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ABSTRACT. The f irst  mixed boundary value problem for a parabolic difference-differential equation with shifts 
with respect to the spatial variables is considered. The unique solvability of this problem and the smoothness 
of generalized solutions in some cylindrical subdomalns are established. It is shown that the smoothness of 
generalized solutions can be violated on the interfaces of neighboring subdomains. 
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I n t r o d u c t i o n  

Parabolic functional-differential equations arise in the investigation of nonlinear optic systems with two- 
dimensional feedback [1-3]. In contrast to parabolic differential equations, these equations have a number 
of principally new properties. For instance, the smoothness of a generalized solution can be violated inside 
the cylindrical domain even for an infinitely smooth right-hand side of the equation. 

In the present paper, the first mixed problem for a parabolic difference-differential equation with shifts 
with respect to the spatial variables is considered. The unique solvability of this problem and the smooth- 
ness of generalized solutions (in the sense of distributions) in some cylindrical subdomains are established. 
It is also shown that  the smoothness of generalized solutions can be violated on the interfaces of neighboring 
subdomains. 

w S t a t e m e n t  o f  t h e  p r o b l e m  

Let Q c R '~ be a bounded domain with boundary OQ = UiM~ (i = 1 , . . . ,No) ,  where Mi are 
(n - 1)-dimensional manifolds of class C ~ that are open and connected in the topology of OQ. Assume 
that, in a neighborhood of any point g E OQ\ Ui Mi, the domain Q is diffeomorphic to an n-dimensional 
dihedral angle for n > 3 and to a plane angle for n = 2. 

Denote by W~(Q) the Sobolev space of complex-valued functions in L2(Q) that have generalized 
derivatives (in the sense of distributions) belonging to L2(Q) up to the order k; this space is endowed 
with the norm 

Denote by 1 ~  (Q) the closure in W~(Q) of the set O~(Q) of compactly supported infinitely differentiable 
O 

functions and by W2-1(Q) the space dual to W~(Q). 
O 

Introduce the bounded difference-differential operator AR: W~ (Q) ~ W21 (Q) by the formula 

= Z + + RoQ . (1.1) 
i , j=l  /=1 

Here R/jQ = PQR/jIQ, R~Q = PQRilQ, 

( i , j =  1 , . . . , , ) ,  

= + h) (i  = o ,  1 ,  . . .  

hEM 
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M C R '~ is a finite set of vectors with integral-valued coefficients, aijh, aih e C~176 IQ : L~(Q) -+ 
L2(R '~) is the operator of extending any function in L2(Q) by zero to R " \ Q ,  and PQ: L2(R '~) -~ L2(Q) 
is the operator of  restricting a function in L2(R '~) to Q. 

D e f i n i t i o n  1. An operator - A R  is said to be strongly elliptic if there are constants cl > 0 and c2 _> 0 
such that 

-- Re (ARu,  u)L2(Q) > Cl[[~t[[~V~(Q) -- C2[[7/H~2(Q) (1.2) 

for a n y .  e 

Necessary and sufficient conditions for strong eUipticity in algebraic form will be stated at the end of 
this section. 

Let us consider a difference-differential equation 

- t) = I ( r , * )  ( (r ,  ,)  e (1.3) 

with boundary  condition 

and initial condition 

= 0 ( ( r , t )  e (1.4) 

ult=0 = ~0(r) (r  e Q), (1.5) 

where ~T- - - -Qx  (0, T) and F T = O Q x ( 0 ,  T) ,  O < T < o o .  
Everywhere below we assume that  the operator - A R  is strongly elliptic. In this case it is natural 

to refer to problem (1.3)-(1.5) as the first mired problem for a parabolic difference-differential equation. 
Without loss of generality we assume that  c~ = 0 in ifiequality (1.2). Indeed, the standard change of the 
unknown function, u = exp(c20w, reduces Eq. (1.3) to the form ( -AR + c,.I)w + w, = e x p ( - c 2 0 / ( z ,  ~) 
( ( r ,  e 

To formulate conditions for strong ellipticity of the operator - A R ,  we introduce an auxiliary notation. 
This notation will also be used in w in the investigation of the smoothness of the generalized solutions 
of problem (1.3)-(1.5). Denote by G the additive Abelian group generated by the set M and by Q~ the 
open connected components of the set 

bEG 

Def in i t i on  2. The sets Q, are called subdomains, and the collection 7~ of all possible subdomains Q, 
is called a partition of the set Q. 

The partition T~ is naturally decomposed into disjoint classes as follows. We say that  subdomains 
Qr l ,  Q.2 E T~ belong to the same class if there exists an h E G such that Q~2 = Q-I + h.  We denote each 
of the subdomains Qr by Qsi, where s is the index of the class (s = 1,2, . . . )  and I is the index of the 
subdomain in the sth class. Since the domain Q is bounded, it follows that each class consists of finitely 
many ( Y  = g(s) )  subdomains Q,z, and Y(s)  <_ ([diam Q] + 1) =. 

To formulate necessary conditions for strong eUipticity in algebraic form, we introduce the matrices 
Rij ,(z)(z  E -Q~I) of order N(s) • N(s) with the entries 

i1~, , { aljh(z + h~k) (h = h~z - h,k e M),  (1.6) 
rkt tz) = 0 (h~t - h~k f~ M). 

By [3, Theorem 9.2], if an operator - A R  is strongly elliptic, then the matrices 

i , j=l  
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are positive definite for any s = 1 , 2 , . . . ,  z E Q~I, and 0 # ~ E R '~. 
Assume now that  z E Q~I is an arbitrary point. Let us consider all points z I E Q such that  z t - z E G. 

Since the domain Q is bounded, it follows that the set {z t} is finite; let it contain I = I(s,  z) points 
( I > N ( s ) ) .  Let us enumerate the points z t so that z t = z + h s t  for l =  1 , . . . , N =  N(s) ,  z 1 = z ,  
where h~t satisfies the condition Q~, = Qsl + h~t. Introduce matrices A~j~(z) of order I • I with entries 

ijs ~ x ark (z) by the formula 
, f a jh(  (h = _ E M ) ,  

au' ( z ) =  ~ 0 - (z J ' - z  t ~ M ) .  

By [3, Theorem 9.2], if the matrices 

i , j = l  

_ _  . 

are positive definite for any s = 1,2,  . . .  , z E Qsl, and 0 # { E R r', then the operator  --AR is strongly 
elliptic. 

Obviously, if I = N ,  then the matrix Reds(z) coincides with the matrix Aij,(z).  For N < I ,  the 
matrix Rijs(z) is obtained from Aijs by deleting the last I - N rows and columns. 

w E x i s t e n c e  a n d  un iqueness  o f  a genera l ized  so lu t ion  

k , 0  
Denote by W~ (fiT) the Sobolev space of complex-valued functions u E L2(~T) that  have the gener- 

alized derivatives u=, E L2 (f~T) (i = 1 , . . . ,  n), which is endowed with the norm 

II ll = IZ)"u(~, t)l 2 dz dt + {u(z, t)l 2 dz dt w~ (nT) 
t ~ T T 

0 

Set V = L2((0,  T) ;  W~(Q)). We can readily see that 12 : {v E W~'~ : V]r r = 0},  and the 

dual space is 1)' = L2 ((0, T) ; W2 -~ (Q)) .  Introduce the bounded operator LR: V --+ l)' by the formula 
LRv( . ,  t) = - -ARv( . ,  t) for almost all t E (0, T).  

We also introduce an unbounded operator At: V' D D(At) ~ V' that acts in the sense of distributions 
with values in V' by the formula h tv ( . ,  t) = Ov(., t)/Ot with the domain D(ht )  = {v E V ' :  Atv E 1J'}. 

Note that,  if a function u E l) satisfies the operator equation 

Atu + LRu = f ,  (2.1) 

where f E V' ,  then u E C~ T]; L2(Q)) by [4, Chap. 1, Theorem 3.1 and Proposition 2.1]. Therefore, 
the relation ult=o makes sense. 

Let f E V' and ~, E L2(Q). 

Def in i t ion  3. h function u E V f3 D(At) is called a generalized solution of problem (1.3)-(1.5) if this 
function satisfies the operator equation (2.1) and the initial condition (1.5). 

T h e o r e m  1. Let a difference-differential operator - A R  be strongly elliptic. In this case, for any 
f E )Y and ~ E L2(Q), problem (1.3)-(1.5) has a generalized solution u E V f3 D ( h t ) ,  and this solution 
is unique. 

P r o o f .  Obviously, the difference operators Ri jq :  L2(Q) --+ L2(Q) are bounded. Hence, there exists a 
constant co > 0 such that 

I(AR=, v)L,(Q)] < colt ,llw ,(Q) ll ,llw$(Q) (2.2) 

for any u, v E Cr It follows from inequalities (1.2), (2.2) of the present paper and also from [4, 
Chap. 3, Theorem 4.1 and Remark 4.3] that a generalized solution of problem (1.3)-(1.5) exists and is 
unique. [] 

We assume now that f E L2(flT) and ~, E L2(Q). In this case, we define a generalized solution of 
problem (1.3)-(1.5) in the sense of an integral identity. 
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Def in i t i on  4. A function u E )2 is said to be a generalized solution of problem (1.3)-(1.5) if, for any 
e {v e W~(Or): ~lr~ = 0, "l,=r = 0},  the foUowing integral identity holds: 

i , j = l  

T h e o r e m  2. Let an operator - -An be strongly elliptic and let f E L2(I~T) and ~ E L2(Q).  In this 
case, Definitions 3 and 4 are equivalent. 

P r o o f .  The equivalence of Definitions 3 and 4 follows from [4, Chap. 3, Theorems 4.1 and 4.2] provided 
that  the set 

= = o ,  = 0} 

is dense in the space 
Y2 = {v E V N D ( A t ) : v ] ~ = T = 0  }. 

Let us prove this fact. 
Indeed, let v E V2. Take a sequence of real-valued functions ~ E C=[0,  T] such that  ~ ( t )  = 1 

(0 < t < T - 2/n),  ~,,(t) = 0 ( T  - 1In < t < T); 0 < ~,~(t) < 1, and I~'(t)l _< c ~  (0 < t < T). 
It is clear that  ~nv -+ v as n -+ oo in the space V~. By smoothing the functions ~nv with respect 

- o 

to t ,  we obtain a sequence of functions v,( t )  with values in W~(Q) that are infinitely differentiable with 
respect to t and whose supports belong to [0, T).  By construction, we have v,~ -+ v in the space ])2, and 
v,~ E V1. [] 

w Analyt ic  semigroups  

Def in i t i on  5. Let X be a BKnach space. A one-parameter family of bounded linear operators 
Tt: X -+ X (t > 0) is said to be a strongly continuous semigroup, or a Co-semigroup, provided that 

I) T 0 = I ;  
2) T , + o = T , T ,  ( t , s > O ) ;  
3) limc~0 Ttz  = z (for any z E X).  

Def in i t ion  6. A semigroup of class Co is said to be a contraction semigroup ff IITtII _< 1 (t > 0). 

Def in i t i on  7. The linear operator A: X D D(A) --+ X defined by the formula 

z E D(A) = z E X : lira Ttz -______~x exists 
t',~0 t t'~0 t 

is called the infinitesimal generator of the strongly continuous semigroup { Tt ) .  

Introduce the unbounded operator An :  L2(Q) D D(Aa)  ~ L2(Q) that acts on the space of distribu- 
o 

lions D'(Q) by the formula A a u  = ARu (u E D(Aa)  = {u E W~(Q): ARu  E L~(Q)}). 

T h e o r e m  3. Assume that an operator - A n  is strongly elliptic. In this case, the operator .An is an 
infinitesimal generator of a contraction semigroup Tt in L2(Q). 

P r o o f .  It foUows from inequality (1.2) with zero constant c2 and from [5, Theorem 10.1] that the 
operator Aa is dosed and its spectrum satisfies the relation a(.AR) C {A E C : Re A < 0}. Moreover, for 
any u E D(AR)  we have 

- Re(~tRu, u)L,(Q) >_ clllull~,(Q). (3.1) 

It follows from (3.1) and from the Cauchy-Schwarz-Bunyakovskii inequality that  

li(~I - -aR)ulIL~(Q)IlulI~(Q) _> XllulI~(Q) 
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for u E D(AR) and ), > 0. Thus, 
1 

IIR( ~, AR)II_  ~. 

Hence, by the HiUe--Yosida theorem (see [6, w the operator .AR is an infinitesimal generator of a 
contraction semigroup Tt in L2(Q). [] 

Write A = {z E C : ~ox < a rgz  < qoz}, where ~01 < 0 < ~02. 

Def in i t ion  8. A one-parameter  family of bounded linear operators T~ : X --+ X (z E A) is said to 
be a holomorphic semigroup on A if 

1) the function z --+ T~ is analytic in A; 
2) To = I and l i rn~0,~e a T~z = z (for any x E X); 
3) T~,+~ = T~,T~ (for any z~, ~, E ZX). 
A semigroup Tt is said to be holomorphic if it is analytic in a sector A that contains the positive real 

sem.iaxJs. 

T h e o r e m  4. Let an operator --AR be strongly elliptic; hence, the operator AR is an infinitesimal 
generator of a contraction semigroup Tt in L2 (Q). In this case, the semigroup Tt can be continued to a 
hotomorphic semigroup T~ in a sector tX~ = {~ E C:  I arg ~1 < ~}- 

P r o o f .  The theorem can be proved by the standard methods based upon the use of norm estimates 
for the resolvent of an infinitesimal generator of a semigroup. In turn, the above estimate can be derived 
from the G~rding-type inequality (1.2) (see [6, w Theorem 2.7] or  [7, Chap. 14, w Theorem 1]). [] 

w S m o o t h n e s s  o f  t h e  genera l ized  solu t ions  

Def in i t ion  9. A generalized solution of problem (1.3)-(1.5) for f E Lz(flT) and ~o E Lz(Q) is said to 
be strong if ut E L2(GT). 

To investigate the smoothness problem for generalized solutions of problem (1.3)-(1.5), we introduce 
an additional notation. Let us consider the sets 

pc = [.J {-On (OQ + hl) n [(OQ + h~) \ (OQ + h~)]}, 
h t  , h2 E G  

where e > 0. 
Let D C R" be a bounded domain. Denote by W~ k'~ (D • (0, T)) the Sobolev space of complex-valued 

functions in L2 (D • (0, T)) that  have the generalized derivatives :D~Z~t u E Lz (D • (0, T)) ( lal+2fl < 2k); 
let this space be endowed with the norm 

T h e o r e m  5. Let OQ \ [.Ji Mi c 1C, and let the difference-differential operator - A R  be strongly elliptic. 
In this case, for any ~o E D(AR) and f E L2(f~T) such that f t  E L~(flT), problem (1.3)-(1.5) has a 
strong solution, which is defined by the formula 

fo 
t 

~(~, t) = T,v(~) + T,_,f(~, s) as, (4.1) 

5,1 (0, T)) for any ~ > 0 and any and this strong solution is unique. Moreover, u(x, t) E W~ ((Q~t \ 1C ~) • 
s =  l , 2 , . . ,  and l =  l , . . . , N ( s ) .  
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P r o o f .  The existence and uniqueness of a solution of problem (1.3)-(1.5) and formula (4.1) follow from 
Theorem 3 of the present paper and from [6(w Corollary 2.10]. It follows from the definition of a strong 
solution and from Eq. (1.3) that 

-A~u(. ,  t) = F(. ,  t), (4.2) 

where F(. ,  t) = f ( . ,  t) - u~(., t) ~ L2(Q) for almost all t e (0, T). By the theorem on the smoothness 
of generalized solutions of boundary value problems for strongly elliptic difference-differential equations [5, 
Theorem 11.2], for any e > 0 we have 

2 t) \ 

and 
<- c[IFilz, (Q) 

for almost all t E (0, T) and s = 1 , 2 , . . .  ; t = 1 , . . . ,  N(s ) ,  where c > 0 does not depend on t.  
Squaring inequality (4.3) and integrating from 0 to T,  we obtain 

(4.3) 

I[~[[w~.O((Q.,\~:.)• ~ cl (IIf][L2(~T) + I[uzHL2(nr)) �9 

This yields u e W~'l((Q,z \ K: ~) • (0, T)) .  [] 

R e m a r k  1. It follows from Theorems 1 and 5 that,  ff the assumptions of Theorem 5 hold, then the 
generalized solution of problem (1.3)-(1.5)is strong, and therefore it must belong to the space W~'X ((Q0z \ 
K:~) • (0, T)) �9 

The next example shows that the smoothness of strong solutions of problem (1.3)-(1.5) can be violated 
on the interface between neighboring cylinders Q~tz~ • (0, T) and Q,2h • (0, T) ,  and also near the set 
/C • (0, T) .  

E x a m p l e  1. Let us consider the first mixed problem (1.3)-(1.5) and assume that 

Q = ( 0 , 4 / 3 )  • (0,4/3),  AR=ARQ, RQ=PQRIQ, 
Ru(x) = u(z) + au(xl + 1, z2 + 1) + ai/(;rl - -  1 ,  X 2 - -  1), 0 < a < 1. 

Obviously, the corresponding decomposition 7~ of the domain Q consists of two classes of subdomains, 
1) Qlt = (0, 1/3) x (0, 1/3),  Q12 = (1, 4/3) • (1, 4/3) and 2) Q2~ = Q \ (Qll  u Q12). The set ]C belongs 
to the boundary OQ and consists of four points, gt = (1/3,0),  gZ = (4/3, 1), g3 = (0, 1/3), and 
g4 = ( 1 , 4 / 3 ) .  

The matrices As(z)(z e Q~I ; s = 1, 2), defined by formula (1.8), are 

Al(z)= (la a)l (x E-Qll), 

Az(z)=(1 a a) 
1 

A2(z )= (1 )  Q2t \ 

Thus, the matrices A~(z)(~ + ~ )  (z e Qsl ; S = 1 ,  2) are positive definite (cf. (1.9)). Hence, the 
operator - A R  is strongly elliptic. 

Let us write 

v t ( r ,  ~ ) =  ~(r)r~ sin),~, v2(r, ~ ) =  ~(r)r~ sin ~ ( ?  - ~ ) ,  

where ~(r) e C = ( R ) ,  0 _< ~(r) _< 1, ~(r) = 1 for r _< i / 8 ,  ~(r) = 0 for r _> 116 , ,~ = (2/~r)arccos(a/2), 
and r ,  ~ are the polar coordinates. 
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Introduce the function v(z) by the formula 

{ vl(zl - 1/3, z2) - av2(zl - 1/3,z2)  
1 - a 2 

. ( ~ )  = - a - ~ ( ~ l  - 4 / 3 ,  ~ - 1) + ~ ( ~  - 4 / 3 ,  ~ - 1) 

1 - a 2 
Vl(:~ 1 - -  1/3, z2) + U2(Xl - -  4/3, z2 - 1), 

Obviously, 

z E Q l l ,  

z E Qx2, 

Z E Q21. 

(4.4) 

( ) ( 4  ) 
R Q , ( ~ )  = -x ~1 - ~-, ~ + ~ ~1 - ] ,  ~ - 1 . 

S ince  0 < ~ < 1 , w e  c a n  r e a d y  see  tha t  . e ~  - A R Q .  e L ~ ( Q )  ; h o w e v e r ,  . r W ~ ( G ,  n & ( d ) )  
for any g > 0. Hence, the function u(z, t) -- tv(z) is a strong solution of problem (1.3)-(1.5) for 
f ( z ,  t)  ~- v (x )  -- t .ARQv(x )  e L 2 ( ~ T )  a nd  ~ (x )  -- 0.  However ,  u ~ W : ' ~  ('l ,.q~(gl)) • (0, T ) )  for  a n y  
g > 0. Thus, Theorem 5 fails for e = 0 in general. 

Let us show now that 

To this end, by (4.4) it suffices to show that 

v1~[~=~/2 ,  ~<l /s  # ~ , _ (4.5)  

Relation (4.5) is equivalent to the following inequality: 

cos  T # ~ ~ cos  ~ - ~ cos  ~ . (4.6)  

Reducing similar terms and applying the relation cos(ATr/2) = a/2, we can rewrite (4.6) in the form 

a a - a ~- + 2 # 0 .  ( 4 . 7 )  

Since the roots of the equation a 3 - a  2 + 2 = 0 are of the form al,2 = 1 • i and as = - 1 ,  it follows that 

condition (4.7) holds for 0 < a < 1. Therefore, u q~ Wg'~ for any 9 = (91,92) and ~ > 0 such that 
Vx = 1/3,  0 < 92 < 1/8,  and ~ < 92. Thus, the smoothness of strong solutions of problem (1.3)-(1.5) 
can be violated on the interface of neighboring subdomains Qsltl x (0, T) and Qs2t~ • (0, T) .  
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