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ON 6 - D E R I V A T I O N S  OF LIE A L G E B R A S  
V. T. F i l ippov  UDC 512.554 

Let A be an algebra over a unitai commutative associative ring �9 containing �89 
An antiderivation of A is a O-linear mapping r : A ~-~ A satisfying the equality (xy)r = - ( x r  - 

x(yr for arbitrary x, y E A. The author used this notion in [1] while studying Lie algebras that 
satisfy a certain identity of degree 5. In particular, it was proven in [1] that if ~ E �9 then every prime 
O-algebra Lie possessing a nonzero antiderivation satisfies a standard identity of degree 5. It was also 
proven in [1] that 3-dimensional simple Lie algebras over a field serve as examples of simple algebras 
with a nonzero antiderivation. Antiderivations of Lie algebras were also considered by N. C. Hopkins [2] 
who proved that if L is a central simple finite-dimensional Lie algebra over a field of characteristic 
p ~ 3, 5 with a nondegenerate trace form then L has no antiderivations whenever dim L > 4. In the 
present article we prove in particular that this theorem admits a broad generalization. 

Given an arbitrary 8 E O, a 6-derivation of A is defined to be a O-linear mapping r : A ~-~ A 
satisfying the identity 

(xy)r = 8(xr + ~x(yr (1) 

where x and y are arbitrary elements of A. 
If 5 = 1 then r is a derivation, and if 8 = - 1  then r is an antiderivation of A. 
Construction of some integrable dynamical systems and their solutions uses the so-called R-matrix 

method (see, for instance, [3]) which is connected with the notion oi' double Lie algebra (see the defini- 
tion below). In the present article we introduce the notion of the mutant A~ of a O-algebra A which is 
determined by a 5-derivation r and prove in Theorem 1 that, under some constraints on the additive 
group of the ring O, the mutant A~ is also a Lie algebra. In this case the 5-derivation r determines 
a double Lie algebra structure on the 0-module of the algebra A (Corollary 1). 

We prove that every prime Lie O-algebra with a nondegenerate symmetric invariant bilinear form 
has no 5-derivations whenever 8 r -1 ,  0, �89 (Theorem 3). By the way we prove that if A is an arbi- 
trary 8 ( 5 -  1)-torsion free Lie O-algebra with a symmetric invariant bilinear form then the restriction 

of the 8-derivation r to the square of this algebra is a symmetric mapping (Theorem 2). 
We next consider the case of 8 = -1 .  We prove that every prime Lie O-algebra A (~ E O) 

with a nondegenerate antiderivation is a 3-dimensional simple algebra over the field of fractions of 
the center ZR(A)  of the algebra R(A)  of right multiplications (Theorem 5). This assertion ensues from 
Theorem 4, claiming that the algebra A is an h-algebra (see the definition below), and the description 
for h-algebras in [1, Theorem 2]. Theorem 5 implies in particular that if A is a central simple Lie 
algebra over a field of characteristic p ~ 2, 3 with a nondegenerate symmetric invariant bilinear form 
then A has no antiderivations whenever dim A > 4 (Corollary 2). 

We give a complete description for the �89 of an arbitrary prime O-algebra A (~ E O) 
with a nondegenerate symmetric invariant bilinear form. We prove that a linear mapping r : A ~-~ A 
is a �89 if and only if r e F(A), where F(A) is the centroid of the A (Theorem 6). This result 
implies in particular that if A is & central simple Eie algebra over a field �9 of characteristic p ~ 2, 3 
with a nondegenerate symmetric invariant bilinear form then every �89 r has the shape 
xr  = ax ,  where a e �9 (Corollary 3). 

Observe that if 8 = 0 and A 2 r A then by (1) every nonzero endomorphism r of the O-module 
of A such that (A2)r = 0 is a nonzero 0-derivation. If A 2 = A and, in particular, A is a simple 
algebra then A has no nonzero 0-derivations. Henceforth we assume that (5 ~ 0. The case of 8 = 1 
is not inspected either, since the definition of 1-derivation coincides with the standard definition of 
derivation of a Lie algebra. 
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In what follows, unless otherwise stated, A is assumed to be an arbitrary Lie ~-algebra. To simplify 
notations, we write words of the shape w = ( . . .  ( x l x2 ) . . . ) x , ,  without parentheses: w = x l x 2 . . ,  xn. 

We denote by R~ the operator of the right multiplication by x, x E A, and denote by R(A)  
the algebra of right multiplications of A, i.e., the associative algebra generated by the identity operator 
and all operators of right multiplications of A. We denote the center of R(A)  by ZR(A)  and denote 
the annihilator of A by Ann A. 

We recall that the operators of right multiplication in A are derivations. 
Given an arbitrary function f ( x ,  y, z), we define the operator ~r(x, y, z) as follows: 

o(~ , y , z ) f ( x , y , z )  = f ( x , y , z )  + f ( z ,~ , y )  + f(y, z, ~). 
Observe that the Jacobi identity is written down in our notations as follows: a(x,  y, z ) xyz  = O. 

Let xs(y,  z, t) be a standard (Lie) polynomial of degree 4. Using the operator a, we can write 
this polynomial in an arbitrary algebra as follows: xs(y,  z, t) = a(y, z, t ) (xyz t  - xy tz) ,  xs (y ,  z, t) = 
a(y,  z, t ) (xyz t  - xzyt ) .  From here and the Jacobi identity we obtain the identities 

�9 s ( y , z , t )  = ~ ( y , z , t ) ~ y ( z t ) ,  (2) 

~ ( y , z , t )  = ~(y, z,t)x(yz)t.  (3) 
Observe that the operator s(y, z, t) is skew-symmetric in y, z, t. 

We put 
q ( x , y , z , t , u )  = ~ ( y , z , t ) ~ -  ~us(~,z,t) .  

By definition, xs(y,  z, t) is a skew-symmetric function in y, z, t. Therefore, q(x, y, z, t, u) too is 
a skew-symmetric function in y, z, t. 

In line with [1], we understand an h-algebra to be a Lie algebra that satisfies the identity y z ( t x ) z  + 
yx (zx ) t  = O. 

It is well known (see, for instance, [1, p. 688]) that an algebra A is an h-algebra if and only if 
the identity q(z, y, z, t, u) = 0 holds in A. 

Let a be a fixed nonzero element of the ring ~. We call an algebra A an a-torsion free algebra if, 
for every a E A, from aa = 0 it follows that a = 0. 

Henceforth ~b stands for an arbitrary 6-derivation of an algebra A, where 6 is a fixed nonzero 
element of the ring #. Unless otherwise stated, A is assumed 6(6 - 1)-torsion free. 

Observe that if # is a field then the last assumption is equivalent to the condition 6 # 0, 1. In this 
case r is not a derivation of A and its restriction to A 2 is nonzero. 

If D is an arbitrary derivation of A and [r D] = eD - De then it is easy to show that 

(xy)[r = 6(x[r + 6x(y[r 

for all x, y E A; i.e., [r D] is a 6-derivation of A. In particular, [r R~] is a 6-derivation of A for every 
u E A .  

Define the new multiplication (o) on the #-module of the algebra A by setting x o y = (xy)r 
for arbitrary x, y E A. By bilinearity and anticommutativity of the multiplication of the algebra A, 
the e-module of A becomes an anticommutative ~-algebra under the multiplication (o). We call this 
algebra the mutant of A and denote it by A4. 

T h e o r e m  1. I f  A is a 6(6 - 1)-torsion free Lie r then the mutant  A~ of  A is a Lie 
-algebra. 

PROOF. We first prove that 
~ 1 6 2  (4) 

for all x, y, z E A. By anticommutativity, the Jacobi identity, the definition of a, and (1) we have 

6 ( 6 -  1)~(~, y, z)~y(zr = ~(~, y, z)[~2~(zr - 6~y(~r 

= ~(x, v, z)[-62(zr - 6~v(~r = ~(~, v, z)[-62(~r + ~2(~r - 6~v(zr 
= -~ (~ ,  y, z)[62(zr + 62y(zr + 6~ (zr  
= - ~ ( ~ ,  y, ~)[62(~r + 62~(~r + 6xy(~r 

= - ~ ( ~ ,  y, z)[~(~y)r + 6xy(zr = - ~ ( ~ ,  y, z)(~yz)r = 0. 
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Since A is 5 ( 5 -  1)-torsion free, (4) follows. 
By (1), (4), and the Jacobi identity we have 

5~(~, u, z)(~u)r = ~(~, y, z ) (~y z ) r162  ~(z, u, z)(~u;)r  = 0. 

This implies the equality 
~(x,y,z)(xy)r 

By the definition of the multiplication (o) and (5) we have 

~(~, u, z)(x o u)o z = ~(x,  u, z)[(~y)r162 = 0. 

(5) 

Let r be a &derivation of A such that 1 E O. Setting R =  r in (6), by (1) we have 

�89 1 (~ �9 y) ,  = (~r + x(yr = ( ~ ) r  = ~ x  o y. 

This equality and Theorem 1 imply the following 

Coro l l a ry  1. If 1 26(~--1) E O then the 5-derivation r determines a double Lie algebra structure on 
the Lie O-algebra A. 

A bilinear form on an algebra A is a 0-bilinear mapping 7 : A x A ~ 0, where A x A is 
the Cartesian square of A. 

Henceforth we write (z, y) in place of 7(x, y). 
We call a bilinear form (x, y) symmetric if 

and invariant (or associative) if 

for all x , y , z  E A. 

(x,y)  = (~,~),  (7) 

(xy, z) = (~,yz)  (8) 

For z = y, from (8) and anticommutativity of A we obtain the equality 

(xy, y ) = 0 .  (9) 

We call a symmetric form (x, y) nondegenerate if there is no nonzero a e A such that (A, a) = 0. 
We say that a O-linear mapping r : A ~ A is symmetric (with respect to the form (x, y)) if 

(~r  = (~ ,yr  (10) 

for all x, y E A. 
From now on, we assume that the algebra A is furnished with a symmetric invariant bilinear form 

(x,~). 
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(6) 

Therefore, Ar satisfies the Jacobi identity; i.e., Ar is a Lie algebra, which completes the proof of 
the theorem. 

If End,i, A is the endomorphism algebra of the O-module of A and R E End,I, A then, in line with 
[3], we say that R determines a double Lie algebra structure on A if the O-module of A is also a Lie 
algebra under the new multiplication 



T h e o r e m  2. I f  A is an arbitrary Lie C-algebra (�89 E ~) with a symmetric invariant bilinear form 
(x, y) and ~ is a 5-derivation of A such that A is ~(5 - 1)-torsion free, then the restriction r of r to 
the square "A 2 of  A is symmetric. In particular, if  A = A z then the mapping r is symmetric. 

PROOF. It suffices to show that 

((tz)r ~ y ) =  (t~. (xy)r 

for arbitrary x, y, z, t E A. 
Successively using (1), (8), (4), (8), and the Jacobi identity, we obtain 

(11) 

= 6~(~ ,y , z ) ( ( t r  + ~ ( ~ , y , z ) ( t ( z r  
= ~o(~, y, z)((tr xy) + ~,~(~,y ,z)( t , (zr  
= ~ ( ~ , y , z ) ( ( t r  xy) - ~ ( t ,~ (~ ,y , z )~y(zr  

= ~ ( ~ ,  ~,z)((tr = ~ ( x ,  ~, z)(tr z(~y)) = -~ ( t r  = o. 

This implies the equalities 

((tz)r xy) + ((ty)r z~) + ((tx)r yz) = o, 
- ( ( z t ) r  ((zy)r t x ) -  ((zx)r yt) = 0, 
((yt)r z~) + ((y~)r + ((y~)r xt) = 0, 
((~t)r y~) + ((~z)r + ((~y)r ~t) = 0. 

Add these equalities together and collect similar terms by using commutativity of A to obtain 
2( ( t z ) r  - 2((xy)ek, tz) = 0, which implies (11) after cancellation by 2. The theorem is proven. 

L e m m a  1. The following equalities hold for all x, y, z, t, v, w E A: 

PROOF. 

(~ (y ,  z , t ) , w ) =  (~,(y,  z,t), ~), 
( q ( x , y , z , t , v ) , w )  = ( q ( w , y , z , t , v ) , x ) ,  

(r(x, v, w)(q(x ,y ,  z , t ,  v), w) = O. 

Using (2), (8) twice, (7), the Jacobi identity, and again (2), we obtain 

(12) 
(13) 
(14) 

( ~ ( y ,  z, t), w) = ,~(y, z, t)(~y(zt), w ) =  ~ (y , z , t ) ( xy ,  z t w ) =  ~ ( y , z , O ( x , y ( z t ~ ) )  
= a ( y , z , t ) ( x , w ( z t ) y )  = cr (y , z , t ) (w(z t )y ,x )  = a ( y , z , t ) ( w y ( z t )  + w ( z t y ) , x )  

= a ( y , z , t ) ( w y ( z t ) , x )  + ~r(y , z , t ) (w(yz t ) ,x)  
= c r (y , z , t ) (wy(z t ) , z )  = ( w s ( y , z , t ) , x ) ,  

and (12) is established. 
Using the definition of the function q, (8), (12), again (12), (8), and again the definition of q, we 

obtain 

(q(x,y,z, t ,v) ,w) = ( z s (y , z , t ) v ,w) - (xvs (y , z , t ) ,w)  
= (x~(y, z, t), vw) - (w~(y, z, t), =v) = (vw~(y,z, t) ,=)+ (w~(y, z , t ) , ~ )  

= - (wvs (y , z , t ) , x )+  (ws(y , z , t )v ,x)=  (q(w,y,z,t ,  v) ,x) ,  

and (13) is established. 
By the definition of q we have 

q ( x , y , z , t , x )  = x~(y ,z , t )~ .  (15) 
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From here and (9) we infer the equality 

(q (x ,y , z , t , x ) , x )  = (xs(y , z , t )x ,x )  = O. 

Linearize (16) in x: 

(16) 

[(q(x,y,z, t ,  v), w) + (q(w,y ,z , t ,  v), x)] + [(q(w,y,z , t ,x) ,  v) 
+(q(v ,y ,z , t ,x) ,w)]  + [(q(v,y ,z , t ,w) ,x)  + (q(x ,y ,z , t ,w) ,v)]  = O. 

Apply (13) to the last equality: 

2(q(x ,y , z , t , v ) ,w)  + 2(q(w,y , z , t , z ) , v )  + 2(q(v ,y , z , t ,w) ,x )  = O. 

After cancellation by 2 we arrive at (14), finishing the proof of the lemma. 

L e m m a  2. The following equalities hold in the algebra A: 

~(y, ~,t)xt[fy~)r = ~(y,z , t )~( tr  (17) 

PROOF. 

~(,5 + 1)~(~ ,z , t )~( t r  -,52(xr ~, t ) +  [ ~ ( ~ ,  z, t)]r 

Using (3), (1), again (3), twice the Jacobi identity, (5), and (4), we obtain 

(18) 

[x~(u, ~,t)]r = ~(y,z , t )[~(yz)t]r  = ,5~(y,z,t)[~(y;)lCt + ,5~(y,z , t)~(yz)(tr  
= ,52~(y,~,t)(xr + ,52~(y,~,t)~[(yz)r + ,5~(y,~,t)~(y~)(tr 

= ,52(xr + ,52a(y,z,t)z[(yz)r + &r(y , z , t ) z (yz ) ( t r  
= ,52(xr z, t) + `52a(y, z, t)zt[(yz)r + `52a(y, z, t)z[(yz)r 

+,5a(y ,z , t )z( tr  + ,sa(y,z,t)z[(yz)(tr 
= ,52(zr z, t) + ,52cr(y,z,t)zt[(yz)r + 6a(y , z , t ) z ( t r  (19) 

On the other hand, by (2) and (1) we have 

[xs(y, z ,t)]r = ~(y, z,t)[xy(zt)]r = ~(y, z , t)[xt(yz)]r 
= ,5~(y,z,t)(=t)r + ,5~(y,~,t)=t[(y~)r 

= `52 a(y, z, t ) (zr  + `52 a(y, z, t )z( tr  + ,sa(y, z, t)zt[(yz)r 
= ,52(zr + ,sa(y,z, t)zt[(yz)r + ,52~(y,z, t)z(tr  

Subtract the last equality from (19) and collect similar terms by using skew symmetry of s to obtain 
the equality 

6(`5- 1)a(y,z , t)xt[(yz)r 1)a(y ,z , t )x ( t r  O. 

After cancellation by 6(6 - 1), we arrive at (17). 
Using (5), twice the Jacobi identity, (1), (3), (2), twice (1), (3), (2), skew symmetry of s, the Jacobi 
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identity, and (4), we obtain 

0 = 52 a(y, z, t)x[(yz)r = 52a(y, z, t)z[(yz)r - 52a(y, z, t)xt[(yz)r 

= -52a(Y,z,t)(xr + 5a(y,z,t)[x(yz)]r 
+52 o'(y, z, t)[(xt)r (yz) -- ha(y, z, t)[xt(yz)]r 

= -52(xr  5a(y,z,t)[x(yz)]r + 52~(y,z,t)[(xt)r 5[xs(t,y,z)]r 

= -52(xr  z, t) - ha(y, z, t)x(yz)(tr + a(y, z, t)[x(yz)t]r 

+53 ~(y, z, t)(xr + 53 a(y, z, t)x( tr - 5[xs(t, y, z)]r 

= -52(xr - 5a(y,z,t)x(yz)(tr + [xs(y,z,t)]r 
+53(xr t, v, z) + 53 ~(v, z, t)x(tr - 5[xs(v, z, t)]r 

= (53 - 52)(~r z , t ) -  ( 5 -  1)[~s(v, z, t)]r 

-ha(y,z , t )x(yz)( tr  + 53a(y,z,t)x(tr 
= (53 - 52)(~r ~, t ) -  (5 - 1)[xs(v, z ,t)]r  

-&( y, z, t)~( tr )(v z) - 5~(v, ~, t)~[v z( tr )1 + 5 3 ~(v, z, t )~( tr )(v ~) 
= (53 - 52)(xr  (5-- 1)[xs(y,z,t)]r (53 -52)a(y ,z , t )x( tr  

= ( 5 -  1)[52(xr [xs(y,z,t)]r 5(5 + 1)a(y,z,t)x(tr 

After cancellation by 5 - 1, we arrive at "(18), finishing the proof of the lemma. 
We recall that  a nonzero algebra is said to be prime if the product of arbitrary two nonzero ideals 

of the algebra is nonzero. 
It is well known that  the operator ring �9 of an arbitrary prime O-algebra B is an integral domain 

and B is O-torsion free; i.e., for arbitrary a E �9 and b E B, it follows from ab = 0 that  a = 0 or 
b = 0 .  

Furthermore, it is well known that every prime Lie algebra has no nonzero solvable ideals; in 
particular, the algebra is not solvable itself. 

The proof of the following lemma is analogous to that  of Lemma 5 in [1] and we expose it just for 
the sake of completeness. 

L e m m a  3. IrA is a prime Lie algebra then, for an arbitrary nonzero ideal I and every 5-derivation 
r (5 # 0), the restriction r of r to I is nonzero as well. 

PROOF. Suppose that  there is a nonzero ideal of A and a nonzero 5-derivation r such that  I r  = O. 
By the definition of 5-derivation, for arbitrary a E I and x E A we then have 5a(xr = ( a x ) r  
5(ar  = 0. Since 5 # 0, it follows that a(xr = 0. Therefore, I (Ar - 0; i.e., Ar  C Ann I,  where 
Ann I is the annihilator of the ideal I. It is easy to see that the annihilator of an ideal in any Lie 
algebra is again an ideal. Since Ar C Ann I,  the ideal N of A generated by all elements of Ar  lies 
therefore in Ann I. Hence, I N  = 0 and, since A is a prime algebra and I # 0, we have N = 0 and 
Ar  = 0. Therefore, r = 0, which contradicts our supposition. The lemma is proven. 

Henceforth, unless otherwise stated, we assume that  A is a prime Lie O-algebra furnished with 
a nondegenerate symmetric invariant bilinear form ( x, y). 

Let us prove that  if a E A then 
(AS, a) = 0 =:~ a = 0. (20) 

Indeed, by invariance of the form, (7), and the condition (A2, a) = 0 we have (ay, x) = (a, yx) = 
(yx, a) = 0 for all x, y E A. By nondegeneracy of the form, we infer the equality a v = 0; i.e., 
a E Ann A. Since A is a prime algebra, it follows that  Ann A = 0 and so a = 0; i.e., (20) holds. 

L e m m a  4. If  A is a prime algebra, A is endowed with a nondegenerate symmetric invariant 
bilinear form ( x, y ), and r is a 5-derivation of A (5 # 0, 1), then 

(55 + 5 -  1)[xs(y,z,t)]r162 (21) 
for all x , y , z , t  E A. 
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PROOF. Let x, y, z, and t be arbitrary elements in A and let v be an arbi trary element in A 2. 
Using (17), (8), (7), (11), twice (1), trice linearized (9), the definition of a, (11), and twice (2), we 
obtain 

o-(v, z, t )(x( tr )(vz), ~) = . ( y ,  z, t)(xt[(yz )r , )  = - o ( y ,  z, t ) ( (vz)r  ~) 
= - ~ ( v ,  z, t)((v z)r ~t~) = - ~ ( v ,  z, t)(xt~, (v z)r ) = - ~ ( v ,  z, t )((~t~)r v z) 

= -55  ~(v, z, t)( (~r v z) - 55 ~(v, z, t)(~(tr )~, v z) - ~ ( v ,  ~, t)(~t(vr y z) 
= ~2~(v , z , t ) ( (~r  ~2~(v , z , t ) (~ ( t r  6~(v , z , t ) (x t ( v z ) , v r  
= ,52~(y,z, t)((xr ,52o.(v,z,t)(~(tr 6~(v ,z , t ) (~v(~t) ,vr  

= 52 ~(v, z, t ) ((~r )v(zt), ~,) + ,52 o-(v, ~, t)(~(tr z), v) + ,5,,(v, z, t)([~v(zt)]r , )  
= ,52((xr v) + 62~(v , z , t ) (~( t r  ,5 ( [~(v , z , t ) ] r  

Collecting similar terms, we arrive at the equality 

(,52(xr z, t ) + (,52 - 1),,(y, z, t )x( tr + ,5[xs(y, z, t )]r v ) = O, 

which by (20) implies 

,55(xr + (,52 - 1)~(v,~,t)~(tr  + , 5 [ ~ ( v , z , t ) ] r  o. 

Hence, 
- ( 5  + 1)(5 - 1)o(v ,z , t )x( tr  = ~-~(~r z,t)  + ~ [ ~ ( v ,  z,t)]r 

Multiply the last equality by 6: 

-~ (8  + 1 ) ( 5 -  1),~(y,z , t)x(tr  = , 9 ( x t ) s ( y , z , t )  + 82[xs(y, z, 0]r  

Multiply (18) by 8 - 1 to obtain 

5(6 + 1)(6 - 1)a(y , z , t ) z ( t r  = -52(5 - 1)(zr z, t)  + (5 - 1)[z,(y, z, t)]r 

Adding the last two equalities and collecting similar terms, we find that  

65(zr + (62 + 6 - 1)[z~(v,z, t)]r = o. 

This implies (21). The lemma is proven. 

T h e o r e m  8. A prime Lie r A (�89 E ~ ) witfi a nondegenerate symmetr ic  invariant bilinear 
form fias no nonzero 6-derivations whenever $ ~ -1 ,  O, 1, 1. 

! 1 Suppose that  r is a nonzero 8-derivation. Let y, z, t, and w PROOF. Let 8 E r  8 # - 1 , 0 ,  2, �9 
be arbitrary elements in A and let x and v be arbitrary elements in A 5. By (21), (12), and (11) we 
have 

(65 + 6 -  1)([x~(v, z,t)]r v ) =  -65((xr z , t ) ,  v) 
= - 6 2 ( ~ ( v ,  z, t), xr = - 6 ~ ( [ ~ ( v ,  z, t)]r ~). 

Interchanging x and v in (22), we obtain 

(65 + 6 -  1) ([vs (y , z , t ) ]r  -62([xs(y ,z , t ) ]r  

From here and (22) we infer that  

(62 + 8 - 1)2([xs(y , z , t ) l r  -65(55 + 8 - 1 ) ( [ v s ( y , z , t ) l r  84([xs(y ,z , t ) l r  

(22) 
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Hence, 

and by (20) we have 

[(~2 + ~_  1)2 _54]([x~(y,z,t)lr 

[(~2 + 5 -  1) 2 - 54][xs(y,z,t)]r o. 

Since (52 + 5 -  1) 2 - 5 4  = 2 ( 5 -  1)(5 + 1 ) (5 -  �89 the preceding equality implies 

2(5-1) (5  + l) ( 5 - 1 )  [xs(y,z,t)]r O. (23) 

Since 1 E r and 5 # -1, �89 it follows that 2 ( 5 -  1)(5 + 1)(5 - 1 )  ~ 0. Since A is ~-torsion free, 
from here and (23) we obtain 

[ ~ ( y , z , t ) ] r  (24) 

Let I be a r of the ~-module of A which is generated by all elements of the shape xs(y, z, t), 
where x E A 2 and y, z, t E A. From (24) we find that I r  = 0. Since Ru, is a derivation of A; therefore, 
xs(y, z, t)w E I, I is an ideal of A. Therefore, by Lemma 3 from the equality Iq~ = 0 we obtain I = 0. 
Hence, in A we have the identity xs(y, z, t) = O, where x E A 2 and y, z, t E A. From (12) and this 
identity we find that (ws(y, z, t), x) = (xs(y, z, t), w) = 0. This fact and (20) imply the identity 

w~(y,z,t)=o. (25) 

From (2) and anticommutativity of A we have 

w ~ ( y , z , t )  - y~ (w , z , t )  = ~(y ,~ , t ) , , , y ( z t )  - ~ ( w , z , t ) y ~ ( z t )  = 2,, ,y(zt).  

Using (25), we now deduce the identity wy(zt) = 0. Hence, A is solvable, which contradicts the fact 
that it is prime. Thus, r is the zero mapping, which completes the proof of the theorem. 

EXAMPLE. Let L be a 3-dimensional simple Lie algebra over a field q~ of characteristic p #1 2, 3. 
The results of the present article imply that L can have nonzero &derivations if and only if 6 - 1, ~, -1 .  
If 6 - 1 then, since L is perfect, all derivations are inner, i.e., they are exhausted by the operators 
of right multiplication. If 5 = �89 then by straightforward calculations we check that all �89 
are exhausted by the mappings Ca : x ~ oLx, where a E ~. The antiderivations of the algebra L are 
described in [1, p. 694]. 

Henceforth we assume that 1 E �9 and consider the case of 5 = -1 ,  �89 
Suppose that 5 = -1 ,  i.e., r is an antiderivation of the algebra A. The following equalities hold 

in A: 
[xs(y,z,t)]r = (xr (26) 

~(y, z, t ) ~ ( y r  z, t) = 0 (27) 

for all x, y, z, t E A (a proof of (26) and (27) is given in [1, Lemma 3] and we expose it here for the sake 
of completeness). 

Equality (26) follows from (21) with 5 = -1.. Prove (27). By (2) and the definition of antideriva- 
tion, we have 

[x~(y, z ,t)]r  = ( , ( y , z , t ) [xv ( z t ) ] r  = -~ , ( y , z , t ) [ ( xy ) r  + ~v[(zt)r 
= ~ ( y , z , t ) ( ~ r  + , , ( v , z , t ) [~ (y r  + [xy(~r + xy[z(tr 

= (~r z,t)  + ~(v , z , t ) [~ (vr  + ~t[(vr + ~z[t(vr 
= (~r ~,t)  + ~ ( y , z , t ) [ ~ ( y r 1 6 2  

= (xr z, t) + ~ ( y , z , t ) x s ( v r  

From here and (26) we get (27). 
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L e m m a  5. The following equalities hold in A: 

~ ( u , z , t ) q ( x , u r  = o, 

q(x, u, ~, t, ~)r  = q(xr u, z, ~, u), 
2 q ( x , y , z , t , u ) r  = - q ( x , y , z , t , u r  

(28) 
(29) 
(30) 

for all x , y , z , t , u  E A. 

PROOF. Equality (28) follows from the definition of the function q and (27). 
Since the commutator [r Ru] = CRu - Rue is an antiderivation for every operator R~, of right 

multiplication in A, by virtue of (26) we have the equality 

x~(u,z,t)[r = ~[r 

Whence 
[~s(u,~,t)]r [~s(u, z,t)u]r = (~r z , t ) -  (~u)r z,t), 

and in view of (26) 

(xr ~, t )~ , -  [~s(u, z,t)u]r = (xr z , t ) -  [(~u)~(u, z, t)]r 

Therefore, 
[ ~ ( ~ ,  z, ~)~,]r [(x~)~(y, z , t)]r  = (xr z , t )~  - (~r z, t). 

This equality and the definition of q imply (29). 
Using the definitions of q and antiderivation, twice (26), and again the definition of antiderivation, 

we obtain 

qCx, y , z , t , ~ ) r  [~s(y, z , t ) u ] r  z, t)]r 
= - [ z s ( y ,  z, t)lr - z , (y ,  ~, t ) ( , , r  (x~,)r ~, t) 

= - ( x r  ~, t ) ~ -  ~s(~, z , t ) (~r  + (~r z , t )  + ~ (~r  z, t) 
= - q ( x r  q(x,y ,z , t ,ur  

From (29) and the preceding equality we infer (30): 

2 q ( z , y , z , t , u ) r  = q ( z , y , z , t , u ) r  q ( x , y , z , t , u ) r  
= q ( x r  ~) + q ( x , u , z , t , u ) r  

= q ( x r 1 6 2 1 6 2  = - q ( x , y , z , t , u r  

The lemma is proven. 

L e m m a  6. If  the form (x, y) is nondegenerate then the following equality holds in A: 

[q(w, y, z, t, v) - q( , ,u ,z , t ,w)]r  = 0 

for all y, z, t E A and v, w E A 2. 
PrtOOF. Successively using (30), (14), (11), and (29), we obtain 

(31) 

2(q(x,y,z,  t, v)r w) = - (q (x , y , z , t ,  vr w) 
= (q (w ,y , z , t , x ) , v r  (q(vr  
= (q(w,y , z , t , z ) r  + (q(vr  
= ( q ( w , y , z , t , z ) r  (q(v ,y ,z , t ,w)r  (32) 
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Interchange v and w in (32): 

2 ( q ( x , y , z , t , w ) r  = ( q ( v , y , z , t , x ) r  + ( q ( w , y , z , t , v ) r  

Subtracting this equality from (32), we arrive at the equality 

2[(q(x, y, z, t, v)r w) - (q(x, y, z, t, w)r v)] 
= ( q ( w , y , z , t , x ) r  ( q ( v , y , z , t , x ) r  - (q (w ,y , z , t ,  v ) r  q ( v , y , z , t , w ) r  

In view of (11), (13), and (29) we have 

2[ (q (x , y , z , t , v ) r  - (q (x , y , z , t ,w) r  
= 2 [ ( q ( x , y , z , t , v ) , w r  (q (x , y , z , t ,w) , v r  
= 2 [ ( q ( w r  (q ( v r  

= 2 ( q ( w r 1 6 2  
= 2 ( q ( w , y , z , t , v ) r 1 6 2  

Applying (34) to the left-hand side of (33) and collecting similar terms, we obtain 

3 ( q ( w , y , . z , t , v ) r  q ( v , y , z , t , w ) r  
= ( q ( w , y , z , t , z ) r  ( q ( v , y , z , t , z ) r  

Using (30), (13), and again (30), we deduce the equality 

1 
( q ( w , y , z , t , z ) r  = - - ~ ( q ( w , y , z , t , x r  

1 
= - ~ ( q ( v , y , z , t , x r  ( q ( v , y , z , t , x ) r  

Therefore, the right-hand side of (35) vanishes; i.e., 

3(q (w ,y , z , t ,  v ) r  q ( v , y , z , t , w ) r  = 0 

o r  

(33) 

(34) 

(35) 

PROOF. Let a, b, x, y, z, t~ and u be arbitrary elements of A and let v and w be arbitrary 
elements of A 2. Consider the r B of the e-module of A which is generated by all elements 
of the shape q(w, y, z, t, v) - q(v, y, z, t, w). By Lemma 6 

B r  (38) 

Since R~, is a derivation of A, we have [q(w, y, z, t, v) - q(v, y, z, t, w)]u E B.  Hence, B is an ideal 
of A. Therefore, by Lemma 3 and (38) we have B = 0, and so the identity 

q ( w , y , z , t , v )  - q ( v , y , z , t , w )  = 0 (39) 
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[(yz)(tx)lx + [(yx)(z )lt = 0. (37) 

(q (w ,y , z , t ,  v ) r  q(v , y , z , t ,  w)r x) = 0, (36) 

since ~ E r By nondegeneracy of the form (x, y), from (36) we infer q(w, y, z, t, v ) r  y, z, t, w)r = 
0. Hence, (31) holds. The lemma is proven. 

T h e o r e m  4. I f  a prime Lie ~-algebra A (~ E ~) with a nondegenerate symmetr ic  invariant 
bilinear form has a nonzero antiderivation r then A satisfies the identity 



holds in A. By the definition of aatiderivation, we have the inclusion (A2)r C_ A 2. Using (29), this 
inclusion, (39), (30), and again (39), we obtain 

q(w, u, z, t, v ) r  = q(wr u, z, t, v) = q( , ,  u, z, t, we) 
= -2q(v,  y, z, t, w)r = -2q(w,  y, z, t, v)r 

Hence, 3q(w, y, z, t, v)r = 0, q(w, y, z, t, v)r = 0. Again using Lemma 3, by analogy to the proof of 
(39) from the last equality we deduce the identity 

q(w,u,z,t,o)=o. (40) 

Using (13) and (40), we obtain (q (x , y , z , t , v ) ,w)  = (q (w ,y , z , t , v ) , x )  = 0. Since w is an arbitrary 
element of A 2, from here and (20) we deduce the identi ty 

q ( x , y , z , t , v ) = O .  (41) 

In view of (14), 
( q ( v , y , z , t , x ) , , , )  + + = o. 

Using (41), we then obtain 

(q(v ,y , z , t , x ) ,u )  + (q(x ,y , z , t ,  u),v) = O. (42) 

Applying (I3) to the first summand in this'equality, we find that 

(q(u ,y , z , t , x )  + q (x , y , z , t , u ) ,  v) =.0, 

whence by (20) we infer the identity q(u, y, z, t, x) + q(x, y, z, t, u) = O. Put  in this identi ty u = v 
with v e A 2. In view of (41) we obtain q(v , y , z , t , x )  = O. From here and (42) we deduce the equality 
(q(x, y, z, t, u), v) - 0. Again applying (20) to this equality, we come to the identi ty q(x, y, z, t, u) = O. 
Thus, A is an h-algebra; i.e., A satisfies (37). The theorem is proven. 

From Theorem 4 and Theorem 2 of [1], describing the prime Lie algebras satisfying (37), we deduce 
the following 

T h e o r e m  5. I f  a prime Lie O-Mgebra A (~ e O) with a nondegenerate symmetric invariant 
bilinear form has a nonzero antiderivation, then the center ZR(A) of the algebra R(A) of right mul- 
tiplications of A is an integral domain and the algebra A has no zero divisors D over ZR(A). If A is 
the field of fractions of the center ZR(A) then AA = A | A is a 3-dimensional central simple 
algebra over A. 

C o r o l l a r y  2. Let A be a cent ra /s imple  Lie a/gebra over a field �9 of characteristic p ~ 2, 3 
with a nondegenerate symmetric invariant bilinear form. If dime A >_ 4 then A has no nonzero 
antiderivations. 

Observe that  if the ring �9 has characteristic p = 2 or p = 3 then every nonzero Lie O-algebra 
A possesses a nonzero antiderivation, since in the case of p = 2 the notions of antiderivation and 
derivation coincide and so every operator of right multiplication is an antiderivation, while in the case 
of p -- 3, even for an arbitrary nonassociative algebra, the mapping r : z ~ ax,  where a is 
an arbitrary element of the ring ~, is an antiderivation. 

Henceforth we assume that  5 = �89 By definition, r is a �89 if the equality 

( x u ) r  = + x (ur  (43) 

holds for arbi trary x, y E A. We recall that  the centroid of an anticommutat ive algebra B is the cen- 
tralizer F(B)  of the algebra R(B) of right multiplications with respect to the endomorphism algebra 
of the O-module of the algebra B. 

1) See the definition of zero divisors over Za(A) in [1). 
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T h e o r e m  6. A linear mapping r  A ~-* A is a I-derivation of a prime Lie ~-algebra A (~ E r 
with a nondegenerate symmetric invariant bitinear form if and only if r E P(A). 

PROOF. We begin with proving that if r E F(A) then r is a �89 Suppose that x and 
y are arbitrary elements in A. If r E F(A) then Rye = tRy by the definition of F(A). Therefore, 
(xy)r = (xr Interchanging x and y in the last equality, we obtain (yx)r = (yr From these 
equalities and anticommutativity of A we infer that 

( xy ) r  l [ ( x y ) r 1 6 2  ~ [ ( x r  (yr = l [ (xr  + x(yr 

Hence, r is a 1-derivation. 
Prove the converse. Let r be a �89 We first prove that 

(xr = 0 (44) 

for every x E A. 
Suppose that t and v are arbitrary elements in A 2. Using (43), (7), (11), (8), (7), (11), (43), (8), 

anticommutativity of A, (7), (11), and again (7) and anticommutativity of A, we obtain 

( ( x r  xv )  - ( ( x r  x t )  = - ( x ( t r  + 2 ( ( x t ) r  + ( x ( v r  - 2 ( ( x v ) r  
= ( ( t r  - ( ( , , r  2 [ ( ( = t ) r  - (= t ,  (=,,)r 

= ((re)=, = v ) -  r162 = ( t r  - (,,r =(=t))  
= (v=2 , tr  - (t=2, vr  = ( (~==)r  - ( ( t = ~ ) r  

1 
= ~ [ ( (v= ) r  + ( , ,=(=r  t ) -  ((~=)r v) - ( t= (=r  

I 

= ~-[((,,=)r =t) + (,.,=, (=r  - ( ( t = ) r  (t=, (=r 

= ~ [ (~= , (=~ ) t ) -  (t=,(=~)~)] = - ~ [ ( ( = ~ ) t , = , ) -  ((=r 

Whence }[((xr x v ) -  ((xr xt)] = O. Therefore, 

((zC)t,z, ,)  - ( (zr  zt)  = o. 

Using the Jacobi identity, anticommutativity of A, (8), (7), and (45), we obtain 

( (=r  = ( (=r  - (=~(=r 
= ( (=r  = v ) -  (=t, (=r = ( (=r  ( (=r =t) = o. 

(45) 

In view of (7), from here we have (v, (xr = 0. Since v is an arbitrary element of A2; applying (20) 
to this equality, we find that (xr = O. Since t is an arbitrary element in A2; therefore, 

(xr Ann A 2. 

The annihilator of an ideal in every Lie algebra is an ideal again. 
therefore have Ann A 2 = 0. Using (46), we now obtain (44). 

Linearizing (44), we come to the equality (xr + (yr = 0. 

(46) 

Since A is a prime algebra, we 

From it and anticommutativity 
of A we obtain x(yr = (xr Applying this equality to the right-hand side of (43), we arrive at 
(xy)r = (xr Hence, Rye = tP~ for every y E A; i.e., r E r(A).  The theorem is proven. 

Theorem 6 implies the following 

Coro l la ry  3. If r is a �89 of a centra/prime Lie algebra A over a field ~ of characteristic 
p ~ 2, 3 with a nondegenerate symmetric invariant bilinear form then there is an a E r such that 
xr = ax  for a/l x E A. 
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