + 1). 

Now let k < v _< 2k. Then from (24) we obtain 

a v 

n=v--k 
E (-1)~'+'~-k(n k + l ) \  j=o ( n k j )  ) ( k - v + j )  ( V + k  

~-1 ( ( k )  ( v + k - j ) ( m k j ) ( v + k - m + j ) )  
"I- E ( - -1 )m(b '  -- m q'-- 2k + 1) ~ j k " 

.~=0 j=o (26) 

Introducing the notation n + k = m and writing the summands in reverse order with respect to m,  we 
can transform the first sum in (26) to the form 

X--, r_ l~+mrm + D k k + j  k v + m - k - j  A =  m - k - j  j v - j  k m=v \ j=0 
/" ~, ] \ (2~_.~m ( ) ( ) ( )  ( ) )  
x-" r - l ~ r ~ , -  ~ + 2k + 1~ k k + j  k 2 ~ , - m + k - j  

v + k - m - j  j v - j  k rn=v j = 0  

= E ( - 1 ) m e v - m + 2 k + l )  E v + k - m - j  ; J  - m + k - j  
m=v j=v-k l] -- j k " 

Setting n = j + m - v and using the simplest properties of binomial coefficients, we obtain (m > v > k) 

A =  E ( - 1 ) m ( v -  m + 2k+ 1) ~ k v + k - n  v 
m=v n=m-k n k ink- n 
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K " , ( _ l , m , v _ m +  2k + D v + k - n  v + k - m + n  
k m n k " 

m : / 2  rl,-~-O 

Substituting this expression into (26), we obtain the same expression for a/2 as given by relation (25). 
Therefore, also for k < v < 2k we have a/2 = (2k + 1)(v + 1). 

Now consider the case 0 < v < k. 
Note that  for m _> v the following relation holds: 

v - j  k v - m + j  k j=0 
_ -  

j=m-/2 v - j  k v - m + j  k " 
(27) 

It follows from relation (24) that  for u _ k we can write 

/__.,k (-1)/2+~-k( n + k + l ) ( / 2 + ~ - ~ - k (  ) (  ) (  ) ( V + k _ j )  ) K-" k k + j  k a/2 ~ 
n=k-/2 j=O n -- j k k - v -J- j 

/ 2 - '  ( ( k  ( k  ( ) ( v - m + j ) )  
+ E ( - x ) m ( v - m + 2 k + l )  ~ j )  v-t- -j) ink-- + k  

k j k m=0 j=0 
= A 1  + A2. 

Set m = n - (k - v).  Then the sum A1 acquires the form 

m ( ) ( ) ( ) ( .) 
a l =  ~ ( - 1 ) m ( m + 2 k + ' X - v ) E  k k + j  k k +  - 3  

m=O j=o v -  j k v -  m + j k " 

Let us transform the sum A2. To do this, let us make the substitution m = 2v - n .  Then we obtain 

)( )( )) A 2 =  E ( - 1 ) n ( n + 2 k + l - v )  v + k - j  k - v + n + j  
k 2v - - j k " n=/2q-1 \ j=0 

Set j + n - v = i.  Then, taking into account relation (27) and returning to the old variables, we can 
express A2 as 

A2 
2/2 m E (-1)m(m"F2knt-l-v)E( k ) (kkJ) ( k ) (k-t-m-j) 

v - j  v - m + j  k " m=v+l j=0 
Using the expressions for A1 and A2 and relations (14), (15), we finally obtain 

a / 2 = A x + A 2 =  E ( - 1 ) m ( m + 2 k + l - v )  k k j k k + m - j  
v - j  v - m + j  k m=0 j=0 

= (2k + 1) (v  + 1). 

Thus 

where t = Iffl 2 
Corollary 6 is proved. 

c ~  

1r?~O+1 ((~, r )  = E ( 2 k  + 1)(v  + 1)t ~ = - -  
v-----O 

[] 

2 k + 1  
(1 - t ) 2 '  
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w R a t i o n a l  approximation 

Let 7"s denote the class of all rational functions of degree at most n with poles outside the disk D. 
A polyanalytic function of the form 

r n - - 1  

k=O, 1...,m-1, 
k = 0  

is called a polyrational function of order m (or an m-rational function). 
By Theorem 2, any polyanalytic function f E AmL2(D) can be uniquely expressed as 

m--1 Ok 
f ( z )  = ~ ~-~Zk {(1 -- Z:)kFk(z)}, Fk e AL2(D), k = 0, 1 , . . . ,  m - 1. (28) 

k = 0  

Using Theorem 3, we can show that for a polyrational function r(z) its components Fk in the repre- 
sentation (28) need not be rational functions. Therefore, for a given polyanalytic function f E AmL2(D), 
we seek its polyrational function of best approximation in the metric (3) in the form 

m-i Ok 
r(z)= Z eTZ ,, k = 0 ,  i , . . . , m - 1 .  (29) 

k = 0  

For a given multi-index (n) = (no, n l , . . . ,  r im-i) with nonnegative components, by 

rn--1 Ok 
r ( = ) ( z ; f ) = ~ - ~ z k { ( 1 - - z S ) k r = k ( z ; f ) } ,  r~keT~=k, k = 0 , 1 , . . . , m -  1, (30) 

k = 0  

we denote the m-rational function "of best approximation of degree at most (n) for the m-analytic 
function (28) in the metric (3) among polyrational functions of the form (29), and by L2/~(,~)(f, D, m) we 
denote the corresponding deviation of a polyanalytic function from a polyrational function of the form (29) 
in the same metric. Obviously, 

m-i ok i 

R e m a r k  4. It follows from relation (31) that  the component r,~ k (z; f )  of the m-rational function of 
best approximation r(n)(z; f )  (30) possesses the following property: 

"~zk{(l--z:)'(Fk(z)--P.,(z))} ; P', ::..}, 

i.e., rnk (z ; f )  is the rational function of best approximation of degree at most nk for the componeut Fk 
of the function (28) in the metric defiued by the following relation: 

0 k { 2 ] il~ 
b-7 {(: - z:lkFk(z)} = ~ 07k{(1 - zS)kFk(z)} dxdy~ . (32) 

% 

This remark will be used later on. 

T h e o r e m  5. If  for some integer k from the closed interval [0, m - 1] the component Fk of the m-  
analytic function (28) from AmL2(D) is not a rational function of degree at most nk, then 

deg{rn~ (z ; f )}  = nk. 
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R e m a r k  5. For m = 1 Theorem 5 was proved in [11], and for m > 1 it was announced in [10]. 

C o r o U a r y  7. Under the assumptions of Theorem 5, L2R(n)(f  , D, m) is strictly monotone decreasing 
with respect to the k + 1 components of the multi-index (n) = (no, nx , . . . ,  nm-1). 

C o r o l l a r y  8. Under the assumptions of Theorem 5, [[r(,~)(- ; f)n2 is strictly monotone increasing with 
respect to the k + 1 components of the multi-index (n) = (no, h i , . . . ,  nm-1). In particular, 

lit(.-:)('; S)II: < lit(.)(', S)II , D, m)}: = Ilfll  - l l r ( ~ ) (  ; S)II . 

C o r o l l a r y  9. I f  f E AmL2(D), then 

m - - 1  

(L21~('~)(f 'D'm)} 2 <- Z (k!)2{L2R'~k(Fk'D)} 2 <- m(L2R( '~) ( f 'D 'm)}  2' 
k=O 

where L2I~(g, D) is the least deviation of the function g E AL2(D) from rational functions belonging to 
T~n in the metric (3). 

To state the following theorem, we need some additional notation. 
Let r,~ (z ; f )  = Pnk (z)/Qnk (z), where P,~k is a polynomial of de~ee at most n~:, and 

lk lk 

Q~k(z)=H(1-za~,k) ~,~, la i , k l<l ,  ~ -~v j , k=vk  <_nk, 
j= l  j=l  

k -- 0, 1 , . . .  , m -  1. (33) 

If g ~ AL2(D), then g(-1,k) will denote a primitive for zkg(z) in the disk D; for z -- 0 this primitive 
is zero, i.e., 

g(-l'k)(z) = tkg(t) dt, z E D. 

T h e o r e m  6. I f  the polyanalytic function 

~-i Ok 
f (z )  = Z ~-k-zk { ( 1 -  z2)kFk(z)} 

k=O 

belongs to the space AmL2( D ), then the following interpolation relations are valid: 

Fk(8)(0) = r(S)(0; f ) ,  s = 0, 1 2(nk - ~k),  
n k ~''" 

F(k-l'k)(aj,k) =r(--kl'k)((2j,k; f ) ,  j =  1 , . . . , I k ,  

F(P)(aj,k)=r(~P)(aj,k;f),  j = l , . . . , l k ,  p = O , 1 , . . . , 2 v j , k - - 2 ,  

(34) 

(35) 

k - - - - 0 , 1 , . . . , m -  1. 
(36) 

For a given multi-index (n) = (no, n l , . . . ,  nm-1), let M(~)(Q) denote the subspace of polyrational 
functions the form 

m-1 Ok ~ p,~k(z ) 
r(=)(z) = ~ ~ t (1 - ze)kO~(z)  j ,  

k=O 

where the polynomials Qnk (z) are defined by relations (33) and fixed, and the Pn~ (z) belong to the space 
of polynomials of degree at most nk, k = 0, 1, . . .  , m  - 1. 

In the case of the approximation of a polyanalytic function f E AmL2(D) by polyrational functions 
from the space 3/I(n)(Q) in the metric of the space L2(D), we obtain the following criterion of the element 
of best approximation. 
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T h e o r e m  7. Suppose we fix the multi-index (n) = (no, h i , . . . ,  nm-1), the function f E AmL2(D), 
and the polynomials Qn~ (z) defined by relations (33) and satisfying the condition deg{Q,~ k } = L'k <_ nk,  
k ---- 0, 1, . . . ,  m - 1. Then in order that the polyrational function 

m-i 0k 
m)(z)= F_, ~z~{( 1-  ~)%~(z)}, 

k----O 

r~(~) = 
Pn~(z) 
Q,~(z ) '  

be the polyrational function of best approximation from the space M(n)(Q) for the polyanalytic function 
f E AmL2(D) in the metric L2(D), it is necessary and sufficient to have the following relations: 

P ( ' ) ( O )  = r O) s = O, i ,  n k  - L'k ( a j , k )  = r ( ~ i ' k ) ( a j , k ) ,  j = i ,  lk ,  ~ k  ~ " ~ 1 7 6  ' ' " ' * '  

('> (:2( F~ (aj,k)=r aj,k), j = l , . . . , l k ,  pmO, 1,...,t'j,k--2, k = 0 , 1 , . . . , m - 1 .  

R e m a r k  6. For m = 1, Theorems 6 and 7 were proved in [12]. 

P r o o f  o f  T h e o r e m  5. Let deg{rnk(z ; f ) }  < nk.  As in [12], consider the function (lal < 1) 

(~k(A) = f fD  . -- zS) k ( F k ( z ) - r n k ( z ;  f) 1 - - - ( i Z ) }  dxdy. 

By Remark  4, we have ~k(0) _< (I)k(A). Therefore,  0 ~ k / 0 A  = 0 for A = 0, i.e., 

/ f D  Ok O k {  1 } dx dy = O. 8 - 7 { ( 1  - z ~ ) k ( F k ( z )  - r n ~ ( z  ; : ) )  } b - 7  (1 - z~)k 1 _ ~ z  

Hence, expanding the function 1/(1 - (~z) (Iz] < 1, ]a I < 1) in the power series, we obtain 

i / D o  k ok -~Zk{(1--ZS)k(Fk(z)--rnk(Z; f ) ) } -~zk{ (1 -z~)kzJ}dxdy=O,  j - - 0 , 1 , . . . .  (37) 

It follows from relation (37) and Corollary 1 tha t  the polyanalytic function 

O k 
Oz k {(1 - zS)k(Fk(z)--r,~k(z; f ) ) }  

from the space Ak+iL~ is orthogonal to the  same space; but  since the space A~ is complete, 
this yields Fk (z) = rnk (z ; f ) ,  z E D .  The  obta ined contradiction proves Theorem 5. [] 

P r o o f  o f  T h e o r e m  6. In what  follows, let k be  an integer from the closed interval [0, m -  1]. Consider 
the function (also see [12]) 

O k Phi(z) + Au(z)~ 2 

where u and v are arbitrary polynomials of degree at most  nk. 
Since q2k(0) _< ~k(A), we have Oq2k/OA ---- 0 for A ---- 0. By Theorem 5, deg{rnk(z;  f )}  = nk.  

Therefore, since the polynomials u and v (of degree at most  nk) are arbitrary, it follows from the relation 
0 ~ k / 0 ~  = 0 that  

:fo o, o,{  iz>} -~Zk{(1--ZS)k(Fk(z)--r,~,(z', f ) ) } ~ - f i  (1- -zS)  kQ~, (z )  dxdy=O (38) 
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for any polynomial T(z) 
obtain 

where 

of degree at most 2nk. Choosing the polynomial T(z) from relation (38), we 

f f D  Ok Ok { (1 - z )k(Fk(z) - ; / ) )  } 8 7 {  (1 - z )kz } = O, 

s = O, 1 , . . .  , 2(nk -- uk), 

~ - z k  { ( 1  - -  Z~,)k (Fk(Z) -- rnk (Z ; f )  ) }gl (Z) dx dy = 0, 

/jo  
~-~-zk { (1 - zs)k(Fk(z) -- rnk(z ; f ) )  }g2(z) dxdy = O, 

j = l , 2 , . . . , I k ,  p = 0,1,  . . .  , 2uj,k -- 2, 

(39) 

(4o) 

(41) 

0 k 1 , g2(z) ---- ~ (1 - zz) z r -(-~: z~j,-----k)%+--- ~ . gl(z) -= (1 -- zS)k 1 

Using Corollary 5, from relations (39) and (41) we obtain relations (34) and (36) of Theorem 6. To 
prove relation (35), let us calculate the integral on the left-hand side of relation (40). 

Set 

/ ) =  F _ a S ,  
5=0 

Expanding the function 1/(1 - z~), Izl < 1, in its power series, let us express relation (40) as 

aj-~zkzk {(1-- zS)kzS}E aJ ( 1 -  zS)kzJ}dxdy=O. 
.= 5=o 

Hence, using Lemma 1, we obtain 
oo ~ j 

j=Eoajj +k + l = 0 ,  

which is equivalent to relation (35). [] 

P r o o f  o f  T h e o r e m  7. The proof is similar to that of Theorem 4 from [12] with the use of Remark 4. [] 

P r o o f  of  C o r o l l a r y  9. Suppose that the component Fk(z) of the fimction (28) is given by Fk(z) = 
~":~5c~=0 aj,kZ5 and 

r , ~ ( z ; f k ) - - E b j , k z S ,  p , k ( z ; F k ) = E c j , k z 5  
5 =0 5 =0 

are its rational functions of best approximation of degree at most nk in the metrics defined by relations (32) 
and (3), respectively. Then, using Remark 4 and relation (4), we obtain 

= las,k - c s ,k l  2 
{n2R('~)(f 'D'm)}2 7rE(k!)2k=O j=o 'as'k---bs'kl2-~ k + 1 <- 7r E (k!)2k=0 j=0 j ~ -  k + 1 

m--1 
<- E (k!)2{L2Rnk(Fk'D)} 2" (42) 

k=O 
Further, we have 

Relations (42) and (43) yield the assertion of Corollary 9. [] 

This research was supported by the Russian Foundation for Basic Research under grant No. 99-01-00119. 

626 



R e f e r e n c e s  

1. M. B. Balk, Polyanalytic Functions, Akad. Verlag, Berlin (1991). 
2. E. P. Dolzhenko, "On the boundary  behavior of the components of a polyanalytic function," Dokl. Ross. Akad. Nauk 

[Russian Acad. Sci. Dokl. Math.], 338, No. 5, 585-588 (1994). 
3. E. P. Dolzhenko and V. I. Danehenko, "On the boundary  behavior of the solutions of a generalized Cauchy-Riemann 

equation," in: Algebra and Aanalysis. Abstracts of Papers of  the Conference Dedicated to the lOOth anniversary of 
B. M. Gagaev [in Russian], Kazan (1997), pp. 70-73. 

4. E. P. Dolzhenko and V. I. Danchenko, "On the boundary  behavior of the derivatives of polyanalytic functions," in: 
Current Problems of Function Theory. Abstracts of Papers of the 9th Saratov Winter Workshop [in Russian], Saratov 
(1997), p. 54. 

5. E. P. Doizhenko, "On Boundary Properties of the Components  of Polyharmonic Functions," Mat. Zametki [Math. Notes], 
63, No. 6, 821-834 (1998). 

6. E. P. Dolzhenko and V. I. Danchenko, "On the boundary  behavior of solutions of a generalized Cauchy-Riemann 
equation," Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. But1.], No. 3, 16-25 (1998). 

7. A. K. Ramazanov, "Representation of the space of polyanalytic functions as a direct sum of orthogonal subspaces," in: 
International Conference on Function Approximation Theory Dedicated to the Memory of  P. P. Korovkin. Abstracts [in 
Russian], Kaluga (1996), pp. 178-179. 

8. A. D. Koshelev, "On kernel functions for the Hilbert space of polyanalytic functions in the  disk," Dokl. Akad. Nauk 
SSSR [Soviet Math. Dokl.], 232, No. 2, 277-279 (1977). 

9. G. M. Fikhtengol'ts, A Course of  Differential and Integral Calculus [in Russian], Vol. 2 Nauka, Moscow (1970). 
10. A. K. Ramazanov, "On the properties of polyrational functions of best approximation," in: Current Problems of  Function 

Theory. Abstracts of Papers of  the 8th Saratov Winter Workshop [in Russian], Saratov (1996), p. 91. 
11. Kh. M. Makhmudov, "On best rational approximations of functions of a complex variable integrable over an area," Mat. 

Zametki [Math. Notes], 45,  No. 4, 89-94 (1989). 
12. N. S. Vyacheslavov and A. K. Ramazanov, "Interpolation properties of rational functions of mean-square best approxi- 

mation on the circle and in the disk," Mat. Zametki [Math. Notes], 57, No. 2, 228-239 (1995). 

KALUGA BRANCH OF N. 1~. BAUMAN MOSCOW STATE TECHNICAL UNIVERSITY 

627 


