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Interpolation and Integral Norms of Hyperbolic Polynomials

E. S. Belinskii UDC 517.5

ABSTRACT. The integral norm on the subspace of multivariate trigonometric polynomials with harmonics from
the “hyperbolic cross” is equivalent to the interpolation norm taken on a finite set of points whose cardinality
increases only slightly faster than the dimension of the subspace.
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Introduction

Suppose D is a bounded set in R?, & = {pi(z)}$°, = € D, is an bounded orthonormal system in

L*(D), and N
ey = {;ckcpk(z)}

is the set of polynomials of order < N with respect to the system {p;}. We say that the system ® is
p-quasimatriz, 0 < p < oo, if there exist positive constants Ky, K3, K; such that forevery N =1,2,...
there is a finite set Qx C D such that [Qn] < Ky N and for every ¢ € $(N)

& Z-w(z)lp)ws ol < s (g 3 l«p(z)v')l/p

z€EQN rz€Qn

This definition for p = co was introduced by B. Kashin [1]; for 0 < p < oo see [2]. The quasimatrix
property is important for discretization purposes when the values of a polynomial are known only at a
finite number of points. It is shared by many concrete classical systems, e.g., trigonometric, Haar, Walsh,
and Franklin. Considering trigonometric polynomials of several variables, we must specify the order of the
exponentials. If the spectrum of a polynomial is, for example, in a cube with side n, then N ~ n¢, and
the system is p-quasimatrix for every p, 0 < p < o0, as follows from the classical Marcinkiewicz theorem
(see [3-5] or [6] for 0 < p < 1).

We consider here polynomials with spectrum from the “hyperbolic cross.” Such polynomials appear
naturally when one approximates classes of functions with bounded mixed derivative (see, for example, [7]).

This paper is an application to this concrete problem of the empirical distribution method by G. Schecht-
man (8] and its refinement given in [9].

§1. Main result. Discussion
Let r = (r1,72,...,74) be a vector whose coordinates are ordered by
0<m=rp=-=rn<rnus--Sra
For s € Z% define the set
p(s) ={keZ4:2% 1 < |kj| <2%, j=1,...,d}.

5,(z)= Z ckeZ‘lri(k,x).

kep(s)

Let us denote
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Let L, . be the space of trigonometric polynomials Tph(z) = Y, <(s,r)<rin 9s(X) defined on the unit cube
Q% =[0,1]¢, and let B, , be the unit ball of this space:

1<(s,r)<r1n

Note that dim L, , =~ 2"n”~1. The question whether hyperbolic polynomials are quasimatrix was asked
in {2]. In the following statement we prove that they are “almost quasimatrix” for 1 < p < .

Theorem 1. Let p (1 < p < o) be fized. Then for every n there ezist N < 2"p@max{(d—1)(p=2),0}+v+3
points x; such that '

N 1/p N 1/p
(5L ImmP)  <ITly < K5 X Te)P)

j=1

Remark 1. As we were informed by B. Kashin, for p = 2 there are general results for arbitrary
orthonormal system with constant sum of squares of functions. The sufficient number of points in this
case is = Nlog NV for a system of N function.

Remark 2. For p = o, the uniform norm is equivalent to the discrete one only if the number of points
is significantly larger than the number of harmonics of T, (see [10]).

Remark 3. Is it possible to find a universal collection of points for all 1 < p < co? It follows from the
proof below that one can find a universal collection for any finite number of values of p.

Remark 4. This method works also for other nontrivial hyperbolic constructions, like hyperbolic
wavelet polynomials [11].
§2. Finite-dimensional estimates of entropy numbers and other preliminary results

In this section we give preliminary results needed for the empirical distribution method due to G. Schecht-
man [8] and estimates of ¢-entropy that are used in the scheme from [9].

Lemma 1 [9, p. 81]. Let (Q, n) be a probability space, let F be a finite set in L1(Q, u) so that

Ifli<1,  Hfle<M, feF
for some constant M. Let 0 <e <1, and let N be an integer such that

2
2|1F1 < exp(fs—]-g) .

Then there ezist {t;}}_, € Q such that

1 N
i - g Ll <o fer

i=1

The following generalization of Lemma 1 is contained in its proof given in [9, p. 81].
Lemma 2. Let Fi,...,F; such that
”f”lSla ”f”ocSij fej:j7 i=1,...,1,

and N satisfies to the condition

! eIN

) _5

2; |}']|exp< 8Mj) <1l
Then there ezist {t;}}, € Q such that

N 1 l
1
il - 5 Sl < Ye reUs
i=1 i=1 i=1
The next lemma allows us to carry over estimates from a finite set to the whole space.
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Lemma 3 [9]. Let A be a bounded linear map from a Banach space X into a Banach space Y . Let
0 < € <1 and assume that for an c-net F of the unit ball of X there exist constants C1,Cs2 > 0 such
that
Cillzl| < |4z|| < Cellzll, z€F.

Then
Cl - £ Cz
< <
el < 4] < 7=

=l

for every z € X

The proof is straightforward.
An inequality involving different metrics for hyperbolic polynomials is given in the following statement.

Lemma 4 (4, p. 21]. For p' =p/(p—1),
[ Talloo < 2¥/20 D/ | Tyfl,, 1< p< oo

The next statements give some estimates of ¢-entropy. Let us recall some definitions (cf. [12]). Let K
be a compact set in the Banach space X . The ¢-entropy H.(K ; X) (or simply H(K, ¢)) is the logarithm
to the base two of the number of points in the minimal c-net. We use also the inverse quantities, the
so-called entropy numbers, given by

em(K 3 X) = inf{e K C G(zj + eBx)}.

=1

The infimum is taken over all ¢ such that K can be covered by 2™ balls eBx of radius ¢.

Basic properties of ¢-entropy or entropy numbers can be found, for example, in [12] and [13]. We state
some of them below.

Let X denote the space R™ endowed with some Banach norm, and let X* be its dual space. Let B™
and S™~! be the Euclidean unit ball and unit sphere. The average of || ||x on S™~! is denoted by Mx,
ie.,

M= [ lelldota),

where o is the normalized rotation invariant measure on S™~1.

Lemma 5 [14], see also [13].
1 2
nlog " <H(Bx; X) < nlog(l + E)

It is worth noting that H.(Bx; X) =0 if ¢ > 1.
The following lemma is Sudakov’s classical result [15].

Lemma 6. There ezists an absolute constant C such that
Mx-\?
He(Bxi R < Cn(220)
A dual version of this fact was first proved in {16], a different simple proof was given by A. Pajor and

M. Talagrand in [9].

Lemma 7. There ezists an absolute constant C, such that

n MX 2 13 MX
HE(B ;X)Scn '—é_’_ ’ EZMX7 HC(B ;X)SCnlog—s—, ESMX’
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Remark 5. The second estimate can be easily derived from the first one and Lemma 5. Indeed,
He(B™; X) < Hmx (B™; X) + Heymx (Bx 5 X),

and we need only use the preceding estimates.

The estimates of Lemma 7 can be rewritten for the entropy numbers as follows:

J/nfmMx, m<n,

em(B™; X) K
Mxe™ ™™, m>n.

Foraset E C Z? of cardinality |E|, let us consider the Banach space L, g of trigonometric polynomials
with real coefficients '
T(E, :L') — Z ckeZm.(k,x)
keE
endowed with the L,(Q?) norm. We denote by degE the largest degree of the exponentials e2™i(k:x)
k € E, and dege?™ &) = |k;| + - .- + |kq|. The following result was proved in [17].
Lemma 8. )
, < g < oo,
M, K { va 1
’ ViogdegE, ¢ = co.

Therefore, by Lemma 7

V2l m g, m< 2Pt

em(Bz2,n; Lg) K -
q) { e—m/z n 1\/—, m> 2"'77,"—1,

for any 2 < ¢ < oo. Also,

2"n”
62 ? € > ﬁ Y
He(Bz,n; Loo) < B \/ﬁ
2™n¥ lOg—g-, €<\/T—l.

We need the following estimates of ¢-entropy.
Lemma 9. Let B, , be the unit ball of the space of trigonometric polynomials described above. Then
2"n”

epP
2nn(p—2)(d—1)+v

) 1<p<2,
He(Bp,nis Loo) €

- , 2<p<oo.

Proof. The estimate of H.(B2 n; L) is given above. Let us find the estimate of H.(Bp,n; Loo) for
2 < p< oo. For every A > 0 a trigonometric polynomial T(z) € B, » can be decomposed into the sum
of two polynomials T'(z) = Ti(z) + T2(z) such that

ITy(=2)ll: < X/P2T ()], [ Te(@)lleo < AP0 T ()5

To do this, we take the A-cut fi(z) of T(z), i.e. fi(z) = AsignT when |T(z)] > A, fi(z) = T(z)
elsewhere, and fs(z) = T(z) — fi(z). We obtain a decomposition T(z) = f; + f with functions f
and f, possesing the required properties. Then we apply the operator of the de la Vallée-Poussin hyperbolic
means [4] to both sides of this equality. It is bounded in L; — Lo and its normis ~ n%~! in Lo, — L.
Therefore,

He(Bp,n; Loo) < He/z(Al/p—l/sz,n; Loo) + ’He/z(’\l/pnd.—lBoo,n; Loo)
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Choosing A = ePn~P(4=1) we see that the second term is then equal to zero. For the first term, by the
previous estimate,
A\2/p—1gnyv onp (p~2)(d~1)+»
He(Bp,n; Loo) < <

g2 eP

Let us proceed now to the case 1 < p < 2. As in [9], we first estimate H.(Bz,n; Lr) for 2 <r < co.
By the Holder inequality, for any r < ¢ we have

If = gll- < Uf = allz™ N - gllS < 20f - gl
where § = 1 — 2/r. Therefore,

2"nY
He(B2,ns Lr) < Heopayrio(B2n; Loo) < pryk

To estimate the ¢-entropy of the dual couple H(By n; L2), we need the following statement [18].

Theorem. Let X be a uniformly convezx Banach space. Let u: X — Y be a compact operator, and u*,
its dual. Then, for all m € N and a € (0, ) we have

oyt (kizl ek(u*)")l/a < (; ek(u)")l/a < Co (g:l ek(u*)a)l/a,

where Coy depends only on X .

To apply this theorem, we rewrite the estimate of the entropy in terms of entropy numbers, i.e.,

gnpv 1/2-1/r
Em(BZ,n; Lr) < ( ° )
m

By the Marcinkiewicz multiplier theorem [7], for 1 < r < oo the space L; , is isomorphic to L, where
1/r+1/r" = 1. Let r > 2 and u be the identical embedding operator u: Ly , — L, n. Let us take
a < 2r/(r — 2). Then, by the monotonicity

e 2m 271. u)a(1/2 1/r) (2nnu)a(1/2—1/r)
ezm(u”)*m < E ex(u’) <§;e’=(“ S; Ee(1/2=1/7) < ma(l/2—1/n-1

k=m+1
. MmpY 1/2-1/r
eZm(u ) < ( ) ’

or

m

and the estimate is proved, because 1/2 — 1/r = 1/’ — 1/2. By the transitivity property of entropy
numbers (see, for example, [13]), for each 1 < p < 2

€2m—1(Bp,n; Lco) < €m(Bp,n; L2)€m(B2,n; Loo)

onpv i/p
5m(Bp,n; Loo) < ( T:: ) y

211.11

Therefore,

or

7'[e(Bp,n ’ oo) <
Let p=1. Then by Lemma 2.7

Mx-\?
HE(BI,TL; LZ) < 2nnu—1 ("_g—) ’
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where X* is the space dual to L; ,. By [9] or [19],
Mx. < C@2"n" V2K (X)m (i),

where K(X) is the K -convexity constant of the Banach space X , and 75 (%) is the 2-absolutely summing
norm of the identical embedding operator i: Ly, = L2 . It is known [20] that K, , < n'/?, and the
method of [9] gives m2(2) < (2"n*~1)}/2. Substituting these estimates, we obtain

2"nY
gz

He(Bl,n; L2) <

Applying the transitivity property of entropy numbers again and the preceding estimate, we obtain

2%nY

[

He(Bl,'n.; Loo) <
The lemma is proved.

§3. Proof of Theorem 1
Let ||T%|| = 1. To prove the theorem, we must find 0 < e < 1 and N points x; such that

N
1
72l - 5 3 T <

i=1
Let F be an e-net on the boundary of B, ., and T € 7. By Lemma 4,
Tl < 2/Pn(»=DI7,

Denote this upper bound by M. For j =1,2,...,1 let A; be &(1+¢)?-net of By n in Lo, A; contains
only the zero element,

log |AJ’ S He(l-f-c)j (Bp,naLoo)'
Let f; r be the nearest element to T € F from A;, so that

IT - fi,rlloo < €(1 +€).
We will replace every polynomial T € F by an almost simple function. Let us denote

Cir={z:|fixl > (1+e)'}, Djr=Cjr\|JCrrs Dox=@Q*\ | Chr-
k>j k>0

The simple function replacing T is the following:

T = TXDo.T + Z(l + €)jXDj,T’
i>0

where x4 is the characteristic function of the set A. Let us prove that for every D; 7, j > 1, we have
5 = 13 ~
—|T| < |T| < —|T
while for z € Do,r we have |T| < (1 +¢)?. Indeed, if z € C; T, then
(T(e)] > |l — e(1+e) > (1+e)™ el 4+ = (L+ e (1= el +¢)).
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If z ¢ Cj,T then ]
IT(2)| < Ifirl+e(l+ef <(L+e) " +e(l+e)f =(L+ef 7 (1+¢(1+¢)).
Therefore, if z € D; 1, then z € C; r but = ¢ Cj41,7, hence assuming € < 1/3 we obtain

5 . 13 .
= i<im<= i,
12(1+s) <ITI<L 9(1+€)

Now, applying the empirical distribution method (Lemma 1 for T'xp, , and Lemma 2 for the sum) with ¢;
to be specified later), we obtain

N

1

% 2 T@)Pxacb) - [ [TG0Pdx < e,
k=1 Do, 7

L XN 1

Z (.1V Z(l +e)Pxp; o (xz) - / (1+¢€)’?xp; 1 (x) dx) < ZEJ‘ <e€

j=1 k=1 Q¢ i=1

provided that the sum of probabilities satisfies the inequality

2 l

(number of Dy, 7)exp (— fgiv_) +

N
3 (number of D; 7)exp (-—- -———s—‘l————-——> < !

pars (1 +¢)ir8 2°

We can choose gy = £/2, then by Lemma 5 (the number of Dy 1) < |F| < (1 + 2/¢)2"™" ™" ; therefore,
estimating the first term, we must take

N> 2™,
Estimating the sum, we must estimate the number of sets D; 7 for each j. We know that the number of
sets C; T is exactly |.A;|. Therefore, the number of sets D; r is less than or equal to [A;|-|4;41]-...-|Al.

Applying the estimate for [A;|, we have
! ! 2
. esN 1
ZCXP(E He(1+e)m(Bpyny Loo) — Zl—-f?)_w_s> <3-
=1 m=j
Now we put ¢; = £/(j1)*/? and require that

1 e?N

1
2 Herorm By Leo) < 5177 g

m=j
for every j. Then, obviously (e™* < ¢~ for positive t),
I i 2 { PR Ipg2
5N (X +e)P8il (1 +¢)'7l
:;CXP("; He(l-{-e)M(Bp,n,Loo) - (1 +E)Jp8 < Jzzl ZN < SN <
Or N > M?log? M/e**?. Our choice must also satisfy the inequality
e2N
0+ eprssl”

DN

!
1
5 Heturin(Bp L) < &
m=j
which is true if

!
161
8—2 Z (1 -+ €)mpmH5(1+e)m(B o Loo) < N.

m=1
The latter condition is equivalent to the following integral one

log M (M Hy(Bp,n, Leo)
N> == /1 22— log tdt.

To complete the proof, we carry over estimates from T to T and apply Lemma 9.

I thank Yulii Makovoz for numerous helpful comments to this paper. I would like to express my gratitude
to the referee for careful reading of the manuscript and essential comments to it.
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