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T O P O L O G I C A L  A N D  G E O M E T R I C A L  
P R O P E R T I E S  OF M A P P I N G S  W I T H  S U M M A B L E  
J A C O B I A N  IN S O B O L E V  C L A S S E S .  I 

S. K.  Vodop 'yanov  UDC 517.54+517.813.52 

Let f : G --* R n, G C R n, n >_ 2, be a continuous mapping. Then f is open if the image of an open set 
is open; and f is discrete if the inverse image f - l ( y )  of every point y E R n consists of isolated points. 
The aim of the present article is to indicate analytical conditions on a mapping which guarantee 
certain topological properties. 

It is convenient to state analytical requirements on f : G --* R n in terms of Sobolev spaces. We 
suppose that all coordinate functions fi of f --- (f l ,  . - . ,  fn) belong to the Sobolev space W~,Ioc(G).I 

Thereby the formal Jacobian matrix Dr(x) = (0.~), i , j  = 1 , . . . , n ,  and the Jacobian determinant 

J(x, f )  = det Dr(x) are defined almost everywhere in G. The norm ]Df(x)l of Dr(x) is the norm of 
the linear operator determined by this matrix in R n. 

A modern way of studying the topological characteristics of mappings by means of their analytical 
properties was paved by Yu. G. Reshetnyak while working on the problems of the theory of spatial 
mappings with bounded distortion [1]. Recall that a mapping f : G --* R n is a mapping with bounded 
distortion if the following conditions are satisfied: 

1 (1) f e 
(2) there is a constant K e [1, co) such that ]Df(x)ln <_ KJ(x,  f )  almost everywhere in G. 

The least constant in this inequality is called the quasiconformality coefficient. Yu. G. Reshetnyak 
proved that a mapping with bounded distortion is continuous, open, and discrete [1]. The key point 
of the proof is a close connection between mappings of this class with quasilinear elliptic equations 
and nonlinear potential theory, and the method is widely used in the topic reader consideration. 
Observe that continuity of a mapping with bounded distortion ensues from a more general result 
of [2] (a simpler proof of the corresponding theorem of [2] was given in [3]). 

It is convenient to write down analytical constraints on f as the requirement of finiteness of various 
norms of the local distortion 

K(x) = IDf(x)[n < co 
J(x, f )  

almost everywhere in G. Thus, the inequality 1 _< K(x) < co for almost every x E G means that 
J(x, f )  > 0 almost everywhere on the set {x : Df(x)  ~ 0}. We put K(x) = 1 at the points where 
the numerator and the denominator vanish simultaneously. A mapping f E l~Vnl,loe(G) has bounded 
distortion if and only if K(x) E Loo(G). 

The necessity of studying the topological properties of mappings arises also in the problems of 
nonlinear elasticity [4-10]., It was shown in [4, 5] that  boundedness of K(x) is too burdensome in 
problems of nonlinear elasticity: the situation is typical in which the function K(x) p is integrable for 
some p < c~. It was established in [7] that a continuous nonconstant plane mapping f satisfying the 
conditions f E W~,Ioe(G ), G C R ~, and K(x) E Ll,loc(G) is open and discrete. The proof of this 
result grounds on the two-dimensional theory of Beltrami equations and relies on the fact that such 
a mapping can be represented as a composite of some analytic function and homeomorphism (thus, 
an analog of the Stoilov factorization theorem is valid for mappings in this class). In [10], Reshetnyak's 
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1 theorem was generalized to nonconstant mappings / E W~,loc(G ), G C R '~, with K(x)  E Lp,loc(G), 
p > n - 1 .  

In connection with the problems of nonlinear elasticity, J. Ball [4, 5] defined the mapping classes 

J~p,q(~'~) = {f  e Wpl(n): a d j D f  E Lq}, 

where p >_ n - 1, q >_ p/(p - 1), and the adjugate matrix adj D / o f  D f  is defined fi'om the condition 
D/(x)  adj D/(x )  = g(x , / )  Id for almost all x. Thus, J ( x , / )  E L1(~2) if f E ~/p,q. 

A mapping f : G - .  R n is quasilight if the connected components of the inverse image f - l ( y )  are 
compact for each point y E / ( G ) .  

It was proven in [9] that each continuous quasilight mapping / E ~r with N(x)  E Ln-I+e(~), 
> 0, is open and discrete. The methods of [9, 10] are a further development of Yu. G. Reshetnyak's 

arguments of [1]. 
In the present article, we obtain topological results for mappings / E Wql, lor (G) under the following 

constraints: 
(M1) q >_ n -  1 for n = 2 and q > n -  1 for n >_ 3; 
(M2) J(x, / )  >_ 0; 
(M3) J ( x , / )  e Ll,loc(G); 
(M4) J(x, f )  = 0 almost everywhere on a set A C G, ]A I > 0, implies Dr(x)  -- 0 almost 

everywhere on A; 
(M5) f : G ~ R n is continuous; 
(M6") / : G --* R n possesses at least one of the following properties: 
(a) the mapping is almost absolutely continuous (see the definition below); 

n (b) adj D f  e Lq,loc, q = n-:~- �9 
1 It is well known that, for each f E Wq,loc(G ), there is an increasing sequence (Ak} of closed sets 

such that the restriction /IAk is Lipschitz continuous for eve~  k and the set S = G \ (Jk Ak has 
measure zero. We call a mapping / E WI, loc(G) almost absolutely continuous if, for every ~ > 0, there 
is 5 > 0 such that, for eveIT collection {B(xi, ri)} of pairwise disjoint balls with xi E S for all i, the 
condition ~':~i [B(xi,ri)l < 5 implies ~'~i(oscB(~:i,r~)/)n < 6. Applying Besikovich's theorem, we can 
easily verify that If(S)[ has measure zero; consequently, each almost absolutely continuous mapping 
f e ~Vl, loc(G) satisfies Luzin's condition ~u 

The first condition guarantees existence of a 3~"*-differential [1] and that each set of zero capacity 
is totally disconnected (for q = n - 1 this properties hold only for n = 2!). The second condition is 
used in the proof of monotonicity and preservation of orientation (see w 1 below). The third condition 
is natural and is due to the fact that  local summability of the Jacobian is guaranteed only for q _> n. If 
a mapping satisfies the fourth condition then we say that  it has finite distortion. In [2], it was proven 
in particular that every mapping of the class ~1 I4n,loc(G ) only satisfying (5./2) and (M4) is monotone 
and consequently has a continuous representative. It turns out (Theorem 3) that monotonicity is 
enjoyed by the mappings of the class Wql, loc(G) satisfying some of the conditions (M1)-(M6) (see w 1). 
However, in this case a quasicontinuous representative may have discontinuities on a set of q-capacity 
zero, n -  1 < q < n [3]. Since continuity of f is essential for some results, we impose the condition (M5) 
o n / .  The condition (M6) plays the role of a regularity condition in the results obtained. Probably, 
it is not optimal. The question of whether (M6) can be reIaxed is of interest in its own right and 
remains still open. Observe that a mapping f E WI,loc(G) satisfying (M2) and (M4) also satisfies 
(M3), (M5), and (M6). Therefore, Theorem 1 stated below covers both Reshetnyak's theorem and 
the results of [7, 10]. Moreover, it turns out that the above-cited results of [9] are valid under weaker 
assumptions. 

The main result of the present article for mappings satisfying the above-listed conditions is as 
follows: 
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T h e o r e m  1. Suppose that f : G --* R n, G C R n, n >_ 2, is a nonconstant mapping of  the e/ass 
wl,  loc(G) which satisfies (M2) - (M6)  and that K ( x )  E Lp,loc for some n - 1 <_ p < o0 i f  n = 2 and 
n - l < p <_ oo if  n >_ 3. Then f 

1 rip. (1) belongs to W~joe(G ) with q = p+t' 
(2) is open and discrete; 
(3) is differentiable almost everywhere in f2 in the classical sense. 

EXAMPLE. An important  class of mappings satisfying tile hypothesis of Theorem 1 consists of 
the mappings with bounded q-dilatation (in another terminology, q-quasiregular mappings). These 
are mappings f of the Sobolev class that, alongside (M2)-(M6), satisfy the pointwise inequality 
IV f[ q < K J ( x ,  f )  almost ever}wvhere, where K is a constant and n - 1 < q < n for n = 2 and 
n - 1 < q < n for n >_ 3. For q = n this class coincides with the class of mappings with bounded 
distortion [1]. It is immediately verified that K(x )  E Lp,loe, where p = nq_~. 

REMARK 1. In the case ofp = n we obtain a new proof of openness and discreteness for mappings 
with bounded distortion (quasiregular mappings in the terminology of [11, 12]) which does not use the 
approximation of a mapping by smooth mappings. 

The method of the present article bases on the change-of-variable formula with the multiplicity 
function and degree of a mapping (Theorem 2). Using tiffs formula, we can prove that a nonconstant 
mapping of the class 1 W~,loc(G) satisfying (M1)-(M4) and (M6b) is monotone in G (Theorem 3). 
Hence, we infer in particular that the coordinate functions of such mapping are nmnotone and conse- 
quently continuous everywhere except for a set of p-capacity zero for n - 1 < p < n (are continuous 
everywhere for p = n). Monotonicity of mappings of the class Wql, loc(C), n - 1 < q < n, with non- 
negative Jacobian and finite distortion was proven in [3] by another method under the assumption 
adj D f  e Lr, loc(G), r > q/(q - 1). 

Furthermore, in Theorem 4 we establish that a mapping only satisfying (M1) - (M6)  preserves 
orientation. In [9], this property was proven for mappings of the class Wq 1 (C) under the following 
additional assumptions: adj D f ( x )  E Lq(G), q > p / ( p -  1), and the Hausdorff 1-measure of f - l ( y )  
equals zero for each y E ]R n. 

In w 2, we introduce condition (M7) which describes geometrical and topological properties (in- 
cluding quasilightness) of a mapping. Assuming this condition, we can prove the claim of Theorem 1 
without involving the ideas and methods of the theory of quasilinear elliptic equations (the proof bases 
only on the change-of-variable formula). 

As is well known, the connection between mappings with bounded distortion and nonlinear elliptic 
equations bases on the property that the columns of the matrix adj D f ( x )  = {Aij(x)}  are divergence- 
free fields; i.e., 

f ~a Oz~ dz = O 

for every function qa E C ~ ( G )  and every j = 1 , . . .  ,n. This property is a particular instance of 
the more general relation div((adj D f ( x ) ) V  o f )  = [(div V) o f ] J ( x ,  f )  in the distributional sense, 
where f : G ~ R n is a mapping of the class wnl,loc(G) and V is a Cl-smooth vector field. For smooth 
mappings this property can be proved by straightforward calculations utilizing equality between mixed 
second-order derivatives. In w 3, we give a new proof of this result which bases on topological invariants 
and so makes it possible to extend the method to objects of noncommutative geometry (for instance, 
Carnot groups). 

The proof of Theorem 1 is given in w 4. 
In the second part of the article, we introduce the class of continuous, open, and discrete mappings 

with bounded (q, s)-distortion 1 < q < p < cx) (for q = p = n this is exactly the classical class of 
mappings with bounded distortion [1]) and study some properties of these mappings. In particular, we 
indicate conditions under which these mappings satisfy Luzin's condition ~ and the condition .A z-1. 
Moreover, we establish capacitary estimates, local distortion estimates, and Liouville-type theorems. 

21 



w 1. P r o p e r t i e s  o f  M a p p i n g s  o f  t h e  Class  Wql, loc(G),  n --  1 < q _< n 

Suppose that f : G --* R n is a mapping of the class Wql, loc(G) whose summability exponent satisfies 
(M1). Henceforth we consider a quasicontinuous representative of this class. Thus, for each ~ > 0, 
there is an open set U, cap(U; Wlq(G)) < t, such that  f is continuous outside U (for the definition of 
capacity, see w 3). If x E G then the restriction fls(z,r), B(x, r) C G, is continuous for almost every r. 

A function f E Wql, loc(G) is spherically monotone (or simply monotone) if, for every point x E G, 
there is a number rz > 0 such that the ball B(x, r) lies in G and for almost every r E (0, rz) the 
following inequalities are valid on the bail: 

esssup f(z)  < sup f(z) and essinf f(z) > inf f(z). 
zEB(x , r )  - -  zES(x,r) zeB(z , r )  -- z f iS(x,r)  

1 (It was shown in [13, Proposition 2] that each function of the class f E W~,loc(G) which is weakly 
monotone in the sense of [3] is also spherically monotone.) For n - 1 < q < n each spherically 
monotone function is continuous everywhere except for a set of Hausdorff dimexrsion at most n - q [3]. 

It is well known that  a monotone function of the class f E Wqlloc(G), n -  1 < q < n, is differentiable 
almost everywhere [1, 12]. Here we present another proof of this property (which seems shorter). 

1 Propos i t ion  1. Every spherically monotone function f E Wq,loc(G ), n - 1 < q < cx~ for n = 2 
and n - 1 < q _< c~ for n ~ 3, is ditferentiable a/most everywhere. 

PROOF. The Sobolev inequality holds for each point x E G and almost every radius r E (1, rx): 

t 
( OSC f)q < Cr q-(n-1) ] IVfl  q dS. 
S(z,r) J 

S(z,r) 

From this inequality we can obtain the following estimate [13, Proposition 3]: 

( f)q < Cr q-n ] IVfl q dz OSC 
S(x,r) - J 

{z:r<lx--zl<2r} 

for every r < rz/2. In [13, Proof of Proposition 3] it was also noted that the refined function f satisfies 
the relations infzes(z,r)f(z) < f(y) < SUpz~s(z,r)f(z) for all y e B(x, r) and almost every r E rz. 
Hence, 

l z - z l  < Z'-~X T 

< C lira 1 / - r--,oN [Vf[ qdy < CM(IVIIq)(x), 
B(z,'2r) 

where M(g)(x) is the maximal function. Since the maximal function is finite almost everywhere, the 
last inequahties imply validity of the hypothesis of Stepanov's theorem for f .  

Now, we give a change-of-variable formula in the Lebesgue integral in the form we need below. 
Recall that if 9 : A --* IR is a measurable function on a measurable set A then the function N(y, g, A) = 
card{g-l(y) f'l A} is the multiplicity function or Banach indicatrix. 
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P r o p o s i t i o n  2 [14]. Suppose that  a mapping f : G -* R" has partial derivatives almost every- 
where in G and the Jacobian J(x,  f )  is locafly summable in G. Then 

(1) there is a Borel set E 1 C U of measure zero such that the mapping rE, equal to f outside E/  
and zero on E, satisfies Luzin's condition ~ ' ;  

(2) for each measurable set A C G and every measurable real function u : W* --* R, the func- 
tions (u o f ) ( z ) [ J (x ,  f ) l  and u(y)N(fl, rE, A) are measurable; moreover, if one of them is integrable 
(integability of (u o f ) ( x ) I J ( x ,  f)[ is considered on A) then so is the other and the following equality 
holds: 

f f (1) 
A R n R n 

Recall tha t  a linear mapp ing  L : R n --* R n is called the 3~-differential of a mapping  f : G __~]~n 
at a point x E G if 

I - : ( ' >  - = 0 
t--,o x~s(o,1) [ t I 

Recall that  a mapping  in 1 W~,loc(G), n - 1  _< q_< n f o r n  = 2 a n d n - l <  q_< n f o r n _ >  3, has 
a 9g'-differential at a lmost  every point of G and the matrix of the 9g'-differential coincides with the 
formal Jacobian matr ix  [15, Theorem 1] (for q > n the mapping is differentiable almost everywhere 
in the ordinary sense; see, for instance, [1]). 

A mapping f " G --* Rn is 3~*-differentiable at a point x E G, if it possesses the following 
properties: 

(1) f is continuous on the  spheres S(x,  r) C G for r E (0, rz) \ Ex, where rz is a positive number  
and Ex C (0, rz) is a set of measure zero; 

(2) f has alI part ial  derivatives at x; 
(3) the linear mapp ing  Dr(x)  : Rn __, Rn defined by the matr ix  of partial  derivatives satisfies 

lira sup [ f i x  + tX)  -- f(x)  _ Df (x ) (X) I  : O. 
t---,0 XeS(0,1) [ t I 

t e (O,rx) \Ez  

The definition implies t h a t  a mapping f ,  ~*-differentiable at a point  x E C, has the  3~-differential 
at x equal to Dr(x).  

REMARK 2. We can guarantee existence of a ~*-di f ferent ia l  a lmost  everywhere on G for the 
mappings f : G --* R n, G c R n, n > 2, of the  class 1 

_ Wq,Ioc(G ) for some n - 1 <_ q < cr if n = 2 and 
n - 1 < q <_ c~ if n > 3, because, as ment ioned,  the mappings of this class enjoy all of the  above 
properties. Moreover, the  product  of a mono tone  function f E Wql(G), q > n - 1, and a continuous 

mapping g E W~(G), q > n - 1, is ~*-d i f fe ren t iab le  almost everywhere in G as well, while f g  is 
certainly summable  only to  the power q/2. The  definition of J~*-differentiability is justified by the 
fact that  many arguments  below (see, for instance, Theorem 2) rely only on the above-listed properties 
(1)-(3) rather than  on the  membership of a mapp ing  in the corresponding Sobolev class. 

The following proposi t ion is a res ta tement  of one result of [16]: 

P r o p o s i t i o n  3. Suppose that a continuous mapping f : G ~ R n is ~*-differentiable almost 
everywhere in G and has locally summable Jacobian J(x, f )  in G. Then 

(1) there is a Borel set E 1 C G of measure zero such that f satisfies Luzin's condition 
outside E/; 

(2) for each compact domain D C G sudl that D C G and [OD[ = 0 and every continuous real 
function u such that U[l(OV) ----- 0 and the function y ~ ~ u(y)#(y, f ,  D) is integrable in R n, the function 
(u o f )(x)J(x,  f )  is integrable on D \ f - l ( f  ( El)  ) and the following equality is valid: 

/ (uo f ) ( x ) J ( x , f ) d x = / u ( y ) # ( y , f , D ) x ( y ) d y ,  (2) 

D \ I - I ( I ( E I )  ) R n 
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where X is the characteristic function of the set f(G) \ f ( E f  ); 
(3) the following formula holds for almost every y E R n \ f(OD U El): 

#(y , f ,D) = E sgnJ(x, f ) .  
zef-~(~)nO 

In particular, if f has nonnegative Jacobian then 

#(y, f ,  D) = N(y, f ,  D) 

for almost every y e R n \ f(OD U El). 

Here #(., f,  D) is the degree of f .  For the definition and properties of degree see, for instance, 
[1,n,12] 

Observe that  the restriction of the integration domain on the left-hand side of (2) essentially 
reduces the scope of its applicability. For instance, if f satisfies the condition .jg then J(x, f )  = 0 
on f - l ( f ( E i )  ) and therefore the integration domain on the left-hand side of (2) coincides with D (in 
this case formula (2) is well known). We now distinguish a class of mappings for which the integration 
domain on the left-hand side of (2) coincides with D. 

A mapping f : G --* R n which is .X/*-differentiable almost everywhere in G and has locally 
summable Jacobian J ( x , f )  in G is stable if J (x , f )  = 0 almost everywhere on the set f - l ( f ( E / ) ) ,  
where Ef is the set of Proposition 2. Thus, a mapping satisfying Luzin's condition ~ is always stable. 
Conseqltently, if f in the change-of-variable formula (2) is stable then the integration domain on the 
left-hand side of (2) coincides with D. 

Let D @ G be a compact domain in G. If f : OD ~ R n is a continuous mapping then the 
image f(OD) is called a cycle. For an arbitrary continuous extension F : D ---* R n of f we can define 
the degree #(y, F, D) of F at the points y 6 R n \ f (OD) .  The linking number u(y, f(OD)) of y with 
respect to the cycle f(OD) equals #(y, F, D) for all y 6 R n \ f(OD). Obviously, the definition of the 
linking number is independent of the extension of f .  Moreover the following proposition is valid: 

P r o p o s i t i o n  4. / f  f : D --. R" has a nondegenerate JC'*-differential L at a point x 6 D then 
there is a sequence of positive numbers r. ,  n 6 N, with limn~oo r .  = 0 such that the linking number 
u(y, f(S(x,  rn))) of y = f (x)  with respect to the cycle f (S(x ,  rn)) equals sign det Df(x)  for all n E N. 

We need some definition of [8] for stating Theorem 2. Suppose that D is a compact domain with 
smooth boundary. A function u : OD ---* R belongs to the class W~(OD) (Lp(OD)) if for every local 
coordinate system (Ua, ~a),  Wa = ~r C R n- l ,  of the manifold OD the composite u o ~ 1  belongs 
to W~(Wa) ( u o ~  1 e Lp(Wa)). We say that  u e J~p,q(OD) if u e WI(OD;R ") (i.e., each coordinate 
function of u belongs to W~(OD;R)) and [ adj Du[ e Lq(OD). 

The following assertion can be viewed as an extended version of the change-of-variable formula 
of [2] ([6]) for mappings of the class W~,loc(G ) (.r 

T h e o r e m  2. Suppose that a mapping f : G ---* R n satisfies one of the following conditions: 
(1) f : G --, R n is a continuous stable mapping; 
(2) f e .efp, q(D), where D C G Ls a compact domain with smooth boundar); p > n - 1, and 

n . q >- h-'c'f-1, moreover, the trace of f on OD belongs to J~gp,a(OD) and is continuous. 
Then, for every continuous bounded real function u such that u]f(OD) = 0 and the function 

y , ~ u(y)#(y, f ,  D) is integrable in R n, the function (u o f)(x)J(x,  f )  is integrable on D and the 
following equality is valid: 

(u o f)(z)s(=, /) dx = / u(y)v(y, f(OD) )x(y) dy. 
D R n 

(3) 
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Here X is the characteristic function of the set f(G) \ f(E$) under condition (1) of the theorem and 
X is identically unity in R n under condition (2) of the theorem. 

PROOF. Under condition (2), Theorem 2 ensues from [8, Theorem 5.1], wherein the formula 

f (u o f)(x)J(x, f)  dx = #(Yo, f,  D) / u(y) dy 
D R n 

was proven for every bounded smooth function f whose support lies in the connected component of 
the complement l~ n \ f(OD) containing Y0. 

Prove the theorem, assuming condition (1). Given a measurable function v: D --. R such that 
v(x) >_ 0 for almost all x, construct the function y a , Nf(y, v, D) as follows: If N(y, f, D) < cr then 
let Nl(y, v, D) equal the sum of all values of the function v(x) at the points of the set f - l (y)M D. If 
N(y, f, D) = cx~ then the value Nf(y, v, D) equals the limit of the sum of the values of v(x) over all 
finite subsets of f -:(y)  M D. 

If v(x) is the indicator of a set A, A C D, then, recalling that  J(x, f)  = 0 almost everywhere 
on f - : ( f (E f ) ) ,  we can rewrite the formula of Proposition 2 as 

v(x)lJ(x, f)l dx = f Nf(y, v, D)X(y) dy. 
D R n 

Hence, it is clear how to validate this formula for linear combinations of the indicators of finitely 
many measurable sets (for simple functions). Approximating an arbitrary nonnegative measurable 
function v by an increasing sequence (Vm} of simple functions and using Beppo Levy's ttmorem, we 
find that 

D R n 

If v is an arbitrary measurable function then we put by definition 

Nf(y,v,D)(y) = Nf(y ,v+,D)(y)-  Nf(y,v- ,D)(y).  

Take v to be a measurable function u o f sgn J(x, f). Then 

f uo fJ(x,f) x= fv(x)lZ( ,:)l = f 
D D R n 

It remains to establish that Nf(y, v, D)X(y) -- u(y)v(y, f(OD))x(y ) at almost all points y E R n. 
Let E:  be the set of the points x E D at which f has no 9~*-differential, E2 = (x E D : 

J(x, f)  = 0}, and E3 = {y E R n \ f (Es)  : g(y , f ,D)  = c~}, where Ef  is the set from Proposition 2. 
Since D C G is compact, the function N(y, f, D) is summable and hence IE3I = 0. Put S = 
E3 U f(E:) U f(E2) U f(E:).  Then IS \ f (El)  I = 0 by (1). Take an arbitrary y E R n \ (S U f(OD)). 
The set f - : (y)  M D is finite, f has a 3g'*-differential at each point of f - l ( y )  N D, J(x, f )  ~ 0 for 
all x E f - : (y)  M D, and all points of this set are interior points of D. Let a : , . . . ,  aN be all points 
of the set f - l (y )  N D. By the definition of the ~*-differentiai ,  there is a sequence of closed balls 
Bim = B(ai, ri,m), m �9 N, such that  their radii vanish as m --* or and v(y, f(OBim)) = sgn J(ai, f)  by 

Proposition 4. For a sufficiently large m the balls B/m and B j ,  i ~ j ,  are disjoint. Then the following 
relations hold for almost all y E lit n \ f(Es):  

N N 
u(y)v(y, f(OD) ) = u(y) Z v(y, f (OBim) ) = u(y) ~ sgn J(a~, f)  = Nf(y, v, D). 

i = l  i-~ l 
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The theorem is proven. 
A mapping f : G -+ R n, G C R n, n >_ 2, of the class Wll, loc(G) which is 9ff*-differentiable almost 

everywhere in G is monotone in G [2] if, for every point x e G and almost every r E (0, rz), rz > 0, 
the measure of the inverse image f - l (k~)  of the unbounded component ~ of the complement of the 
cycle f (S(x ,  r)) equals zero. This definition of monotonicity for mappings of the class W~(G) was 
introduced in [2]. 

T h e o r e m  3. Suppose that f : G --~ R n, G C R n, n > 2, is a nonconstaat mapping of the Sobolev 
class Wlq, loe(C) which satisfies (M1)-(Mh) and the stabi//ty condition or (M1)-(M4) and (M6b). 
Then f is monotone in G and differentiable in the classical sense almost everywhere in G. 

Using the same method as in Theorem 3, we can prove the following corollary: 

Corol la ry  1. Suppose that a nonconstant mapping f : G --* R n, G C R n, n > 2, of the 
class WI,]oc(G ) /s JT'*-differentiable almost everywhere in G, satisfies (M2)-(Mh) and the stabili~ 
condition. Then f is monotone in G. 

From Theorem 3 and Corollary 1 we derive 

Coro l la ry  2. The coordinate functions of f are monotone. 
Theorem 3 ensues from the following lemmas: 

L e m m a  1. Suppose that D ~ G, [OD I = O, is a compact domain such that the restriction f[OD 
is continuous. If  V is a connected component of the open set R n \ f(OD) such that v(y, f(OD)) ~ O, 
y e V, then IV \ f(D)[ -- 0. 

PROOF. If IV" \ f(Es) I = 0, where E S is the set from Proposition 2, then we have nothing 
to prove. Otherwise we consider a compact set A C V \ f (D) ,  ]A I ~ O. Fix a point y E V. 
Consider the characteristic function ~A(z) of A and let ~k(z) be a sequence of compactly-supported 
continuous functions such that ~klf(aD) ---- 0 for all k and limk-.oo ~k(Z) = ~A(Z) pointwise. Inserting 
the function ~ ( z )  in (3) and passing to the limit over k - .  c~, we obtain 

J (x , f )dx=/v (y , f (OD)) fA(Z)X(z )dz=L, (y , f (OD))[A[  (4) 

f-I(A)nD V 

(under condition (M6b), the function X(z) is identically unity). Since f -1  (A)AD = o ,  the right-hand 
side of (4) may vanish only in the case of [AI = 0. The lemma is proven. 

L e m m a  2. Suppose that D ~ G, IODI = O, is a compact convex domain which satisfies the 
conditions of Theorem 2, f is nonconstant, and [f(OD)l = O. I f V  is the exterior connected component 
for the cycle f(OD) then [ f - l (V)  N D[ = 0. 

PROOF. It follows from the hypothesis of the lemma that there is a component of R n \ f(OD) 
on which ~(y , f ( O D ) ) # O. (Otherwise from (3) we could infer f D J ( x, f )  dx = O, whence D f ( x ) = 0 
almost everywhere in D and therefore f could be constant on D.) 

Assuming (M6a), we have I(V n f (D))  \ f(Ef)[ - 0. Indeed, if [(V n f(D)) \ f(Ef)[ > 0 then, 
applying (4) to the characteristic function ~A(Z) of a compact set A C (V O f (V))  \ f(E$),  [A[ r 0, 
we obtain 

f J (x , f )dx  = / u ( y , f ( O D ) ) ~ A ( z ) x ( z ) d z =  u(y,f(OD))lA[, y E  V, (5) O= 

f-I(A)nD v 

for v(y,f(OD)) -- O. Since J (x , f )  >_ O, we have J(x,f)i$-l(A)n D --- 0 almost everywhere and 
from (1) we deduce [AI = 0. Since A is an arbitrary compact set in (V n f(D)) \ f (E]) ,  we have 
I(V n f(D)) \ f (Ef  ) I --0. Hence, I ( f - l (V)  ND) \ f - l ( f ( E f  ))I = 0 and therefore J(x, f ) i f- l(v)n D = 0 
due to the stability condition. 
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Suppose to a contradiction that If-. I(V) N D I > 0. Consider a set L C f - l ( v )  M D of positive 
measure such that all points of L are Lebesg~ae points for the Jacobian and ~*-differentiability points 
for f .  It is obvious that 

I ( f - t (V)  n D) \ n[ = 0. (6) 

Consider x E L and tz such that fix(z,t~) is continuous and f (S(x ,  tz)) C V. Suppose that W is 
a connected component of the open set R n \ f ( S ( x ,  tz)) for which v(y, f (S (x ,  tz))) ~ 0, y E W. By 
Lemma 1, [W \ f (B(x ,  tz))[ = 0. 

Assuming (M6b), by what was said in the beginning of the proof from the inclusion W C V we 
derive J(x, f)I/-x(W)nB(x,t~) = O. 

Assuming (M6a), we apply (3) to D and a continuous function u such that u(x) > 0 at all points 
x E W and u(x) = 0 at the points x ~ W. We obtain 

(u o y)(x)J(x,  f )  = O. dx 

On/-l(W) 

Since (u o :)(x) > 0 on B(x,  tz) O :-X(W), we also arrive at J(x, :)[/-l(w)nB(z,t~ ) = O. 
Now, consider a connected component W of an open set Rn\ f (S (x ,  tz)) for which v(y, (S(x, tz))) = 

O, y E W .  
Apply (3) to D = B(x,  tx) and a continuous function u such that  u(x) > 0 at all points x E W 

and u(x) = 0 at the points x ~ W. We obtain 

(u o f ) (x)J(x ,  f )  dx = O, 

f-l(W)MB(x,tx) 

which again implies J(x, f )  l/-l(w)nB(z,t~ ) = O. 

Since l f- l( f(OD))I = 0, we have J(x,f)lB(z,t~ ) = 0 by the above. Hence, Of(x)  = 0 almost 
everywhere on B(x, tx), since distortion is finite (condition (M4)). Consequently, L lies in the open 
set U = UzeL B(x, tz) on which Df(x) = O. For this reason, the range of the mapping f lu  is at most 
countable; moreover, f (U)  C V. 

Fix a point x0 E U and a sphere S(xo, t) C U. Suppose that a E D is an arbitrary point such that 
f(a) belongs to some bounded component of the complement Rn \ f (D).  Joining a with the points x 
of the sphere S(xo, t) by segments Ix and using absolute continuity of f on almost all segments, we 
conclude that, on almost all segments lx (with respect to the surface measure on the sphere S(xo, t)), 
there exists a set of positive measure whose image is outside f(U) but still lies in V. Applying Fubini's 
theorem, we obtain I ( f - l ( v )  n D) \ L I > 0, which contradicts (6). The lemma is proven. 

Recall that a mapping preserves orientation if the degTee #(y, f,  D) of the mapping is positive for 
each compactly embedded subdomain D ~ G and every point y E f (D)  \ f(OD) (for the definition 
and the properties of degree see, for instance, [1, 11, 12]). 

T h e o r e m  4. Suppose that a nonconstant mapping f : G --* R n, G C R n, satisfies (~I1)-(Mb) 
and either is stable or satisfies (M6b). Then f preserves orientation and is differentiable almost 
everywhere. 

PROOF OF THEOREM 4. Fix an arbitrary point y E f (D) \ f (OD)  and the connected component V 
of the open set Rn\f(OD) containing y. It is impossible that J(x, f )  = 0 almost everywhere on f -1  (V), 
for the partial derivatives of f would otherwise vanish on f - l ( v )  and therefore the set V would be 
at most countable, which is false. 

We similarly exclude the possibility I V \ f ( E / )  I = O, since by stability J(x, f)  = 0 almost every- 
where o n / - 1  (V) which leads to a contradiction as in the preceding case. 
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Insert in (4) the characteristic function ~A(Z) of a compact set A C V \ f ( E i )  of positive measure. 
Then I f - l (A ) l  > 0 and J(x,  f)  > 0 almost everywhere on f - l ( A )  by Proposition 2. We obtain 

0 <  / J ( x , f ) d x = / , ( y , f ,  D l x ( z l d z < # ( y , f ,  D l I V \ f ( E l )  [. 

]-I(A)ND A 

Hence, the degree is a positive function of y. 
The same arguments prove the following 

Coro l l a ry  3. Suppose that a continuous nonconstant mapping f : G --, R n, G C R n, n >_ 2, of 
the c/ass W~,loe(G ) is ~*-differentiable a/most everywhere in G, satisfies (M2)- (M5)  and is stable. 
Then f preserves orientation. 

w 2. O p e n n e s s  and  Disc re teness  of  QuasUight M a p p i n g s  

In addition to (M1)-(M6), we introduce one more condition on f.  
(MT) The mapping f : G ~ R n is continuous and satisfies one of the following topological 

assumptions: 
(a) the connected components of the set f - l ( y )  are compact for each y e f(G);  
(b) for each point y, there is a compact domain D ~ G such that y E f ( D )  and the multiplicity 

N(z ,  f ,  D), z E R n \  f(OD), of the mapping is bounded almost everywhere in some neighborhood of y. 
Recall that  a mapping f : G --* R n for which the connected components of the inverse image f -1  (y) 

are compact for each y E f (G)  is called quasilight. 
Introduce the characteristic 

Ks(x; f) = inf{k(x) : IV~f l s (x )  < k(x)J(x,  f)}. 

Clearly, Ks(x; f)  = 0 for almost all x e Z = {x e G : J(x,  f) = 0}. Observe that Kn(x; f )  differs 
from K(x )  only by K,(x;  f )  = 0 on Z (recall that K(x )  = 1 for almost all x e Z). 

T h e o r e m  5. Let f : G --* R n, G c R n, n >_ 2, be a nonconstant mapping of  the class W~,Ioc(G ) 
which satisfies (M2)-(M5)  and (M7) and is stable. Suppose that 

(1) Ks(x; f )  e Lee,lot(G) in the case ofn  - 1 < q = s <_ n; 
(2) Ks(x; f )  e L_q_ lot(G) in the case o fn  - 1 < q < s < n (for n = 2 the summability exponent q 

may equai 1). 
Then f 
(1) belongs to Wl, loc(G); 
(2) is open and discrete; 
(3) is differentiable almost everywhere in ~2. 
Differentiability and preservation of orientation ensue from Theorem 4. To prove opemmss and 

discreteness, it suffices to demonstrate that the inverse image of each point is totally disconnected. 
The remaining items are proved in the assertions below. Denote by Z the set {z E G : J(z,  f )  = 0}. 

L e m m a  3. Suppose that f : G --* R n, G C Ir n, n > 2, is a mapping of  the class W~,loc(G ) which 
satisfies (M2)- (M5)  and for which 

(1) Ks(x; f )  E Lcc,loe (G) /f I _< q = s < cr 
(2) Ks(z;y) L ,,oc(a) i l l  <_. q < s < cr 

Fix a compact domain D ~ G and an arbitrary domain D' C R n such that D' D f(-D). 
Then 
(1) /'or every function u E W~(D') ,  the composite u o f bdongs to Wql(D) and the foUowing 

inequality holds: 
1 

_ d 

D'  
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vchere 

Kq,s(f; D) = { 
IIgs(-; f) l L (D)ll 
[[Ks(.; f )  [ L_~_q(D)[[ 

for l < q= s < oc, 

for 1 <_ q< s < cr 

(2) if D is such that N(y, fE, D) E L ~ ( R  n) then, for every function u E Lls (D'), the composite uo f 
belongs to L lq( D ) and the following inequality holds: 

n 1 
llu o f ] L~(D)il < (Kq,s(f;D)IIN(y, fE, D) ] Loo(R I 

(3) the composite u o f can be differentiated by the classical rule: V(uo f)(x) -- D f (x)TVu(f  (x) ) 
a/most everywhere in D. 

In particular, f belongs to Wql, loc(G). (For the notation N(y,  rE, D) see Proposition 2.) 

PROOF. We verify the assertions of the lemma for u e WI (D ' ) .  Since u o f belongs to the class 
ACL(D) and f has finite distortion, the derivatives of u o f are calculated by the classical formulas; 
moreover, 

1 

))uo <l 
D 

1 

IJ(x, f)l ~ 
D\Z 

Using H61der's inequality with exponents s/q and s/(s - q ) ,  we derive 

)I,o: i ( f 
D\Z 

I j (x , f ) t  ] dx IVulS( f (x)) . Ig(x , f ) idx  
D 

(for q = s the left factor equals Ks,s). Applying (1) to the right factor, we obtain the sought estimate 
for the norm. Putt ing u = xi, i = 1 , . . . ,  n, we see that Ofi/Oxj E Lq,loc(G). 

Prove the second assertion of the lemma. If u E L I (D ~) then there is a sequence Uk of smooth 
functions converging to u quasieverywhere (see below) and in the LI(D ~) norm. To prove item (2), 
observe that the sequence Uk o f is bounded in Llq(D) and converges to u o f quasieverywhere. Using 
Poincar~'s inequality, we infer that the composite u o f is locally integrable in D. Thus, u o f E L~(D) 
and item (2) is proven. 

On the other hand, we can differentiate the composite uk o f(x) by the classical formula for 
almost all x E D. Let S "C D t be the set of points at which u has no derivative. It follows from 
the change-of-variable formula that the Jacobian vanishes almost everywhere on the set A = {x : 
x E f - l (S )}  (which may have positive measure). By finiteness of distortion, all partial derivatives 
of the coordinate functions of f therefore vanish almost everywhere on A. For this reason, the limit 
of the sequence V(Uk o f)(x) = Df(x)T•uk(f(x))  in Lq(D) equals V(u o f)(x) = Df(x)TVu(f(x));  
moreover, V(u o f )(x)  = 0 almost everywhere on A. We axe left with observing that Df(x)TVu( f (x) )  
is the weak derivative of the function u o f .  

By [1, 17], Theorem 1 will be proven if we establish that  f preserves orientation and the inverse 
image f - ] (y )  is totally disconnected for each y 6 R n. 

Preservation of orientation for the mappings in the class in question ensues from Lemma 3 and 
Theorem 4. 
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L e m m a  4. The inverse image f - l (y )  is totally disconnected for each y 6 R n. 

PRoof.  To establish the required property, we show that the inverse image f - l (y)  has q-capacity 
zero; whence, using the well-lalown properties of capacity [1], we infer that in the case of q > 1 the 
Hausdorff (n - q)-measure of f - l (y)  equalszero. Since n - q < 1, f - l ( y )  is totally disconnected. 
If n = 2 and q = 1 then tim linear Hausdorlt measure of a set of zero 1-capacity equals zero [18]; 
consequently, this set has no degenerate continua as connected components. 

We recall the basic facts of capacity theory of [19] which are needed in the proof of the lemma. 
Suppose that M is a Riemannian space. Denote by F(M) some normed space whose elements are 
continuous functions on X. The algebraic operations in F(M) are defined in a standard manner. 

Suppose that, together with each function, u E F(M), the space F(M) contains the modulus [u{. 
Thus, F(M) is a vector lattice with respect to the pointwise order relation between fimctions. More- 
over, suppose that the norm and the order are connected as follows: there is a continuous monotone 
increasing function a : [0, oo) ~ [0, oo) satisfying the conditions a(0) ---- 0, c~(t) --. oo as t --* oc, and 

a([[ max(u,. 'v)[[) + a([[ min(u,,v)[[) <_ a({[u[{) + a([[v[[), 

where u, v 6 F(M) are arbitrary functions. 

EXAMPLE l .  Consider the collection of functions ~ : M --* R belon~ng to the intersection 
F(M) = C(M) N W~(M) and having the finite norm [[~ [ W~(M)I I = ([1~ [ Lq(M){[ q + [{V~ [ 

1 

ng(M)[[q)~ (Hqo [ Llq(M){[ = lIVe{ La(M)I[). Take a to be a(t) ---- t a. The closure of F(M) in the 
norm under consideration coincides with the Sobolev space W~(M) (Lal(M)), 1 <_ q < c~. 

EXAMPLE 2. Suppose that # : M --* ]R is an arbitrary normegative summable function on M. 
O 

Take F(M) to be the class of compactly-supported functions in Lq~(M; it) -- C0(M)N W~(M) with the 
O O O 

finite norm {1~1LI(M; #){I = [{V~ [ Lq(M)[[ and let a(t) = t a. If it ~- 1 then put L~(M; 1) = L~(M). 

EXAMPLE 3. Fix a compact set w C M with nonempty interior. Consider the subspace Llq(a2; M) 
of the space La 1 (M) of Example 1 which is constituted by the functions vanishing on ~z and which is 
endowed with the norm I1~o [ Lal(w;M)II-- I[V~ I La(M)I[ and the same function a. 

Suppose that e is a compact subset of M. The set of F-admissible functions for e C M is the 
collection A(e; F(M)) - {u e F(M) :u  >_ 1 on e} and the capacity of e with respect to F(M) is 

cap(e; F(M)) = inf{a( l lu l l )  : u e A(e; F ( M ) ) } .  

If A(e; F(M)) = O then we put cap(e; F(M)) = oc. The capacity defined on compact sets extends 
routinely to arbitrary sets E C M (see [19], wherein it is proven in particular that the so-defined 
capacity is a generalized Choquet capacity). 

EXAMPLE 4. The capacity of a set E C M with respect to the space ~I/~(M) of Example 1 is 
called the Sobolev capacity of E and is denoted by cap(E; Wq 1 (M)). The cla.ss of admissible functions 
for the capacity of a compact set e C M is A(e; WI(M)) - {u e C(M) N W~(M) : u >_ 1 on e}. 

O 

EXAMPLE 5. The capacity of a set E C M ~ith respect to the space Lql(M; it) of Exam- 
ple 2 is sometimes called the weighted variational capacity of the condenser (E, M) and denoted 

O 

by cap(E; LI(M; it)). The class of admissible functions of (e, M), where e is a compact set, is 
O 

A(e; Lql(M;it)) = {u e Co(M)NW~(M):u _> 1 on e}. 

EXAMPLE 6. Fix a compact set ~ C M with nonempty interior. The capacity of a set E C M \ 0J 
with respect to LqI(w;M) (see Example 3) is called the capacity of the condenser (w, E; M) and 
denoted by cap(~, E; Lal(M)). The class of admissible functions of (w, e; M) for a compact set e is 
A(e;L~(w;M)) --- {u e C ( M ) N W s  >_ 1 on e, u=O on w}. 
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We say that  a set E C M has capacity zero if cap(E; F(M))  = 0. A property is said to hold 
quasieverywhere on M if it holds everywhere except for a set of capacity zero. It is well known that 
a countable union of sets of capacity zero has capacity zero. 

Since Poincar~'s inequality is valid in bounded domains f2 C R n, it is clear that on bounded 
O 

domains the collections of sets of zero capacities cap(E; Wql(f~)) and cap(E; Ll(f2)) coincide. In the 
following lemma we indicate a condition for a set to have measure zero. In particular, we prove that 
the collections of sets of capacity zero in Examples 4-6 on bounded domains in R n coincide. 

L e m m a  5. Suppose that f~ C R n is a bounded domain, E C f~, w C ~ is a compact set with 
nonempty interior, and a number b E R and a constant K are such that, for each a > b, there is a lower 
semicontinuous function Ua e Ll(f~) with the properties UlE >_ a, ul~ < b, and Ilu,, I L$( )II __K. 

0 

Then cap(E; wql(f~)) = 0, cap(E; Lql(f~)) -- 0, and cap((w, E; L~(f2)) = 0. 

PROOF. Let D ~ f2 be a compact domain with smooth boundary, w C D, and let Q be a minimal 
cube with sides parallel to the coordinate axes which contains D. There exists a bounded linear 
extension operator ex t :  Llq(D) --* Llq(Q), 1 <_ q <_ ~ ,  such that ext Ua e L~(Q) n W~(Q)  if ua e 

max(ua,b)-b It is obvious that [Iva [ Lql(Q)[[ < L~(Q) f3 W~(Q).  Consider the function va = a-b " 

for every a > b. Moreover, the set Va = {x : Va > 1 - 5} is open and includes E, where 5 E (0, 1) is 
an arbitrary number. On the other hand, the compact domain a; includes some ball B C D on which 
va = O. By a version of Poincar6's inequality (see, for instance, [18]), we have the inequality 

1 1 

(/,glq*dx)" <_Cl(Q)"/q*(/IVgiqdx) ~ (9) 
Q Q 

in which q* E [1, qn/(n - q)], l(Q) is the side length of Q, and 2Q is the cube with the same center 
as Q and with sides twice as large as those of Q, where g E Llq(Q) is an arbitrary function vanishing 
on B. Hence, cap(E  n D; WI(Q)) = o, since 

II ext II/( cap(E n D; _< cap(yo n D; _< c (a- 

where C is some constant and a E ]R, a > b, is an arbitrary number (the function ~ can be 
mollified if need be). Multiplying the result of mollification by a suitable truncator, we can prove that 

O 

cap(E n D; Llq(G)) = 0 and cap(w,E N D; Llq(G)) = O. Since D is an arbitrary domain, aemma 5 is 
proven. 

We continue the proof of Theorem 5. Let f be a mapping satisfying the hypothesis of Theorem 5. 
Fix a compact domain D ~ G with f ( D )  \ f(OD) ~ 0 and fix an arbitrary bounded domain f~ 

O 

containing f (D) .  Consider the space Lpl(f~; #) of Example 2 with the weight function # defined by 

#(y, f ,  D) if y E f (D)  \ f(OD), 

#(Y) = 1 if y E (12 \ f (D) )  U f(OD). 
(lo) 

Recall that, by (M7), we have 
(1) for y E f(G),  there is a compact domain D ~ R n such that y E f(D) \ f(OD); 
o r  

(2) there is a compact domain D ~ ]R n such that y ~ f(OD) and the function #(z, f ,  D) is bounded 
in some neighborhood W of y. 

The first condition holds in the case when each connected component of the inverse image f - iCy ) 
is compact [20]; i.e., the mapping is light. 

Recall that a series in a normed space is norm convergent if the series of the norms of its terms 
converges. 
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Lernma 6. Assume that y E f (D)  \ f (OD).  There exJsts a series ~'~~ 1 ~k which is norm 
0 

convergent in L~(f~; I~) and possesses the {ollowing properties: 
(1) the terms ~ok of the series are nonnegative functions; 
(2) the sum of the series is a lower semicontinuous function equal to oo at y. 

PROOF. In the first of the five cases listed before the statement of the lemma, take W to be the 
bounded connected component of the open set R n \ f(OD) containing y. Then, for each k E N, there 

O 

is a continuous nonnegative function qok E W ~ ( W )  such that ~ok(y) >_ 1 and 

[l:k I p = .(y,:,m f I: I" < I/2 k e N. 
w 

(11) 

0 

Existence of such function follows from the fact that the capacity of a singleton with respect to L~(f~) 
OQ equals zero for every domain f~ containing the given point. The series ~-~k=l ~k is norm convergent 

and possesses the required properties. 
In the second case we take W C f~ to be a neighborhood of y in which the function ;~(z, f,  D) is 

bounded by some constant M. The further arguments are similar to the above with the only difference 

that (11)is replaced with the inequality []~;r [ LI(W;#)[IP < M f w  I~~ p dx <_ 1/2 kp, k E N. 

L e m m a  7. Assume that y E f (D)  \ f (OD).  Then cap(f - l (y) ;  WIg(G)) = O. 

PROOF. Observe that f - l ( y )  is a relatively closed subset of G. If ~ is the sum of the series in 
Lemma 6 then the function p o f = ~~ ~k o f is lower semicontinuous and equals infinity at the 
points of f - l (y ) ;  moreover, the series is norm convergent by Lemma 3. Thus, ~ o f E WI, loc(G). In 
view of Lemma 5, the q-capacity of the set f - 1  (y)AD then equals zero for each compact domain D ~ G 
with smooth boundary. Consequently, it equals zero for the whole domain G. Covering f - l ( y )  by 
a countable collection of domains Dn ~ G with smooth boundaries and using countable semiadditivity 
of capacity, we obtain cap(f- l (y) ;  W~(G)) = O. The lemma is proven. 

The proof of Theorem 5 is complete. 

w 3. Solut ions to  Quas i l inear  Ell ipt ic  Equa t i ons  
and  t h e  Change-of -Var iab le  F o r m u l a  

As is well known, the connection between mappings with bounded distortion and nonlinear elliptic 
equations bases on the property that the columns of the matrix adj D f ( x )  = {Aij(x)} are divergence- 
free fields; i.e., 

Aij dx = 0 

G 

for every function ~ E C~(G) and every j = 1 , . . .  ,n. This property can be proved for smooth 
mappings by straightforward calculation and then extended by continuity (using approximation) to 
a suitable Sobolev class (see, for instance, [21]). Here we give a new proof of this result by using the 
change-of-variable formula (3) (see Corollary 4 below). 

L e m m a  8. Suppose that f : G --~ R" is a mapping of the class Wlloc(G), where q >_ n - 1 
for n = 2 and q > n - 1 for n > 3, and u : G ~ R is a function wtn'ch is Jg*-differentiable 
almost everywhere in G, ~v~ishes outside w ~ G, and is such that the mapping" fu : G --, R n, 
fu = (fl, . . . ,  f j -1 ,  u, f j + l , . . . ,  fn), is continuous and stable; moreover, 

i = l  Aij axi 
for  some j = 1 , . . .  , ft. 
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Then 

Aq-~xi dX = O. (12) 

G 

PROOF. Denote by A/j the entries of the matrix adj Df(x) .  Note that the mapping fu : G -~ R n 
is jff*-differentiable almost everywhere in G and the Jacobian J(x, fu) of this mapping is nothing but 
the integrand of (12): Consider a compact domain D ~ G such that w ~ D, IOD[ - O, ulo D =- O, 
and the restriction fulaD is continuous. Then the cycle fu(OD) lies in the (n - 1)-dimensional plane 
and therefore v(y, fu(OD)) -- 0 for every point y E R n \ fu(OD). Thus, the conditions of Theorem 2 
are satisfied and the right-hand side of (3) for the mapping fu : D --* R n equals zero. Thus, (12) is 
proven. 

Coro l l a ry  4. Suppose that f : G --* R n is a mapping of the class 1 Wq,loc, with q >_ n - 1. Then 
the columns of the matrix adj D f are divergence-free fields. 

PROOF. Fix an arbitrary function ~o E C~(G) vanishing outside some compact domain w ~ G. 
Consider a sequence fk : w -* R n of smooth mappings which converges in Wnl_l(W) to f .  Observe 
that we can choose fk so that  fk E W~ (w) for some q > n - 1. By Lemma 8, 

Ak,ij~x i dx = O, 

G = 
where Ak,q are the entries of the matrix adj Dfk(x). Passing to the limit as k --* oo, we come to the 
desired relation. 

T h e o r e m  6. Suppose that f : G --* R n is a continuous mapping of the c/ass Wql, loc(G), where 
q >_ n - 1 for n = 2 and q > n - 1 for n > 3, and the Jacobian J(x, f )  is locally summable on the 
open set W = G n f - l ( ~ ) .  Let V : fl --* tR n be a vector field V = ( V l , . . .  , Vn) Of class C 1. I f  f is 
almost absolutely continuous then 

div((adj Df(x ) )V  o f)  -- [(div V) o f]J(x, f )  (13) 

ha the distributional sense on W. 
REMARK 3. Formula (13) is of interest in its own right and its proof under other analytical 

assumptions bases on approximation of a mapping by smooth mappings (see [6, 8]). For mappings of 
the class 1 W~,lo c we can deduce this formula from Corollary 4 by a standard passage to the limit. The 
proof below grounds only on Lemma 8. Bearing in mind applications of this formula to Carnot groups, 
we are interested in conditions under which we can prove it without passing to the limit. Below (in 
Lemma 9) we present a condition [8, Theorem 3.2] under which (13) is valid without Luzin's condition 
uV for f .  

PROOF. Fix a function ~ E C~~ We have to prove that 

f E E A q ' v J ~  [(divV) o f l J ( x , f ) ~ ( x ) d x .  (14) 
Oxi 

W ~=1 . j = l  W 

We can transform the integrand on the left-hand side of (14) as follows: 

E A o v j ~  fO.~ = ~ Aij ( (vjo f ) ~ ) -  ~ Aij (v jo  f)cp 
Oxi i,j=l i,j=l i,j=l 

: • 
i,j---1 i,j,k= l 

- ~ ( O v J ~ o f J ( x , f ) ~ .  
i,j=l 

(15) 
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Since Ai j v jo  f'~z~ 6 LI (W)  for a l l / a n d  j and )-'~qn__ 1 (av.~y~) o f J ( x , f ) ~  6 LI(W); to prove (14), we 
only have to establish that 

j = l  l~V i=1 

Note that  the integrand in (t6) is a summable function for every fixed j (to veri~- this, it suffices to 
consider (16) with V replaced by the new field ~ obtained from V by substituting zero for all but 
the j t h  components) and satisfies the conditions of Lemma 8: to this end, it suffices to consider the 
function vj o f in place of u in Lemma 8. It is immediately checked that, for a fixed j ,  the integrand 
in (16) is the Jacobian of the continuous mapping Fj,~ = ( f l , . . . ,  fj-1, (v jo f )~ ,  fj+! . . . .  , fn). Observe 
that 

(fb...,fj-1,vjo f, fj+x,...,fn)--Gjo f, 

where Gj(y) = (Y l , . . . ,  Y j -b  v j (y ) , . . . ,  Yn) is a mapping satisfying the Lipschitz condition. The com- 
posite Gj o f is continuous and almost absolutely continuous. Hence, the mapping Fj,~ is continuous 
and 9K*-differentiable, satisfies Luzin's condition j V  (see below), and meets the 1D, pothesis of Theo- 
rem 2. Thus, the hypothesis of Lemma 8 is satisfied; consequently, (16) ensues from (12). 

It remains to demonstrate that the mapping Fj,~ satisfies Luzin's condition ~ ' .  Let Ak and S be 
the sets mentioned ill the definition of almost absolute continuity. The restriction Fj,~[Ak is Lipschitz 
continuous and therefore satisfies Luzin's condition JV on Ak. We are left with verifying that Fj,~[s 
satisfies Luzin's condition JV. Given e > 0, find 5 > 0 from the condition of almost absolute continuity 
of the mapping.Gj o f .  Let {B(xi, ri)}, xi 6 S for all i, be an arbitrary collection of pairwise disjoint 
balls such that  )-~i [B(xi, ri)[ < 6. Estimate the s u m  Ei(oscB(zi,ri) Fj,v) n. If x 6 B(xi ,  ri) then 

- C(sup i or (x)(B sc )(Gj o f))n 
z6G " " 

+ sup IGjoI( )V'( osc v)D < 0 <_ 
xesupp ~a B ( x i , r i )  - -  i 

Hence, Fj,~ satisfies the condition ~ .  
REMARK 4. The almost absolute continuity condition is used in the present article exactly once; 

namely, to verify the following claim in the end of the proof Theorem 6: if  a continuous mapping 
f : G -+ R n, f = ( f l , . - - ,  f i , . . . ,  fn), of a suitable class satisfies Luzin's condition ~4: then the 
mapping f -- ( f l , . . . ,  qofi, �9 �9 �9 fn) as well satisfies Luzin's condition ,4: for every function qo 6 C~~ 
Surely, the almost absolute continuity condition may be replaced with another condition guaranteeing 
this claim. 

In the following assertion we show how (13) can be derived from the above results in the situation 
under study. 

C o r o l l a r y  5 [1, 11,12, 21]. Suppose that f : G --* R n is a mapping of the class Wn~,locl satisfying 
(M2) and (M4). Then (13) is valid for every Cl-smooth vector field V. 

PROOF. Observe that, under the conditions of the corollary, f is monotone and continuous by [2], 
satisfies Luzin's condition ~ "  (see [13, 22]), and enjoys the property of Remark 4, the latter proven by 
means of the estimate for a monotone function which is exhibited in the proof of Proposition 1. Since 
J(x, f )  E Ll,loc(G), all prerequisites for implementation of the proof of Theorem 6 in the situation 
under consideration are satisfied. 

L e m m a  9 [8, Theorem 3.2]. Suppose that f : G --* R n, G C R n, n >_ 2, is a nonconstant mapping 
of the class ~'q,s(G), where q >_ n - 1 and s >_ n-~- " Then (13) is valid for every Cl-smooth vector 
field V with bounded derivative. 

C o r o l l a r y  6. Suppose that f : G ~ R n, G c R n, n >_ 2, is a nonconstant mapping of the class 
1 Wq,loc(G) satisfying (M1)-(M6a). Then (13) is va//d for every Cl-smooth vector field V.  
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Corol la ry  7. Suppose that f : G --. R n is a continuous mapping of  the class WI, loc(G) satisfj/qng 
(M4), where q >_ n -  1 for n = 2 and q > n -  1 for n >_ 3, and the Jacobian J(x, f )  is 1ocaJ1y summable 
on the open set W = G A f-l(Ft).  Let V : Ft ---, R" be a vector field V = (vl , . . .  ,vn) of  the class 
Loojoe(f~) such that d i v V  = 0 in the weak sense on Ft. I f  f is almost absolutely continuous then 

div((adj D f ( x ) ) V  o f )  = 0 

in the distributional sense on W. 
PROOF. Fix a funct ion ~o E C~~ Put  Ve = (Mev l , . . . ,  M~vn), where Me is the  Sobolev 

mollification on Ft with parameter  r < d is t ( f (supp ~o), OFt). Then div Ve = 0 in the conventional sense 
and we can apply Theorem 6 to Ve. Thus, 

n n 

W i= l  j=~  

Since the mapping satisfies Luzin's condition #~", J(x, f )  = 0 almost everywhere on the inverse 
image f - l ( S )  of a set S of measure zero. Therefore, Aij(x) = 0 almost everywhere on the same 
inverse image. Consider an arbitrary sequence V~ converging to V everywhere on f ( supp  V) except 
for a set Z of measure zero. Then Msvj o f  converges everywhere outside f - l ( s )  to the function vj o f  
bounded on supp ~. By the  Lebesgue dominated convergence theorem, we can pass to the limit and 
finish the proof of the corollary. 

REMARK 5. In terms of exterior differential forms, (13) represents the equality df*w = f*d~ in 
the weak sense for a form ~ of degree n - 1 whose coefficients belong to the corresponding class. In 
Theorem 6, Lemma 9, and  Corollaries 5-7, we thus give conditions on a mapping and the coefficients 
of a form for exterior derivation and pull-back to commute (cf. [1]). 

Define the matrix 

f J ( x , f ) ' ~ (D f ( x )TDf ( x ) )  -1 if J(x,  f )  > O, 
G(x) (lr) 

t Id otherwise. 

The matrix G(x) is symmetric,  has determinant 1, and characterizes the local deviation of f from 
a conformal mapping. From the definition of distortion we obtain the estimate 

1 2 = 
. ., I~12 _< (a(x)~,~) < CnK -~(x)l~'[ 2, (18) 

c,,(z~(z))~ 

where Cn is a constant depending only on the dimension n. 
Suppose that  v is a real-valued smooth function on R n. Consider u = v o f .  By the chain rule 

(Lemma 3), we have V u ( x )  = Df (x )T(Vv) ( f ( x ) ) .  The connection between mappings with bounded 
disto1~ion and extremals of the Dirichlet integral established by Yu. G. Reshetnyak [1] is a consequence 
of the formula 

r~--2 

(G(x)Vu(x) ,  Vu (x ) ) - r 'G(x )Vu(x )  = adj Df(x ) lVv ( f ( x ) ) ln -2Vv( f ( x ) ) .  (19) 

It follows from (13) and (19) that if a function v 6 CI(Ft) is n-harmonic, i.e., if v is a solution to the 
equation div(IVv(x)[n-2Vv(x))  = 0 in a domain f) C R n, then u is a weak solution to the equation 

div(A(x, Vu)) = 0 (20) 
n - - 2  

on f-l(Ft) N G, where the  mapping A(x, ~) -- (G(x)~, ~)-'r-G(x),~ satisfies the conditions 

I < < 

which can be verified by means of (17) and (18). 
The case of K(x)  E Loo(G) corresponds to a mapping with bounded distortion. In this case (20) 

is a quasilinear elliptic equation and the regularity properties of its solutions are well known (see, for 
instance, [11]). In particular,  solutions to this equation satisfy the weak Harnack inequality which 
implies the strict max imum  principle for the coordinate functions. 
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w 4. P r o o f  of  T h e o r e m  1 

Suppose that f : G --* R n, G c R n, n > 2, is a nonconstant mapping of the class wl, loc(G) which 
satisfies (M2)-(M6) and that  K(x) E Lp,loc for some n - 1 <_ p _< oc if n - 2 and n - 1 < p _< oo if 
n > 3. Then f E WqZ, loc(G) with q = n p_ by Lemma 3: moreover, f is monotone (and consequently 

- -  p + l  , 

locally bounded) by Theorem 3, preserves orientation, and is almost everywhere differentiable by 
Theorem 4. The theorem wiU be proven if we establish that the inverse image f -Z(y) is totally 
disconnected for every point y E R n. Since all arguments are of a local nature, without loss of 
generality we may assume that a nonconstant mapping f is defined on a compact domain D ~ G, 
y = 0 E f(D),  and I (D)  C B(O,e -e) = f~t. To prove that the inverse image f-z(0)  is totally 
disconnected, it suffices to validate the estimate 

V log log d~ < cx~ (21) 

D I 

for every compact d o m a i n D  t ~ D , w h e r e n - l < s < q < _ n f o r l < q a n d s = l f o r q = l , n = 2 .  
Indeed, the function u = loglog[/(-~z is lower semicontinuous in D and u]f-l(0 ) -- oc; therefore, 

Caps(f-z(0)) = 0 by Lemma 5. Hence, f - I ( 0 )  is totally disconnected. To prove (21), we use the 
special approximation of log ~7 of [10]. 

L e m m a  10 [10]. For each 0 < a < e -e the function ~a : iT -'* R, defined by the formulas 

log I'~ if r = lyl > a, 

log ~ -("P~") + ~ ff ~ < lyl < a, 2a z 
co(v) = 

l o g l  + log2 + �89 + ( 5  1210g2)~a]~ 

2 '~[y[4 8 (5  81og2)laY-- ~ ffly[ < ~, + 4 ( - 7  + 12 log ) a-z- + - a 

possesses the follo~ing properties: 
(i) ~a e C2(IT), 
(ii) Ca(Y) ~- e for each y e iT; 
(iii) r is radial; 
(iv) ~ ' ( r ) =  ~'( lyl)  < 0; 
(v) ~a is n-superharmonic; 
(vi) log 1 < Ca(Y) <-- log ~ + �89 + log2 for each lY[ <- a; 

(vii) Ca(Y) = log [~ for a _< [Yl < e-e; 

(viii) ]VCa(y)[n-2VCa(y) E CZ(gtt). 

To prove (21), fix an arbitrary normegative function ~? E C~~ r/ > 0, and the function Ca, 
0 < a < e -e, of Lemma 9. We can derive (21) by passing to the limit as a --, c~ in the estimate 

f IvClog(r o f))(z)l~S(z) dx 
D 

$ 

D D 

(22) 

for some 1 < s _ < 2 i f n =  2 a n d n - 1  < s < n i f n > 2 s u c h t h a t  ~ <_p. ApplyingHSlder's 
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inequality to the left-hand side of (22), .we obtain 

[V(Iog(~a o f))(x)lS~S(x)dx = IV(log(Ca o y))(x)ISrl~(x)K(x)'~K(x).~ 
D D 

8 I'L--8 

<_ v log o F))(z (z Ka:-;(z 
D D 

Inequality (22) will be proven, if we establish the estimate 

n n dx 

D D 

in which we should replace (I) with the function (I)a. 

REMARK 6. In the case of mappings of the class 1 Wn~,loc, (22) and (23) were proven in [10] (see 
below). The authors of [10] treat (13) as a differential equation and take ~o in (14) to be a test function 
of the form r ]~ m o f .  We cannot proceed in this way under  the conditions of Theorem 1, since we 
cannot guarantee convergence of the integrals in (14). Our me thod  bases on the further employment 
of Lemmas 8 and 9 and calculations (15). Inequality (23) is a weak Harnack type inequality and 
is of interest in its own right. In the following assertion we present conditions under which we can 
prove (23). 

L e m m a  11. Suppose that the conditions of Theorem 1 are satisfied. Suppose that a function 
if) E C2(i2 ') possesses the following properties: if) >_ 5 > O, �9 is n-superharmonic, and the vector field 
[V~)(y)[n-2vff)(y) E cl(f~ ') has bounded derivative. Then (23) holds for every function ~ E C~(D), 
r/_> 0, where D = f - l ( f / , )  C G. 

PROOF. Fix a function r/ E C~~ 77 > O, and a function ~9 E C2(f~ ') which possesses the 
following properties: @ > 5 > 0, �9 is n-superharmonic, and  the vector field [Vr E 
C 1 (f~') has bounded derivative. 

Insert the compactly-supported test function qo(x) = vnff)l-n(f(x)) in (15). Using Lemma 3, we 
find its gradient 

~7~(x) = nyn-l(x)~l-n(f(x))Vrl(x) - (n - lfi?n(x)~-n(f(x))(Df(x))Tv~b(f(x)) 

and insert it in (15), assuming for a moment that V is an arbi t rary Cl-smooth vector field. We obtain 

- ( n  - 1)(adj Df(x)V(f(x)) ,  (Df(x))T~7r 

+n(ad j  D f (x)(Y (f  (x) ) ), W?(x) )rln-l (x)~l-n(f  (x) ) 

= ~ AiJJ~i(vJ(f(x))vn~X-n(f(x)))-divV(f(x))rln(x)~bl-n(f(x))J(x,f)dx. 
i , j =  l 

Since Df(x) adj Df(x) = J(x, f )  Id, transforming the first summaud  on the left-hand side of the above 
equality, we find that 

(n - 1 ) (v ( f (z ) ) ,  i )  

- n ( a d j  nf(x)(V(f(x))) ,  Vrl(x))rln-l(x)~l-n(f(x)) 
n 

E Aij~---~i(vj(y(x))pncbl-n(f(x))) + div v(y(x))rln(x)cbl-n(f(x))J(x, y). 
i , j=  l 

(24) 
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Consider the field Vj whose all but the j t h  components are zero and the component vj is the j th  
component of the vector field ]Vr162 Then we can easily see that both summands on the 
left-hand side of (24) and the second summand on the right-hand side of (24) are summable func- 
tions. Therefore, so is the function )-~in___l A~j.~z~(vj(f(x))t/nr Note that both functions 

vj o f and r  o f belong to Wql, loe and moreover are differentiable almost everywhere (as compos- 
ites of a smooth function and an almost everywhere differentiable mapping). Thereby the product 
vj(f(x)L, ncbl-n(f(x)) as well is differentiable almost everywhere in D (see Remark 2). Moreover, the 
mapping 

X ~ (fl (X), �9 fj-i (x), t/n(x)((vj~ l-n) o/) (x), fj+l Ix),---, In (x)) 
is ~*-differentiable and satisfies Luzin's condition oh z under the assumption (M6) (see the end of the 
proof of Theorem 8). Thus, the conditions of Corollary 6 are satisfied. Hence, 

n 

f ~ A,j~-~.(vj(f(x))uno1-n(f(x)))dx = O. 
~9 i =  1 z 

If (M6b) is satisfied then the vanishing of this integral ensues from Lemma 9. Indeed, take the vector 
field V in Lemma 9 to be (0, . . . ,  0, vj@ l-n, 0, . . . ,  0) (the nonzero component occupies the j t h  place). 
Then (13) holds for this vector field. Substituting the function u n for the test function ~ in (14), from 
(15) and (13) we infer that the integral in question vanishes. 

Since we can take j to be an arbitrary number from 1 to n, we have 

(n - 1) f (V(f(x)), V~(f(x)))71n(x)~-n(f(x))J(x, f) dx 
D 

-n / (adj D f (x)(V (f (x) ) ); V,7(X))r/n-1 (X)c~l-n(f (x) ) dr. 
D 

= / dJv V(f(x))rln(x)~l-n(f(x))J(x, f) dx. 
D 

(25) 

Since ff is n-superharmonic, div IV~(y)l~-2V~(y) _< 0. Putting V = IV~(y)l~-2Vr from (25) 
we arrive at the inequality 

f lV~(f(x))lnrln(x)J(x, f) dx < 
D 

f Ivr n -x  ladjOf(x)l ) IXT0(x)l  -1(x)dx. 
D 

n 
Using the estimate l adj <_ c lDf(x)l'* = cnK(x)J(x, f) with some constant Cn, depending 
oIfly on n, and applying Hblder's inequality to the right-hand side of the last inequality, we obtain 

f f) dx < f IVrz(x)l K -l(z) dx. Cn(f(x)) 
D D 

derive (23), it suffices to recall the relations J(x, f) = Dh[~  and Finally, to jv(  f)(z)] o _< 

ID f(x)llV~(f (x) )l. 
Lemma 11 is proven. 
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