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Interpolation and Integral Norms of Hyperbolic Polynomials 

l~. S. Be l in sk i i  UDC 517.5 

ABSTRACT. The integral nora on the subspace of multivariate trigonometric polynomials with harmonics from 
the "hyperbolic cross" is equivalent to the interpolation norm taken on a finite set of points whose cardinality 
increases only slightly faster than the dimension of the subspace. 

KBY WORDS: entropy numbers, ~-entropy, interpolation, p-quasimatrix orthonormal system. 

Suppose D is a bounded set in 
L 2 ( D ) ,  and  

I n t r o d u c t i o n  

R d, �9 = {~k (z )}~ ,  z 6 D ,  is an bounded orthonormal system in 

N 

"k----1 

is the set of polynomials of order < N with respect to the system {~k}. We say that the system �9 is 
p-quasirnatriz ,  0 < p < or ,  i f  there exist positive constants K1,  K2, K3 such that for every N = 1,2,  . . .  
there is a finite set ~N C D such that If~N] ~ K 1 N  and for every ~ E ~ (N)  

( 1  )lip ( 1  Z ]~(X)[P) lip 
Ks ~ Z ' [ T ( z ) l P  -< [[~J[P -< Ks ~ x e a N  

z6f~N 

This definition for p = oo was introduced by B. Kashin [I]; for 0 < p < oo see [2]. The quasimatrix 
property is important for discretization purposes when the values of a polynomial axe known only at a 
finite number  of points. It is shared by many  concrete classical systems, e.g., trigonometric, Hast ,  Walsh, 
and Franklin. Considering trigonometric polynomials of several variables, we must specify the order of the 
exponentials. If the spectrum of a polynomial is, for example, in a cube with side n ,  then N ~- n d , and 
the system is p-quasimatrix for every p ,  0 < p < oo, as follows from the classical Maxcinldewicz theorem 
(see [3-5] or [6] for 0 < p < I). 

We consider here polynomials with spectrum from the "hyperbolic cross." Such polynomials appear 
naturally when one approximates classes of functions with bounded n~ixed derivative (see, for exaznpIe~ [7]). 

This paper is an application to this concrete problem of the empirical distribution method by G. Schecht- 
man [8] and its refinement given in [91 . 

w M a i n  resu l t .  D i scuss ion  

Let r = ( r l ,  r 2 , . . . ,  rd) be a vector whose coordinates are ordered by 

For s E Z d define the set 

O < r l  = r 2  . . . . .  r~ < r v + l  _ - - . _ < r a .  

p(s) : {k  E Z d :  2 a j - I  _~ Ikjl < 2 sj , j = 1 , . . . ,  d}.  

~ . ( Z ) - -  Z r 

kEp(s) 

Let us denote 
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Let Ln,,, be the space of trigonometric polynomials Tn(x) = )"~'l<(s,r)<rln ~s(X) defined on the unit cube 

Qd = [0, 1] a , and let Bp,,~ be  the unit ball of this space: 

I i<(~r l  g.(x)<_ 1. 

Note that  dim Lp,,~ ~- 2nn ~-1 . The question whether hyperbolic polynomials are quasimatrix was asked 
in [2]. In the following statement we prove that they are "a|most quasimatrix" for 1 < p < co. 

T h e o r e m  1. Let p (1 < p < co) be fixed. Then for every n there exist N << 2=n max{(d-1)(p-2)'~ 
points x j  such that 

(1  N \l/p ( ]-~1 

R e m a r k  1. As we were informed by B. Kashin, for p = 2 there axe general results for arbitrary 
orthonormal system with constant sum of squares of functions. The sufficient number of points in this 
case is ~ N log N for a system of N function. 

R e m a r k  2. For p = co, the uniform norm is equivalent to the discrete one only if the number of points 
is significantly larger than the number of harmonics of T= (see [10]). 

R e m a r k  3. Is it possible to find a universal collection of points for all 1 < p < co? It follows from the 
proof below that  one can find a universal collection for any finite number of values of p. 

R e m a r k  4. This method works also for other nontrivial hyperbolic constructions, like hyperbolic 
wavelet polynomials [11]. 

w F i n i t e - d i m e n s i o n a l  e s t i m a t e s  o f  e n t r o p y  n u m b e r s  a n d  o t h e r  p r e l i m i n a r y  r e s u l t s  

In this section we give preliminary results needed for the empirical distribution method due to G. Schecht- 
man [8] and estimates of e-entropy that are used in the scheme from [9]. 

L e m m a  1 [9, p. 81]. Let (f~, bt) be a probability space, let 2- be a finite set in LI (~ ,  g) so that 

Ilflll < 1, I lf l l~ S M, f E ~" 
for some constant M .  Let 0 < e < 1, and let N be an integer such that 

212-1 < exp ~ ~ ) .  

Then there exist {tj}N=l E fl such that 

Ilflll - ~ If(tj)l ___ e, f E ~. 

The following generalization of Lemma i is contained in its proof given in [9, p. 81]. 

L e m m a  2. Let ~ x , . . . ,  ~-t such that 

Ilfll~ < 1, 
and N satisfies to the condition 

I l f l l~  < Mj,  f E 2-J, j = 1 , . . . ,  l, 

' ( 
2 iJ=jl 

j=l 
Then there exist {tj}N=l E ~ such that 

1 
I I / l l a  - 

< 1 .  

N 1 l 

j=l j=l j=l 

The next lemma allows us to carry over estimates from a finite set to the whole space. 
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L e m m a  8 [9]. Let A be a bounded linear map .from a Banach space X into a Banach space Y .  Let 
0 < e < 1 and assume that for an e-net  Jr of the unit ball of X there exist constants C1, Cz > 0 such 
that 

Olllzll < IIAzll _< O211xll, x E ~-. 

Then 

o l  + ell=ll __ IIA=II <- ~ ~ -  [l=l[, 

for every z E X .  

The proof is straightforward. 
An inequality involving different metrics for hyperbolic polynomials is given in the following statement.  

L e m m a  4 [4, p. 211. For p' = p / ( p -  1), 

IIT=II~ << 2=/P~ ( 1>/~ lIT=lip, 1 < p < oo, 

The next statements give some estimates of e-entropy. Let us recall some definitions (cf. [12]). Let K 
be a compact set in the Banach space X .  The e-entropy 7t~(K ; X )  (or simply ~/(K,  e)) is the logarithm 
to the base two of the number of points in the minimal e-net. We use also the inverse quantities, the 
so-called entropy numbers, given by 

e,~(K; X) = inf{e  

2 ~ 

: K  C U(zj + e B x ) ) .  
j = l  

The infimum is taken over all e such that K can be covered by 2 m balls e B x  of radius e. 
Basic properties of e-entropy or entropy numbers can be found, for example, in [12] and [13]. We state 

some of them below. 
Let X denote the space R '~ endowed with some Banach norm, and let X* be its dual space. Let B'* 

and S '~-1 be the Euclidean unit ball and unit sphere. The average of [[ [[x on S '*-I is denoted by M x ,  
i.e.,  

/ *  

M x  = ] II~:ll d~(~), 
ds **--1  

where ~ is the normalized rotation invariant measure on S n-a . 

L e m m a  5 [14], see also [13]. 

nl~  l < 7"l~(Bx ; < n l ~  

It is worth noting that  7 Q ( B x  ; X )  = 0 if e > 1. 
The following lemma is Sudakov's classical result [15]. 

L e m m a  6. There ezists an absolute constant C such that 

A dual version of this fact was first proved in [16], a different simple proof was given by A. Pajor  and 
M. Talagrand in [9]. 

L e m m a  7. There ezists an absolute constant C,  such that 

M X  
e >_ M x ,  7"l~(B ~ ; X )  <_ Cnlog  , ~ _< M x .  

e 
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R e m a r k  5. The second estimate can be easily derived from the first one and Lemma 5. Indeed, 

7"l~(Bn; X) <_ "]'~Mx(Bn ; X) + 7-le/Mx(BX ; X ) ,  

and we need only use the preceding estimates. 

The estimates of Lemma 7 can be rewritten for the entropy numbers as follows: 

e m ( B = ; X ) < <  { v/-n-7-mMx, r e < n ,  
M x e  -re~n, m > n .  

For a set E C Z d of cardinality ]El, let us consider the Banach space L v,E, of trigonometric polynomials 
with real coefficients 

T ( E ;  z) = E cke2~ri(k'x) 

kEE 

endowed with the Lp(Q a) norm. We denote by degE the largest degree of the exponentials e 2~r/(k,x) , 
k E E ,  and dege  2'~(k'x) = [kx[ + . . .  + Ikd[. The following result was proved in [17]. 

L e m m a  8. 
{ v"q, 2 < q < e o ,  

M/;,.~ << v/log deg E ,  q = oo. 

Therefore, by Lemma  7 

r ; Lq) << { 
V/2'~n ~'-1/m v/'~ , 
e-rn/2nrt"-xX/~ , 

m < 2nn ~'-1 

m > ' 2 n n  u - 1  , 

for any 2 < q < co. Also, 

2nn~ 

7/~(B2,= ; L ~ )  << ~2 , 
2'~n ~-1 log 

We need the following estimates of C-entropy. 

~ > v/K, 

, g < V / n .  

L e m m a  9. Let Bv,,~ be the unit ball of the space of trigonometric polynomials described above. Then 

2,~n ~ 
~--7- ' 1 _ < p _ < 2 ,  

7/~(Bp,,~ ; L~)  << 2nn(p_2)(d_l)+ v 2 < p < oo. 
cp 

P r o o f .  The est imate of 7"/~(B2,,, ; L ~ )  is given above. Let us find the estimate of 7-/~(Bp,,~ ; L ~ )  for 
2 < p < ~ .  For every )~ > 0 a trigonometric polynomial T(z) E Bv,,~ can be decomposed into the sum 
of two polynomials T(x) = TI(z) + T2(z) such that 

IITI( )II  << IIT2( )II  <<   /Pnd- llTC )llp. 

To do this, we take the A-cut fx(z) of T(z) ,  i.e. f l (z)  = $s ignT when IT(z)l > ~,  fl(z) = T(x) 
elsewhere , and f2(x) = T(x) - fx(z).  We obtain a decomposition T(z)  = • + f2 with functions f~ 
and f2 possesing the required properties. Then we apply the operator of the de la VallSe-Poussin hyperbolic 
means [4] to both sides of this equality. It is bounded in L2 --+ L2 and its norm is - rt d-1 in L ~  --+ L~r 
Therefore, 

n~(Bp,,~ ; L ~ )  < n~/~()d/P-~/ZBz,,~ ; L ~ )  + n~/2()d/Pnd-~B~,,~ ; L~r 
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Choosing ,k = e P n  - p ( d - 1 )  , we see that the second term is then equal to zero. For the first term, by the 
previous estimate, 

)~/p-12~n~ 2,~n(p-2)(,t-1)+,, 
~ ( B p , , , ;  Loo) < e~ < 

Let us proceed now to the case 1 < p < 2. As in [9], we first estimate ~ ~ ; Lr) for 2 < r < oo. 
By the HSlder inequality, for any r < q we have 

I l l  - gll~ < I l l  - g i l t - ~  - gll ~ < 211.f - g l l ~ ,  

where 8 = 1 -  2 / r .  Therefore, 

2 r  V 

To estimate the s-entropy of the dual couple 7"/e(B~, ,,, ; L2), we need the following statement [18]. 

T h e o r e m .  Let X be a uniformly eonvez Banaeh space. Let u: X -+ Y be a compact operator, and u*, 
its dual. Then, for  all m E N and a E (0, oo) we have 

C o  1 ek u* " < ek u " < ek (u*)"  
- -  \ k - - - - 1  ~" X k - - 1  " 

where Co depends only on X .  

To apply this theorem, we rewrite the estimate of the entropy in terms of entropy numbers, i.e., 

By the Marcinkiewicz multiplier theorem [7], for 1 < r < oo the space L*,= is isomorphic to L, , , , , ,  where 
1/r  + 1/r '  = 1. Let r > 2 and u be the identical embedding operator u: L2,,,  --+ L,, ,~.  Let us take 
a < 2r / ( r  - 2). Then, by the monotonicity 

j < Z ~ <- ~ -< << 
k~-m+l k=l k~-I 

or ( ~ _ _ ) 1 / 2 - 1 / r  
e2.,Cu*) _< 

and the estimate is proved, because 1/2 - 1/r  = 1/r '  - 1/2. By the transit ivity property of entropy 
numbers (see, for example, [13]), for  each  1 < p < 2 

r ; Loo) < em(Bp,= ; Lu)~m(B2,= ; Lo~). 

Therefore, 

o r  

Let p -- 1. Then by Lemma 2.7 

s,,,(Bp,,, ; L ~ )  << 

21%n 1~ 

7 L ( B p , =  ; L ~ )  << e--7- 

M 2 

2 0  



where X* is the space dual to LI,, , .  By [9] or [19], 

Mx. <_ C(2'*n "-I)-I /2K(X)v:~ (i), 

where K(X) is the  K-convexity constant of the Banach space X ,  and ~r2 (i) is the 2-absolutely summing 
norm of the identical embedding operator i : LI,,~ -+ L2,,~. It is known [20] that KI,,~ ~ n 1/2 , and the 
method of [9] gives ~r2(i) < (2'~n"-t) ~/2 . Substituting these estimates, we obtain 

2~T$ v 

7 C ( B I , ~  ; L2) _< e-- V-  

Applying the transit ivity property of entropy numbers again and the preceding estimate, we obtain 

The lemma is proved. 

2~T~ y n~(B~,,~ ; L ~ )  < - -  
e 

w P r o o f  o f  T h e o r e m  1 

Let ][T,~II - 1. To prove the theorem, we must find 0 < e < 1 and N points xj  such that 

1 N IT~(xJ)l p IlT~ll~- ~ ~ _< e. 

Let ~" be an e-net  on the boundary of Bp,,~, and T E 9 v. By Lemma 4, 

IITII~ << 2 ~/p~(~-x)/p'. 

Denote this upper bound by M.  For j -- 1 , 2 , . . . ,  l let Aj be e(1 +e)J-net  of Bp,,~ in L ~ ,  .Al contains 
only the zero element,  

log [Aj[ _< ~t~(l+,)i(Bp,~, L~) .  

Let fi,T be the nearest  element to T E ~" from Aj ,  so that 

liT - f j , r l l ~  _< e(1 + e)J. 

We will replace every polynomial T E ~" by an almost simple function. Let us denote 

Cj,T= {z:lfj,Tl>_(l +e) j - l } ,  Dj,T=Cj,T\ U Ck,T, DO,T=Q'Z\ U Ck,T. 
k>j k > 0  

The simple function replacing T is the following: 

= TXDo,T + Z ( 1  + e)JXDj,~.-, 
j>0 

where XA is the characteristic function of the set A. Let us prove that for every Dj,T, j >_ 1, we have 

while for x E Do,T we have IT[ _< (1 + e) 2 . Indeed, if z E Cj,T, then 

[T(~)I _> [fj,T] -- e(1 + e)J > (1 + e) j - i  -- e(1 + e) j = (1 + e ) J - l ( 1  -- e(1 + e)). 
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If = r C i , r  then 

IT(z)[ _< Ifj,r[ +~(1 +e ) J  < (1 §  j-x +e (1  §  j = (1 q- $)J-1(1 A-e(1 +~)) .  

Therefore, if z E D j ,T  , then z e Cj,T but  z ~ Cj+I,T , hence assuming ~ < 1/3 we obtain 

1 (1 + _< Iru _< + 
Now, applying the  empirical distribution me thod  (Lemma 1 for TXDo, r and L e m m a  2 for the sum) with ej 
to be specified later),  we obtain 

Z IT(xk)I'XDo. r(xk) -- IT(x)l 'dx -< s0, 
k=l o,r 

N l 
~ _ I ( I ~ ( I + r  < - - B e j <  e 
-- N k=l j=l 

provided tha t  the sum of probabilities satisfies the inequality 

(number  of :D0,T) exp -- + Z ( n u m b e r  of Dj,T) exp (1 + e)JP8] < 2" 
j=l 

We can choose e0 = r  then by Lemma 5 (the number  of T)0,T) < [~'[ < (1 + 2/r 2"'~-x ; therefore, 
estimating the  first t e rm,  we must  take 

N >> 2'~n ~-1. 

Est imating the sum, we must  estimate the number  of sets Dj,T for each j .  We know that  the number  of 
sets Cj,T is exactly I.Ajl. Therefore, the number  of sets Dj.T is less than or equal to IAA" ]A/+x I'..-" IAzl. 
Applying the es t imate  for [Aj[, we have 

B exp \~'2--1 7"I~(x+~),,,(B,,,~,L~) (I T ~ ) J ' 8 ]  < 2" 
j----1 

Now we put  ej = e / ( j l )  '/2 and require that  

z 1 e~N 

< 2 (1 +  )i,s 
m =  i 

for every j .  Then,  obviously (e - t  < t -1 for positive t), 

i ='Z exp _ 7"t~(l+~),,,(Bp,,~,L~) (1 ~ ) ) i p8  ] < i =` e2N << e3N < -'2 

Or N > M p log 2 M / e  3+p . Our choice must  also satisfy the inequality 

z 1 e2N 
F_, < 

2 (i A- e)il '8jl '  
m = j  

which is t rue if 
16/ l 
ez B ( 1  +e)'~VmT-t,(i+,),,,(Bp,~,,L~r < N. 

m = l  

The latter condit ion is equivalent to the following integral one 

log M f M  7"~t(Bp,n, L~)  log t dr. 
N >> e~ tl_p 

To complete the proof,  we carry over estimates from T to T and apply Lemma 9. 

I thank Yulli Makovoz for numerous helpful comments to this paper. I would like to express my gratitude 
to the referee for careful reading of the manuscript  and essential comments to it. 
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