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TOPOLOGICAL AND GEOMETRICAL
PROPERTIES OF MAPPINGS WITH SUMMABLE

JACOBIAN IN SOBOLEV CLASSES. 1
S. K. Vodop'yanov UDC 517.54+517.813.52

Let f: G — R® G CR*, n > 2, be a continuous mappmg Then f is open if the image of an open set
is open; and f is discrete if the inverse image f~1(y) of every point y € R™ consists of isolated points.
The aim of the present article is to indicate analytical conditions on a mapping which guarantee
certain topological properties.

It is convenient to state analytical requirements on f : G — R" in terms of Sobolev spaces We
suppose that all coordinate functions f; of f = (fi,..., fa) belong to the Sobolev space ploc(G)

Thereby the formal Jacobian matrix Df(z) = 317-) 1,j=1,...,n, and the Jacobian determinant

J(z, f) = det Df(x) are defined almost everywhere in G. The norm |Df(z)| of Df(z) is the norm of
the linear operator determined by this matrix in R™.

A modern way of studying the topological characteristics of mappings by means of their analytical
properties was paved by Yu. G. Reshetnyak while working on the problems of the theory of spatial
mappings with bounded distortion [1]. Recall that a mapping f : G — R" is a mapping with bounded
distortion if the following conditions are satlsﬁed

(1) f € Wy 10e(G)s

2) there is a constant K € [1,00) such that |[Df(z)|" < K J(z, f) almost everywhere in G.

The least constant in this inequality is called the quasiconformality coefficient. Yu. G. Reshetnyak
proved that a mapping with bounded distortion is continuous, open, and discrete [1]. The key point
of the proof is a close connection between mappings of this class with quasilinear elliptic equations
and nonlinear potential theory, and the method is widely used in the topic under consideration.
Observe that continuity of a mapping with bounded distortion ensues from a more general result
of [2] (a simpler proof of the corresponding theorem of [2] was given in [3]).

It is convenient to write down analytical constraints on f as the requirement of finiteness of various
norms of the local distortion .

J(z, f)

almost everywhere in G. Thus, the inequality 1 € K(z) < oo for almost every £ € G means that
J(z, f) > 0 almost everywhere on the set {z : Df(z) # 0}. We put K(z) = 1 at the points where
the numerator and the denominator vanish simultaneously. A mapping f € W}, (G) has bounded

distortion if and only if K(z) € Lyo(G).

The necessity of studying the topological properties of mappings arises also in the problems of
nonlinear elasticity [4-10].- It was shown in [4, 5] that boundedness of K(z) is too burdensome in
problems of nonlinear elasticity: the situation is typical in which the function K (:l:)p is integrable for
some p < 00. It was established in [7] that a continuous nonconstant plane mapping f satisfying the
conditions f € W2 10c(@), G C R?, and K(z) € L1 J0c(G) is open and discrete. The proof of this
result grounds on the two-dimensional theory of Beltrami equations and relies on the fact that such
a mapping can be represented as a composite of some analytic function and homeomorphism (thus,
an analog of the Stoilov factorization theorem is valid for mappings in this class). In [10], Reshetnyak’s
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theorem was generalized to nonconstant mappings f € W, ,oc(G), G C R?, with K(z) € Lp0c(G),
p>n-—1.
In connection with the problems of nonlinear elasticity, J. Ball [4, 5] defined the mapping classes

2 o(Q) = {f € W}(Q):adj Df € Ly},

where p > n — 1, ¢ > p/(p — 1), and the adjugate matrix adj Df of Df is defined from the condition
Df(zx)adj Df(z) = J(z, f)1d for almost all z. Thus, J(z, f) € L1(Q) if f € o7,.

A mapping f : G — R"™ is quastlight if the connected components of the inverse image f~1(y) are
compact for each point y € f(G).

It was proven in [9] that each continuous quasilight mapping f € &%, 4, with A'(z) € L*~1+¢(Q),
£ > 0, is open and discrete. The methods of [9,10] are a further development of Yu. G. Reshetnyak’s
arguments of [1].

In the present article, we obtain topological results for mappings f € W}
constraints:

(Ml)g>n—1forn=2andg>n—1forn > 3;

(M2) J(z, f) 2 0;

(M3) J(z, f) € L1oc(G);

(M4) J(z,f) = 0 almost everywhere on a set A C G, |A| > 0, implies Df(z) = 0 almost
everywhere on A;

(M5) f : G — R" is continuous;

(M6) f: G — R" possesses at least one of the following properties:

(a) the mapping is almost absolutely continuous (see the definition below);

(b) adjDf € Lq,lom q= ‘L

It is well known that, for each few 1OC(G) there is an increasing sequence {Ag} of closed sets
such that the restriction f|4, is Llpsclutz continuous for every k and the set S = G \ |J; Ay has
measure zero. We call a mapping f € W, loc(G) almost absolutely continuous if, for every € > 0, there
is & > 0 such that, for every collection {B(x,,rz)} of pairwise disjoint balls with z; € S for all i, the
condition ;| B(z,mi)| < ¢ implies ) ;(oscp(z, r,) f)* < €. Applying Besikovich’s theorem, we can
easily verlfy that |f(S)| has measure zero; consequently, each almost absolutely continuous mapping
fe I' 10c(G) satisfies Luzin’s condition 4.

The first condition guarantees existence of a ¥ *-differential [1] and that each set of zero capacity
is totally disconnected (for ¢ = n — 1 this properties hold only for n = 2!). The second condition is
used in the proof of monotonicity and preservation of orientation (see § 1 below). The third condition
is natural and is due to the fact that local summability of the Jacobian is guaranteed only for ¢ > n. If
a mapping satisfies the fourth condition then we say that it has finite distortion. In (2], it was proven
in particular that every mapping of the class W, 71, .(G) only satisfying (AM?2) and (M4) is monotone
and consequently has a continuous representative. It turns out (Theorem 3) that monotonicity is
enjoyed by the mappings of the class qu, 1oc(G) satisfying some of the conditions (M1)~(M6) (see § 1).
However, in this case a quasicontinuous representative may have discontinuities on a set of ¢g-capacity
zero, n—1 < g < n [3]. Since continuity of f is essential for some results, we impose the condition (M5)
on f. The condition (1/6) plays the role of a regularity condition in the results obtained. Probably,
it is not optimal. The question of whether (M6) can be relaxed is of interest in its own right and
remains still open. Observe that a mapping f € W, loc(G) satisfying (M2) and (M4) also satisfies
(M3), (M5), and (M6). Therefore, Theorem 1 stated below covers both Reshetnyak’s theorem and
the results of [7,10]. Moreover, it turns out that the above-cited results of [9] are valid under weaker
assumptions.

The main result of the present article for mappings satisfying the above-listed conditions is as
follows:

(G) under the following

g,loc
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Theorem 1. Suppose that f : G — R", G C R*, n > 2, is a nonconstant mapping of the class
Wllloc(G) which satisfies (M2)-(M6) and that K(z) € Lpoc for somen —1<p < oo ifn =2 and
—1<p<001fn>3 Then f
(1) belongs to W, loc(G) with ¢ = 2 =B
(2) is open and d1screte,
(3) is differentiable almost everywhere in Q) in the classical sense.

EXAMPLE. An important class of mappings satisfying the hypothesis of Theorem 1 consists of
the mappings with bounded g-dilatation (in another terminology, g-quasiregular mappings). These
are mappings f of the Sobolev class that, alongside (M2)-(M86), satisfy the pointwise inequality
[Vf|? < KJ(z, f) almost everywhere, where K is a constant and n —1 < ¢ < n for n = 2 and
n-1<gq<mnforn > 3. For qg=n this class coincides with the class of mappings with bounded
distortion [1]. It is immediately verified that K(z) € Ly joc, where p = =L

n—q

REMARK 1. In the case of p = n we obtain a new proof of openness and discreteness for mappings
with bounded distortion (quasiregular mappings in the terminology of {11, 12]) which does not use the
approximation of a mapping by smooth mappings.

The method of the present article bases on the change-of-variable formula with the multiplicity
function and degree of a mapping (Theorem 2). Using this formula, we can prove that a nonconstant
mapping of the class W, loc(G) satisfying (M1)~(M4) and (M 6b) is monotone in G (Theorem 3).
Hence, we infer in partlcula,r that the coordinate functions of such mapping are monotone and conse-
quently continuous everywhere except for a set of p-capacity zero for n — 1 < p < n (are continuous
everywhere for p = n). Monotonicity of mappings of the class W} loC(G’), n —1 < g < n, with non-

negative Jacobian and finite distortion was proven in [3] by another method under the assumption
a'd.] Df € Lr,loc(G)1 r> Q/(q - 1)'

Furthermore, in Theorem 4 we establish that a mapping only satisfving (M1)~(M6) preserves
orientation. In [9], this property was proven for mappings of the class WI}(G) under the following

additional assumptions: adj Df(z) € Lg(G), ¢ > p/(p — 1), and the Hausdorff 1-measure of f~1(y)
equals zero for each y € R™.

In §2, we introduce condition (M7) which describes geometrical and topological properties (in-
cluding quasilightness) of a mapping. Assuming this condition, we can prove the claim of Theorem 1
without involving the ideas and methods of the theory of quasilinear elliptic equations (the proof bases
only on the change-of-variable formula).

As is well known, the connection between mappings with bounded distortion and nonlinear elliptic
equations bases on the property that the columns of the matrix adj D f(x) = {A;;(z)} are divergence-

free fields; i.e.,
/Z 4,22 4 =0
i=1 Yoz

for every function ¢ € C§°(G) and every j = 1,...,n. This property is a particular instance of
the more general relation le((a,dJ Df(z))V o f) [(de flJ(z, f) in the distributional sense,
where f : G — R” is a mapping of the class I/ oc(G)and Vis a C'-smooth vector field. For smooth
mappings this property can be proved by stra.lghtforward calculations utilizing equality between mixed
second-order derivatives. In § 3, we give a new proof of this result which bases on topological invariants
and so makes it possible to extend the method to objects of noncommutative geometry (for instance,
Carnot groups).

The proof of Theorem 1 is given in §4.

In the second part of the article, we introduce the class of continuous, open, and discrete mappings
with bounded (g, s)-distortion 1 < ¢ < p < oo (for ¢ = p = n this is exactly the classical class of
mappings with bounded distortion [1]) and study some properties of these mappings. In particular, we
indicate conditions under which these mappings satisfy Luzin’s condition .#” and the condition .4 1.
Moreover, we establish capacitary estimates, local distortion estimates, and Liouville-type theorems.
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§ 1. Properties of Mappings of the Class W], (G),n —1<g<n

Suppose that f : G — R™ is a mapping of the class qu’loc(G) whose summability exponent satisfies

(M1). Henceforth we consider a quasicontinuous representative of this class. Thus, for each ¢ > 0,
there is an open set U, cap(U; qu (G)) < &, such that f is continuous outside U (for the definition of
capacity, see §3). If z € G then the restriction f|g(;r), B(z,r) C G, is continuous for almost every 7.

A function f € qu,loc(G) is spherically monotone (or simply monotone) if, for every point = € G,
there is a number r; > 0 such that the ball B(z,r) lies in G and for almost every r € (0,7;) the
following inequalities are valid on the ball:

esssup f(2) < sup f(z) and essinf f(z) > inf f(2).
ze€B(z,r) z€8(z,r) z€B(z,r) z€S(z,r)

(It was shown in [13, Proposition 2] that each function of the class f € qu,loc(G) which is weakly

monotone in the sense of [3] is also spherically monotone.) For n —1 < g < n each spherically
monotone function is continuous everywhere except for a set of Hausdorff dimension at most n — g [3].

It is well known that a monotone function of the class f € W ql’ 10clG); n—1 < g < n, is differentiable

almost everywhere [1,12]. Here we present another proof of this property (which seems shorter).

Proposition 1. Every spherically monotone function f € qu’loc(G), n—1<qg<ooforn=2
and n -1 < q < oo for n > 3, is differentiable almost everywhere.

ProoF. The Sobolev inequality holds for each point z € G and almost every radius r € (1,73):

’ S(z,r)

From this inequality we can obtain the following estimate [13, Proposition 3}:

(se £ < Cro ™ / IV £|7dz
’ zr<|z—z|<2r}

for every r < rz/2. In {13, Proof of Proposition 3] it was also noted that the refined function f satisfies
the relations inf,eg(z ) f(2) £ f(¥) < Sup;es(zr) f(2) for all y € B(z,r) and almost every r € 5.
Hence,

— (1) = F@I\ _ = (spllf(2) = {23 € B}
A ('T:;r) s lii%( - )
< I (22 =02 € St}
r—0 r
<Clg= [ IVATay<CMIVIM@),

B(z,2r)

where M(g)(z) is the maximal function. Since the maximal function is finite almost everywhere, the
last inequalities imply validity of the hypothesis of Stepanov’s theorem for f.

Now, we give a change-of-variable formula in the Lebesgue integral in the form we need below.
Recall that if g : A — R is a measurable function on a measurable set A then the function N(y, g, A) =
card{g~'(y) N A} is the multiplicity function or Banach indicatriz.
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Proposition 2 [14]. Suppose that a mapping f : G — R™ has partial derivatives almost every-
where in G and the Jacobian J(z, f) is locally summable in G. Then

(1) there is a Borel set Ey C G of measure zero such that the mapping fg, equal to f outside E¢
and zero on E, satisfies Luzin’s condition A;

(2) for each measurable set A C G and every measurable real function u : R® — R, the func-
tions (u o f)(z)|J(x, f)| and u(y)N(y, fg, A) are measurable; moreover, if one of them is integrable
(integrability of (u o f)(z)|J(z, f)| is considered on A) then so is the other and the following equality
holds:

Juwep@@ e~ [wwNwisdd= [vwNeia\Ba. @
A Rr R"
Recall that a linear mapping L : R® — R" is called the J#-differential of a mapping f : G — R"

at a point z € G if
f(z +tX) - fl@)

n =0.

lim sup

lim - L(X)
t—0 X€5(0,1)

Recall that a mapping in qu’]OC(G), n—1<g<nfoorn=2andn—-1<qg<nforn >3 has
a ¢ -differential at almost every point of G and the matrix of the ¢ -differential coincides with the
formal Jacobian matrix [15, Theorem 1| (for ¢ > n the mapping is differentiable almost everywhere
in the ordinary sense; see, for instance, [1}).

A mapping f : G — R" is J#™*-differentiable at a point z € G, if it possesses the following
properties:

(1) f is continuous on the spheres S(z,r) C G for r € (0,7;) \ Ez, where r, is a positive number
and E; C (0,7;) is a set of measure zero;

(2) f has all partial derivatives at z;

(3) the linear mapping Df(z) : R™ — R™ defined by the matrix of partial derivatives satisfies

flz+tX) - f(2)

lim sup ~ Df(z)(X)| =0.
t-0  X€S(0,1) ¢
te(0,rz)\Ez

The definition implies that a mapping f, ¢ *-differentiable at a point x € G, has the ¢ -differential
at z equal to D f(z). y

REMARK 2. We can guarantee existence of a J¢*-differential almost everywhere on G for the
mappings f : G — R®, G C R?, n > 2, of the class qu,loc(G) forsomen—1<¢g< 0 ifn=2and
n-1<g< xifn > 3, because, as mentioned, the mappings of this class enjoy all of the above
properties. Moreover, the product of a monotone function f € qu (G), g >n —1, and a continuous
mapping g € qu (G), ¢ > n -1, is & *-differentiable almost everywhere in G as well, while fg is
certainly summable only to the power ¢/2. The definition of J¢™*-differentiability is justified by the
fact that many arguments below (see, for instance, Theorem 2) rely only on the above-listed properties
(1)~(3) rather than on the membership of a mapping in the corresponding Sobolev class.

The following proposition is a restatement of one result of [16]:

Proposition 3. Suppose that a continuous mapping f : G — R" is #*-differentiable almost
everywhere in G and has locally summable Jacobian J(z, f) in G. Then
(1) there is a Borel set Ef C G of measure zero such that f satisfies Luzin’s condition A

outside Ey;
(2) for each compact domain D C G such that D C G and |dD| = 0 and every continuous real
function u such that u|¢(sp) = 0 and the function y — u(y)u(y, f, D) is integrable in R", the function

(uo f)(z)J(z, f) is integrable on D\ f~1(f(Ey)) and the following equality is valid:
(o H@)J(@, ) da = [u(wnty, £, Dx(s) doy @)
D\f-1(f(Ey)) R™
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where X is the characteristic function of the set f(G) \ f(Ey);
(3) the following formula holds for almost every y € R™\ f(0D U Ey):

uw(y, f, D) = > sgnd(z, f).

zef~1(y)nD
In particular, if f has nonnegative Jacobian then

wy, f, D) N(y, f,D)

for almost every y € R™ \ f(8D U Ey).

Here u(-, f, D) is the degree of f. For the definition and properties of degree see, for instance,
[1,11,12].

Observe that the restriction of the integration domain on the left-hand side of (2) essentially
reduces the scope of its applicability. For instance, if f satisfies the condition .#" then J(z, f) = 0
on f~1(f(Ey)) and therefore the integration domain on the left-hand side of (2) coincides with D (in
this case formula (2) is well known). We now distinguish a class of mappings for which the integration
domain on the left-hand side of (2) coincides with D.

A mapping f : G — R" which is J£*-differentiable almost everywhere in G and has locally
summable Jacobian J(z, f) in G is stable if J(z, f) = 0 almost everywhere on the set f~1(f(Ey)),
where Ey is the set of Proposition 2. Thus, a mapping satisfying Luzin’s condition .4 is always stable.
Consequently, if f in the change-of-variable formula (2) is stable then the integration domain on the
left-hand side of (2) coincides with D.

Let D € G be a compact domain in G. If f : D — R" is a continuous mapping then the
image f(OD) is called a cycle. For an arbitrary continuous extension F': D — R” of f we can define
the degree u(y, F, D) of F at the points y € R™ \.f(dD). The linking number v(y, f(dD)) of y with
respect to the cycle f(8D) equals u(y, F, D) for all y € R™\ f(8D). Obviously, the definition of the
linking number is independent of the extension of f. Moreover the following proposition is valid:

Proposition 4. If f : D — R" has a nondegenerate ¢ *-differential L at a point x € D then
there is a sequence of positive numbers rn, n € N, with lim,_,, rn = 0 such that the linking number
vy, f(S(z,Tn))) of y = f(z) with respect to the cycle f(S(z,rn)) equals signdet D f(z) for all i € N.

We need some definition of [8] for stating Theorem 2. Suppose that D is a compact domain with
smooth boundary. A function u : 3D — R belongs to the class W1 (0D) (Lp(8D)) if for every local
coordinate system (Ua, Ya)s Wa = ¢a(Ua) C R*1, of the manifold BD the composite uo 7! belongs
to WE(Wa) (uowz! € Lp(Wa)). We say that u € ,4(8D) if u € W, (8D; R™) (ie., each coordinate
function of u belongs to W, 1(0D;R)) and | adj Du| € Lq(8D).

The following assertlon can be vxewed as an extended version of the change-of-variable formula

of [2] ([6]) for mappings of the class W} (G) (Fq)-

Theorem 2. Suppose that a mapping f : G — R" satisfies one of the following conditions:

(1) f : G — R™ is a continuous stable mapping;

(2) [ € o, 4(D), where D C G is a compact domain with smooth boundary, p > n ~ 1, and
-1; moreover, the trace of f on 8D belongs to p,4(0D) and is continuous.

Then, for every continuous bounded real function u such that u|pppy = 0 and the function
y — u(y)uly, f, D) is integrable in R™, the function (u o f)(z)J(z, f) is integrable on D and the
following equality is valid:

q>

[wen@ e, fds = / w(y)v(y, £(8D))x(y) dy. 3)
D Rn
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Here x is the characteristic function of the set f(G) \ f(Ey) under condition (1) of the theorem and
x is identically unity in R™ under condition (2) of the theorem.

ProOF. Under condition (2), Theorem 2 ensues from [8, Theorem 5.1], wherein the formula

[we @tz s = uiwn, £, D) / u(y) dy
D R»

was proven for every bounded smooth function f whose support lies in the connected component of
the complement R™ \ f(8D) containing yp.

Prove the theorem, assuming condition (1). Given a measurable function v: D — R such that
v(z) > 0 for almost all z, construct the function y — N (y,v, D) as follows: If N(y, f, D) < oo then
let N¢(y,v, D) equal the sum of all values of the function v(z) at the points of the set f~!(y)N D. If
N(y, f, D) = oo then the value N¢(y,v, D) equals the limit of the sum of the values of v(z) over all
finite subsets of f~1(y) N D. _

If v(z) is the indicator of a set A, A C D, then, recalling that J(z, f) = 0 almost everywhere
on f~Y(f(Ey)), we can rewrite the formula of Proposition 2 as

[v@iste plas= [ Nyw,v, Dxtw)ay
Rn

D

Hence, it is clear how to validate this formula for linear combinations of the indicators of finitely
many measurable sets (for simple functions). Approximating an arbitrary nonnegative measurable
function v by an increasing sequence {vn,} of simple functions and using Beppo Levy’s theorem, we
find that

[v@N@ nlde= [ Ny, Dixw) v
D Rr
If v is an arbitrary measurable function then we put by definition

N¢(y, v, D)(y) = N¢(y,v*,D)(y) — N¢(y,v™, D)(y).

Take v to be a measurable function u o fsgn J(z, f). Then

/ wo £z, ) dz = [v@)lI(a Plds = [ Ny(y,v, Dx(w)dy.
R"l

D D

It remains to establish that Ny(y, v, D)x(y) = u(y)v(y, f(OD))x(y) at almost all points y € R™.

Let E; be the set of the points z € D at which f has no J¢*-differential, E; = {z € D :
J(z,f) =0}, and E3 = {y € R"\ f(Ey) : N(y, f, D) = oo}, where Ey is the set from Proposition 2.
Since D ¢ G is compact, the function N(y, f, D) is summable and hence [E3] = 0. Put § =
E3U f(E1) U f(E2) U f(Ef). Then |S\ f(Ef)] =0 by (1). Take an arbitrary y € R™\ (S U f(dD)).
The set f~!(y) N D is finite, f has a J¢*-differential at each point of f~}(y) N D, J(z, f) # 0 for
all z € f~1(y) N D, and all points of this set are interior points of D. Let a1,...,ay be all points
of the set f~!(y) N D. By the definition of the ¢ *-differential, there is a sequence of closed balls
B:, = B(aj,Ti,m), m € N, such that their radii vanish as m — oo and v(y, f(0B%,)) = sgn J(a;, f) by
Proposition 4. For a sufficiently large m the balls B, and B}, i # j, are disjoint. Then the following
relations hold for almost all y € R™\ f(Ey):

N N
u(y)v(y, f(OD)) =u(y) Y v(y, f(0B})) = u(y) D_ senJ(ai, f) = Nf(y,v, D).

i=1 i=1
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The theorem is proven.

A mapping f : G — R", G CR"?, n > 2, of the class Wll, loc(G) which is J¢*-differentiable almost
everywhere in G is monotone in G [2] if, for every point z € G and almost every r € (0,r;), rz > 0,
the measure of the inverse image f~!(Vp) of the unbounded component Vj of the complement of the
cycle f(S(z,r)) equals zero. This definition of monotonicity for mappings of the class Wl(G) was
introduced in {2].

Theorem 3. Suppose that f : G — R", G C R", n > 2, is a nonconstant mapping of the Sobolev
class qu,loc(G) which satisfies (M1)-(M35) and the stability condition or (M1)-(M4) and (M6b).
Then f is monotone in G and differentiable in the classical sense almost everywhere in G.

Using the same method as in Theorem 3, we can prove the following corollary:

Corollary 1. Suppose that a nonconstant mapping f : G — R", G C R", n > 2, of the
class Wll,loc(G) is ¢ *-differentiable almost everywhere in G, satisfies (M2)~(M5) and the stability
condition. Then f is monotone in G.

From Theorem 3 and Corollary 1 we derive

Corollary 2. The coordinate functions of f are monotone.
Theorem 3 ensues from the following lemmas:

Lemma 1. Suppose that D € G, (8D| =0, is a compact domain such that the restriction f|ap
is continuous. If V' is a connected component of the open set R™ \ f(8D) such that v(y, f(8D)) # 0,
y€V, then [V \ f(D)|=0.

Proor. If |V \ f(Ef)| = 0, where E; is the set from Proposition 2, then we have nothing
to prove. Otherwise we consider a compact set A C V' \ f(D), |A] # 0. Fix a point y € V.
Consider the characteristic function £4(z) of A and let &(2) be a sequence of compactly-supported
continuous functions such that &|sspy = 0 for all k and limg_, §x(2) = £a(2) pointwise. Inserting
the function £;(2z) in (3) and passing to the limit over k£ — oo, we obtain

J(z, f) dz = / v(y, F(OD))a(2)x(2) dz = v(y, F(3D))|Al (4)

F-YAND |4

(under condition (M6b), the function x(z) is identically unity). Since f~1(A)ND = @, the right-hand
side of (4) may vanish only in the case of |[A| = 0. The lemmma is proven.

Lemma 2. Suppose that D € G, |0D| = 0, is a compact convex domain which satisfies the
conditions of Theorem 2, f is nonconstant, and |f(0D)| = 0. IfV is the exterior connected component
for the cycle f(8D) then |f~}(V)N D] = 0.

ProoOF. It follows from the hypothesis of the lemma that there is a component of R™ \ f(0D)
on which v(y, f(8D)) # 0. (Otherwise from (3) we could infer [}, J(z, f) dz = 0, whence Df(z) =0

almost everywhere in D and therefore f could be constant on D.)
Assuming (M6a), we have |[(V N f(D)) \ f(Ef)| = 0. Indeed, if |(V N f(D))\ f(Ef)| > 0 then,

applying (4) to the characteristic function £4(2) of a compact set A C (V N f(D))\ f(Ef), |A| #0,
we obtain

0= / I, f)dz = [ vly, FODYEA(IX(2) dz = vy, S@DYIA), vEV, ()
F-Y(ANnD v

for v(y, f(8D)) = 0. Since J(z,f) = 0, we have J(z, f)|s-1(a)np = 0 almost everywhere and
from (1) we deduce |A] = 0. Since A is an arbitrary compact set in (V' N f(D)) \ f(E;), we have

(VO F(D)\ f(Ef)| = 0. Hence, |(f~1(V)ND)\ f~H(f(Ey))| = 0 and therefore J(z, f)|s-1(v)np =0
due to the stability condition.
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Suppose to a contradiction that |f~}(V) N D| > 0. Consider a set L C F~YV) N D of positive
measure such that all points of L are Lebesgue points for the Jacobian and ¢ *-differentiability points
for f. It is obvious that

I(F~Y(V)nD)\ Z| =0. (6)

Consider z € L and ¢; such that f|g(,) is continuous and f(S(z,%;)) C V. Suppose that W is
a connected component of the open set R™ \ f(S(z,tz)) for which v(y, f(S(z,t;))) #0, y € W. By
Lemma 1, W\ f(B(z,tz))| = 0.

Assuming (M6b), by what was said in the beginning of the proof from the inclusion W C V we
derive J(z, f)| -1(w)nB(z,ts) = 0-

Assuming (M6a), we apply (3) to D and a continuous function u such that u(z) > 0 at all points
z € W and u(z) = 0 at the points z ¢ W. We obtain

(uo f)(z)J(z, f)dz = 0. (M)

Dnf=Y(w)

Since (u o f)(z) > 0 on B(z,t;) N f~}(W), we also arrive at J(z, N1 wynBz,e) = 0-

Now, consider a connected component W of an open set R™\ f(S(z, ¢;)) for which v(y, (S(z, 1)) =
0,yeW. »

Apply (3) to D = B(z,t;) and a continuous function u such that u(z) > 0 at all points z € W
and u(z) = 0 at the points ¢ W. We obtain

(uo f)(z)J(z, f)dz =0,

f=HW)INB(z,tz)

which again implies J(z, )| -1 )nB(z,t) = O-

Since [f~1(f(0D))| = 0, we have J(z, NB(zt,) = 0 by the above. Hence, Df(z) = 0 almost
everywhere on B(z,t;), since distortion is finite (condition (A4)). Consequently, L lies in the open
set U = U, B(,t;) on which Df(x) = 0. For this reason, the range of the mapping f|y is at most
countable; moreover, f(U) C V.

Fix a point zp € U and a sphere S(zxp,t) C U. Suppose that a € D is an arbitrary point such that
f(a) belongs to some bounded component of the complement R” \ f(D). Joining a with the points =
of the sphere S(zo,t) by segments /; and using absolute continuity of f on almost all segments, we
conclude that, on almost all segments ; (with respect to the surface measure on the sphere S(zo, t)),
there exists a set of positive measure whose image is outside f(U) but still lies in V. Applying Fubini’s
theorem, we obtain [(f~}(V) N D)\ L| > 0, which contradicts (6). The lemma is proven.

Recall that a mapping preserves orientation if the degree u(y, f, D) of the mapping is positive for
each compactly embedded subdomain D € G and every point y € f(D) \ f(8D) (for the definition
and the properties of degree see, for instance, [1,11,12]).

Theorem 4. Suppose that a nonconstant mapping f : G — R™, G C R", satisfies (M1)-(M5)
and either is stable or satisfies (M6b). Then f preserves orientation and is differentiable almost
everywhere.

PROOF OF THEOREM 4. Fix an arbitrary point y € f(D)\ f(8D) and the connected component V'
of the open set R™\ f(0D) containing y. It is impossible that J(z, f) = 0 almost everywhere on f~1(V),
for the partial derivatives of f would otherwise vanish on f~1(V)) and therefore the set V would be
at most countable, which is false.

We similarly exclude the possibility [V'\ f(Ey)| = 0, since by stability J(z, f) = 0 almost every-
where on f~!(V) which leads to a contradiction as in the preceding case.
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Insert in (4) the characteristic function () of a compact set A C V'\ f(Ey) of positive measure.
Then |f~1(A)| > 0 and J(z, f) > 0 almost everywhere on f~!(A) by Proposition 2. We obtain

0< / J(z, f)dz = / u(w, £, D)x(2) dz < u(y, £, D)V \ F(Ef).
f~HAND A

Hence, the degree is a positive function of y.
The same arguments prove the following

Corollary 3. Suppose that a continuous nonconstant mapping f : G - R*, GC R"™, n > 2, of
the class Wll,loc(G) is J¢*-differentiable almost everywhere in G, satisfies (M2)-(M5) and is stable.

Then f preserves orientation.

§ 2. Openness and Discreteness of Quasilight Mappings

In addition to (M1)—(M86), we introduce one more condition on f.

(M7) The mapping f : G — R" is continuous and satisfies one of the following topological
assumptions:

(a) the connected components of the set f~!(y) are compact for each y € f(G);

(b) for each point y, there is a compact domain D &€ G such that y € f(D) and the multiplicity
N(z, f,D), z € R™\ f(0D), of the mapping is bounded almost everywhere in some neighborhood of y.

Recall that a mapping f : G — R™ for which the connected components of the inverse image f~!(y)
are compact for each y € f(G) is called quasilight.

Introduce the characteristic

Ks(z; f) = inf{k(z) : Vo fI*(2) < k(z)J(z, f)}-
Clearly, Kq(z; f) = 0 for almost all € Z = {z € G : J(=z, f) = 0}. Observe that K,(z; f) differs
from K(z) only by Kn(z; f) =0 on Z (recall that K(z) = 1 for almost all z € Z).

Theorem 5. Let f: G — R”, G CR™, n > 2, be a noncoustant mapping of the class Wi

,loc
which satisfies (M2)~(M5) and (M7) and is stable. Suppose that
(1) Ks(z; f) € Looloc(G) in the caseof n =1 < g=s < n;
(2) Ks(z; f) € L;?_?,loc(G) in the case of n —1 < q¢ < s < n (for n = 2 the summability exponent g

(G)

may equal 1).

Then f

(1) belongs to W, loc(G)

(2) is open and d1screte,

(3) is differentiable almost everywhere in Q.

Differentiability and preservation of orientation ensue from Theorem 4. To prove openness and
discreteness, it suffices to demonstrate that the inverse image of each point is totally disconnected.
The remaining items are proved in the assertions below. Denote by Z the set {z € G : J(z, f) = 0}.

Lemma 3. Suppose that f : G — R", G C R", n > 2, is a mapping of the class Wll,]oc(G) which
satisfies (M2)—(M5) and for which

(1) Ks(z; f) € Loooc(G) if 1 < g =5 < 00;

(2) Ky(z; f)eL__q_loc(G) ifl1<g<s<oo.

Fix a compact domam D & G and an arbitrary domain D' C R” such that D' 3 f(D).

Then
(1) for every function u € WL (D'), the composite u o f belongs to W;(D) and the following

inequality holds:

l[uo £ 1 LY(D)|| < Kqulf; DY} ( [ 1vuteN G, 72, D) dy) ’ ®
D'
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where
N|Ks(; f) | Loo(D)|| forl1 < q=s< o0,

Kys(f; D) = { ”Ks(';f) |L3_3?(D)“ for1 < g<s<o;

(2) if D is such that N(y, fg, D) € Loo(R™) then, for every functionu € L1(D’), the composite uo f
belongs to L}(D) and the following inequality holds:

[[uo £ 1 Ly(D)| € (Kqs(f; DIIN(, £, D) | Loo(R™I)? |lu | LX(D)];

(3) the composite uo f can be differentiated by the classical rule: V(uo f)(z) = Df(z)TVu(f(z))
almost everywhere in D.
In particular, f belongs to qloc(G) (For the notation N(y, fg, D) see Proposition 2.)

PROOF. We verify the assertions of the lemma for u € W (D’). Since u o f belongs to the class
ACL(D) and f has finite distortion, the derivatives of u o f are calculated by the classical formulas;
moreover,

luo f | LXD)|| < ( [vuzeninsie) dx)a

Surepiae LRI o\
(D\/Zl (e )

Using Holder’s inequality with exponents s/q and s/(s — q), we derive

e £1L4(D)] < (D\/% (II—{]%?}—)I:)S—& dx)%(zlvuls(ﬂx)) - |J(z, f)ldx)%

(for ¢ = s the left factor equals K, s). Applying (1) to the right factor, we obtain the sought estimate
for the norm. Putting u = z;, i = 1,...,n, we see that 0f;/0z; € L4 10(G).

Prove the second assertion of the lemma. If v € L1(D’) then there is a sequence u; of smooth
functions converging to u quasieverywhere (see below) and in the L}(D') norm. To prove item (2),
observe that the sequence ug o f is bounded in L} ¢(D) and converges to u o f quasieverywhere. Using
Poincaré’s inequality, we infer that the composite u o f is locally integrable in D. Thus, uo f € LI(D)
and item (2) is proven.

On the other hand, we can differentiate the composite u; o f(z) by the classical formula for
almost all z € D. Let §'C D’ be the set of points at which « has no derivative. It follows from
the change-of-variable formula that the Jacobian vanishes almost everywhere on the set A = {z :

z € f~1(S)} (which may have positive measure). By finiteness of distortion, all partial derivatives
of the coordinate functions of f therefore vanish almost everywhere on A. For this reason, the limit
of the sequence V(uy, o f)(z) = Df(z)T Vur(f(z)) in Lg(D) equals V(uo f)(z) = Df(x)TVu(f (z));
moreover, V(uo f)(z) = 0 almost everywhere on A. We are left with observing that D f(z)T Vu(f(x))
is the weak derivative of the function u o f.

By [1,17], Theorem 1 will be proven if we establish that f preserves orientation and the inverse
image f~!(y) is totally disconnected for each y € R™.

Preservation of orientation for the mappings in the class in question ensues from Lemma 3 and
Theorem 4.
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Lemma 4. The inverse image f~!(y) is totally disconnected for each y € R™.

Proor. To establish the required property, we show that the inverse 1mage f~Yy) has g-capacity
zero; whence, using the well-known properties of capacity (1], we infer that in the case of ¢ > 1 the
Hausdorff (n — ¢)-measure of f~!(y) equals zero. Since n —q < 1, f~1(y) is totally disconnected.
If n = 2 and ¢ = 1 then the linear Hausdorff measure of a set of zero 1-capacity equals zero [18];
consequently, this set has no degenerate continua as connected components.

We recall the basic facts of capacity theory of [19] which are needed in the proof of the lemma.
Suppose that M is a Riemannian space. Denote by F(M) some normed space whose elements are
continuous functions on X. The algebraic operations in F(M) are defined in a standard manner.

Suppose that, together with each function u € F(M), the space F(M) coutains the modulus |u.
Thus, F(M) is a vector lattice with respect to the pointwise order relation between functions. More-
over, suppose that the norm and the order are connected as follows: there is a continuous monotone
increasing function a : [0, 00) — [0, 00) satisfying the conditions a(0) = 0, a(t) — oc as t — o0, and

a(|l max(u, v) ||} + a(|| min(u, v)|) < alllull) + alllv]]),
where u,v € F(M) are arbitrary functions.

ExAMPLE 1. Cons1der the collection of functions ¢ : M — R belonging to the intersection
FM) = C’(M) N WL (M) and having the finite norm “«p | WeM)|| = (le | LgMI? + [V |
Lq(M)Ilq (le 1 Lq(M)H = ||Vy | Ly(M)||). Take o to be a(t) = t9. The closure of F(M) in the
norm under consideration coincides with the Sobolev space W (M) (L}(M)), 1 < g < .

EXAMPLE 2 Suppose that  : M — R is an arbitrary nonnegatlve summable function on M.

Take F(M) to be the class of compactly-supported functions in L. (M ) = )n W1 (M) with the
finite norm ||¢ | Ll(M w|| =IVe | Lg(M)|| and let a(t) = 9. If p = 1 then put LI(M 1) = LI(M)

ExaMPLE 3. Fix a compact set w C M with nonempty interior. Consider the subspace L(}(w; M)
of the space Lé (M) of Example 1 which is constituted by the functions vanishing on w and which is

endowed with the norm ||¢ | L}I(w; M)|| = l[Ve | Lg(M)|| and the same function a.
Suppose that e is a compact subset of M. The set of F-admissible functions for e C M is the
collection A(e; F(M)) = {u € F(M) : u > 1 on e} and the capacity of e with respect to F/(M) is

cap(e; F(M)) = inf{a(||ull) : u € A(e; F(M))}-

If A(e; F(M)) = & then we put cap(e; F(M)) = oc. The capacity defined on compact sets extends
routinely to arbitrary sets E C M (see [19], wherein it is proven in particular that the so-defined
capacity is a generalized Choquet capacity).

ExAMPLE 4. The capacity of a set E C M with respect to the space W,}(M) of Example 1 is
called the Sobolev capacity of E and is denoted by cap(E; W, (M)). The class of admissible functions
for the capacity of a compact set e C M is A(e; W}(M)) = {u € C(M) N W, (M) :u > 1 on e}.

ExXaAMPLE 5. The capacity of a set £ C M with respect to the space il(M u) of Exam-
ple 2 is sometnnes called the weighted variational capacity of the condenser (E M) and denoted
by cap(E' Lq(M p)). The class of admissible functions of (e,M), where e is a compact set, is
Ale I} o(M; 1)) = {ue CoM)NWL(M):u>1one}.

ExXAMPLE 6. Fix a compact set w C M with nonempty interior. The capacity of a set E C M\ w
with respect to Lé(w; M) (see Example 3) is called the capacity of the condenser (w, E;M) and
denoted by cap(w, E; L3(M)). The class of admissible functions of (w,e; M) for a compact set e is
Ale Liw;M)) = {ue CM)NWELM):u>1one, u=0onw}.
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We say that a set £ C M has capacity zero if cap(E; F(M)) = 0. A property is said to hold
quasieverywhere on M if it holds everywhere except for a set of capacity zero. It is well known that
a countable union of sets of capacity zero has capacity zero.

Since Poincaré’s inequality is valid in bounded domains 2 C R", it is clear that on bounded

=]
domains the collections of sets of zero capacities cap(E; W}(Q?)) and cap(E; LL()) coincide. In the
following lemma we indicate a condition for a set to have measure zero. In particular, we prove that
the collections of sets of capacity zero in Examples 4-6 on bounded domains in R™ coincide.

Lemma 5. Suppose that @ C R"™ is a bounded domain, E C Q, w C Q is a compact set with
nonempty interior, and a number b € R and a constant K are such that, for each a > b, there is a lower
semicontinuous function u, € Lé(Q) with the properties u|g > a, ul, < b, and ”ua | L;(Q)“ < K.

[¢]
Then cap(E; W}(Q)) = 0, cap(E; Ly(Q)) = 0, and cap((w, E; L3(Q)) = 0.

Proor. Let D &€ 2 be a compact domain with smooth boundary, w C D, and let () be a minimal
cube with sides parallel to the coordinate axes which contains D. There exists a bounded linear
extension operator ext : L3(D) — L}(@Q), 1 < ¢ < o0, such that extus € LY(Q) N WL(Q) if u, €
LYQ) N WL(Q). Consider the function v, = mL"E:%”)_‘E. It is obvious that [|va | L}(Q)|| < ﬂfait_—ﬁﬁ
for every @ > b. Moreover, the set V; = {z : v, > 1 — d} is open and includes E, where § € (0,1) is

an arbitrary number. On the other hand, the compact domain w includes some ball B C D on which
ve = 0. By a version of Poincaré’s inequality (see, for instance, [18]), we have the inequality

(1ot az) * < ouqrh (f lVgI"dw)% 9)

Q Q

in which ¢* € [1,gn/(n — g)], I(Q) is the side length of Q, and 2@ is the cube with the same center
as Q and with sides twice as large as those of @, where g € L; (Q) is an arbitrary function vanishing

on B. Hence, cap(E N D; W;(Q)) =0, since

| ext || K
(a—b)(1-90)’

where C is some constant and a € R, a > b, is an arbitrary number (the function % can be
mollified if need be). Multiplying the result of mollification by a suitable truncator, we can prove that

cap(E N D; z(}(G)) =0 and cap(w, EN D; L}(G)) = 0. Since D is an arbitrary domain, Lemma 5 is
proven.

We continue the proof of Theorem 5. Let f be a mapping satisfying the hypothesis of Theorem 5.
Fix a compact domain D € G with f(D) \ f(8D) # @ and fix an arbitrary bounded domain Q2

containing f(D). Consider the space L},(Q; u) of Example 2 with the weight function p defined by

() = { u(y, f,D) ify€ f(D)\ f(&D),
SO ify € (2\ £(D)) U f(aD).

Recall that, by (A7), we have

(1) for y € f(G), there is a compact domain D € R" such that y € f(D) \ f(8D);

or

(2) there is a compact domain D € R™ such that y ¢ f(0D) and the function p(z, f, D) is bounded

in some neighborhood W of y.

The first condition holds in the case when each connected component of the inverse image f~(y)
is compact [20]; i.e., the mapping is light.

Recall that a series in a normed space is norm convergent if the series of the norms of its terms
converges.

cap(END;W}(Q)) < cap(VaND;WH(Q)) < C

(10)
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Lemma 6. Assume that y € f(D)\ f(@D). There exists a series Y oo ¢x Which is norm

[+)
convergent in L},(Q; 1) and possesses the following properties:
(1) the terms @y, of the series are nonnegative functions;
(2) the sum of the series is a lower semicontinuous function equal to o at y.
PrOOF. In the first of the five cases listed before the statement of the lemma, take W to be the
bounded connected component of the open set R™ \ f(9D) containing y. Then, for each k € N, there
]

is a continuous nonnegative function ¢y € WL (W) such that @ (y) > 1 and

leow | Ly w)||” = u(y, f, D)flwklp dz <1/2%, keN. (11)
s .

[+]
Existence of such function follows from the fact that the capacity of a singleton with respect to L},(Q)

equals zero for every domain 2 containing the given point. The series ZZ‘;I @k is norm convergent
and possesses the required properties.

In the second case we take W C 2 to be a neighborhood of y in which the function p(z, f, D) is
bounded by some constant M. The further a.rguments are similar to the above with the only difference

that (11) is replaced with the inequality ||y | Il LWiw||P < M [y lexlPdz < 1/2F, k € N.

Lemma 7. Assume thaty € f (D)\ f(8D). Then cap(f~1(y); WL(G)) =0.

PROOF. Observe that f~!(y) is a relatively closed subset of G. If ¢ is the sum of the series in
Lemma 6 then the function ¢ o f = 3 7., ¢k o f is lower semicontinuous and equals infinity at the
points of f~1(y); moreover, the series is norm convergent by Lemma 3. Thus, o f € quloc(G)' In

view of Lemma 5, the g-capacity of the set f~1(y)ND then equals zero for each compact domain D € G
with smooth boundary. Consequently, it equals zero for the whole domain G. Covering f~!(y) by
a countable collection of domams D, & G with smooth boundaries and using countable semiadditivity
of capacity, we obtain cap(f~!(y); W}(G)) = 0. The lemma is proven.

The proof of Theorem 5 is complete

8§ 3. Solutions to Quasilinear Elliptic Equations
and the Change-of-Variable Formula

As is well known, the connection between mappings with bounded distortion and nonlinear elliptic
equations bases on the property that the columns of the matrix adj D f(x) = {A;;(z)} are divergence-

free fields; i.e.,
n

/ZAU o dzr =0

i=1

for every function ¢ € C§°(G) and every j = 1,...,n. This property can be proved for smooth
mappings by straightforward calculation and then extended by continuity (using approximation) to
a suitable Sobolev class (see, for instance, [21]). Here we give a new proof of this result by using the
change-of-variable formula (3) (see Corollary 4 below).

Lemma 8. Suppose that f : G — R" is a mapping of the class W loc(G) where ¢ > n -1
forn =2andqg>n-—1forn > 3, and u : G — R is a function wI:uch is ¢ *-differentiable
almost everywhere in G, vanishes outside w € G, and is such that the mapping f, : G — R",
fu=(f1,--, fi=1,% fi+1,.--, fa), is continuous a.nd stable; moreover,

}__:A2J e Li(w) for somej=1,.

i=1
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Then n
ou
/ E Aijga;; dz =0. (12)

G i=1

PROOF. Denote by A;; the entries of the matrix adj D f(z). Note that the mapping fy : G — R"

is o *-differentiable almost everywhere in G and the Jacobian J(z, f,) of this mapping is nothing but
the integrand of (12): Consider a compact domain D € G such that w € D, |8D| = 0, ulsp = 0,
and the restriction fy|sp is continuous. Then the cycle f, (D) lies in the (n — 1)-dimensional plane
and therefore v(y, fu(0D)) = 0 for every point y € R™\ f,(8D). Thus, the conditions of Theorem 2
are satisfied and the right-hand side of (3) for the mapping f, : D — R™ equals zero. Thus, (12) is
proven.

Corollary 4. Suppose that f : G — R" is a mapping of the class qu’loc, with ¢ > n—1. Then
the columns of the matrix adj Df are divergence-free fields.

ProoF. Fix an arbitrary function ¢ € C§°(G) vanishing outside some compact domain w € G.
Consider a sequence fi : w — R™ of smooth mappings which converges in W!_(w) to f. Observe

that we can choose fi so that fx € qu (w) for some ¢ > n — 1. By Lemma 8,
n
0
/Z Ak,ij——gi dr = 0,
; oz;
G i=1

where Ay ;; are the entries of the matrix adj D fi(z). Passing to the limit as k& — oo, we come to the
desired relation.

Theorem 6. Suppose that f : G — R™ is a continuous mapping of the class qu,loc(G)r where
gq>n-—1forn=2andq>n-—1"forn >3, and the Jacobian J(z, f) is locally summable on the
open set W =GN f~1Q). Let V : Q — R be a vector field V = (vy,...,vn) of class CL Iffis
almost absolutely continuous then .

div((adj Df(z))V o f) = [(divV) o flJ(z, f) (13)
in the distributional sense on W.

REMARK 3. Formula (13) is of interest in its own right and its proof under other analytical
assumptions bases on approximation of a mapping by smooth mappings (see [6,8]). For mappings of
the class W,},]oc we can deduce this formula from Corollary 4 by a standard passage to the limit. The
proof below grounds only on Lemma 8. Bearing in mind applications of this formula to Carnot groups,
we are interested in conditions under which we can prove it without passing to the limit. Below (in
Lemma 9) we present a condition [8, Theorem 3.2] under which (13) is valid without Luzin's condition

A for f.
Proor. Fix a function ¢ € C§°(W). We have to prove that

/ Z > Aujo f-g% dr = — / [(div V) o f]J(z, f)p(z) dz. (14)
w W

i=1 j=1
We can transform the integrand on the left-hand side of (14) as follows:

n asa n a n 8
Y Avjo fr =D Aym((v0f)e) = 3 Aug-(vofe
ij=1 '

= ig=1
i 0 L oy ofr
= Aji—((v; - Aji; _7_) —=
i§=:1 J oz; (('UJ o o) i,j’;:I 7 (ayk o Bz, w
= 3 452 (w50 ) —2(-3—1) o £I(z ). (15)
ij=1 !0z j=1 oy; ,



Since Ajjv; o fg% € Ly(W) for all ¢ and j and Z}‘___l(%) fJ(z, ) € Li(W); to prove (14), we
only have to establish that

3 /: 3452 5 (070 1)) do = (16)
j=lyy =l
Note that the integrand in (16) is a summable function for every fixed j (to verify this, it suffices to
consider (16) with V replaced by the new field V; obtained from V by substituting zero for all but
the jth components) and satisfies the conditions of Lemma 8: to this end, it suffices to consider the
function vj o f in place of u in Lemma 8. It is immediately checked that, for a fixed j, the integrand
in (16) is the Jacobian of the continuous mapping Fj, = (f1,..., fi-1, (vjof)¢, fi+1...., fn). Observe

that .
(fl,...,fj~1,vj°f7fj+11--~?fn) =Gj°f’

where G;(y) = (y1,---,¥j-1,vj(¥), . - - , ¥n) is & mapping satisfying the Lipschitz condition. The com-
posite Gj o f is continuous and almost absolutely continuous. Hence, the mapping F , is continuous
and ¢ *-differentiable, satisfies Luzin’s condition .#" (see below), and meets the hypothesis of Theo-
rem 2. Thus, the hypothesis of Lemma 8 is satisfied; consequertly, (16) ensues from (12).

It remains to demonstrate that the mapping Fj , satisfies Luzin's condition .#". Let A; and S be
the sets mentioned in the definition of almost absolute continuity. The restriction Fj |4, is Lipschitz
continuous and therefore satisfies Luzin's condition .# on A;. We are left with verifying that F} ols
satisfies Luzin’s condition .4". Given € > 0, find § > 0 from the condition of almost absolute continuity
of the mapping G;o f. Let {B(z;,m;)}, ; € S for all i, be an arbitrary collection of pairwise disjoint
balls such that Zz |B(zi,m;)] < 0. Estimate the sum Zi(osc Bizir) Fie)"- If £ € B(zi,r;) then

|Fjo(2) — Fjp (xz)|"<C(Sup lel*(@)(, ose (G o fN"

+ s [Gjo f@)( s o)) < c(5+§:|3 xi,ri)l) < 28s.
TESUPp @ Ti,T z i

Hence, Fj, satisfies the condition 4.

REMARK 4. The almost absolute continuity condition is used in the present article exactly once;
namely, to verify the following claim in the end of the proof Theorem 6: if a continuous mapping
f:G - R f=1(fi,.--sfis-.., fn), of a suitable class satisfies Luzin’s condition .# then the
mapping f = (f1,...,¢fi,..., fn) as well satisfies Luzin’s condition .# for every function ¢ € C§°(G).
Surely, the almost absolute continuity condition may be replaced with another condition guaranteeing

this claim.
In the following assertion we show how (13) can be derived from the above results in the situation

under study.

Corollary 5 [1,11,12,21]. Suppose that f : G — R™ is a mapping of the class W}
(M2) and (M4). Then (13) is valid for every C'-smooth vector field V.

PROOF. Observe that, under the conditions of the corollary, f is monotone and continuous by [2],
satisfies Luzin’s condition .4 (see [13,22]), and enjoys the property of Remark 4, the latter proven by
means of the estimate for a monotone function which is exhibited in the proof of Proposition 1. Since
J(z, f) € L110c(G), all prerequisites for implementation of the proof of Theorem 6 in the situation
under consideration are satisfied.

satisfying

n,loc

Lemma 9 [8, Theorem 3.2]. Suppose that f : G — R" G CR", n > 2, is a nonconstant mapping
of the class 2/, 5(G), where ¢ > n — 1 and s > ;25. Then (13) is va11d for every C*-smooth vector
field V with bounded derivative.

Corollary 6. Suppose that f : G — R", G C R", n > 2, is a nonconstant mapping of the class
W}, .o(G) satisfying (M1)-(M6a). Then (13) is valid for every C'-smooth vector field V.



Corollary 7. Suppose that f : G — R is a continuous mapping of the class qu’bc (G) satisfying
(M4), where q > n—1 forn =2 andq > n—1 forn > 3, and the Jacobian J(z, f) is locally summable
on the open set W = G N f~1(Q). Let V : Q — R™ be a vector field V = (v1,-..,vn) of the class

Lo joc(Q) such that divV = 0 in the weak sense on Q. If f is almost absolutely continuous then
div((adj Df(x))V o f) =0

in the distributional sense on W.

Proor. Fix a function ¢ € C®(W). Put V; = (M.vi,..., Mvy,), where M, is the Sobolev
mollification on 2 with parameter £ < dist(f(supp ¢), ). Then div V. = 0 in the conventional sense
and we can apply Theorem 6 to V;. Thus,

n n 6
S% Aij(Mevj) o o2 dz = 0.
bt £ dz;

Since the mapping satisfies Luzin’s condition .4, J(z, f) = 0 almost everywhere on the inverse
image f~!(S) of a set S of measure zero. Therefore, A;j(x) = 0 almost everywhere on the same
inverse image. Consider an arbitrary sequence V;, converging to V' everywhere on f(suppy) except
for a set Z of measure zero. Then M,v;o f converges everywhere outside f~1(5) to the function vjof
bounded on supp ¢. By the Lebesgue dominated convergence theorem, we can pass to the limit and
finish the proof of the corollary.

REMARK 5. In terms of exterior differential forms, (13) represents the equality df*w = f*dw in
the weak sense for a form w of degree n — 1 whose coefficients belong to the corresponding class. In
Theorem 6, Lemma 9, and Corollaries 5-7, we thus give conditions on a mapping and the coefficients
of a form for exterior derivation and pull-back to commute (cf. [1]).

Define the matrix
J(, ))*(DF@)TDF)™ i J(z, f) >0,

17
id otherwise. (17)

6@ = {
The matrix G(z) is symmetric, has determinant 1, and characterizes the local deviation of f from
a conformal mapping. From the definition of distortion we obtain the estimate

1 2

—————[I? < (G(2)€,€) < CuK* 3 (z) €2, 18
Cn(K(z))ﬁl |* < (G(2)¢, ) (@)l (18)

where C,, is a constant depending only on the dimension n.

Suppose that v is a real-valued smooth function on R™. Consider u = v o f. By the chain rule
(Lemma. 3), we have Vu(z) = Df(x)T (Vv)(f(z)). The connection between mappings with bounded
distortion and extremals of the Dirichlet integral established by Yu. G. Reshetnyak [1] is a consequence
of the formula

(G(z)Vu(z), Vu(z)) T G(z)Vu(z) = adj Df (z)|Vo(f(2))I" 2Va(f(z)). (19)

1t follows from (13) and (19) that if a function v € C!(R) is n-harmonic, i.e., if v is a solution to the
equation div(]Vu(z)|® 2Vv(z)) = 0 in a domain  C R?, then u is a weak solution to the equation

div(A(z, Vu)) =0 (20)
on f~}0) NG, where the mapping A(z, £) = (G(z)¢, 5)”‘5‘2‘G(z)§ satisfies the conditions

1 n n—1 n
R S A 8- £ < Gk @i
which can be verified by means of (17) and (18).

The case of K(z) € Loo(G) corresponds to a mapping with bounded distortion. In this case (20)
is a quasilinear elliptic equation and the regularity properties of its solutions are well known (see, for
instance, [11]). In particular, solutions to this equation satisfy the weak Harnack inequality which
implies the strict maximum principle for the coordinate functions.
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§ 4. Proof of Theorem 1

Suppose that f : G — R™, G CR*, n > 2, is a nonconstant mapping of the class Wll’ 1oc(G) which
satisfies (M2)-(M6) and that K(z) € Lpjoc forsomen-1<p<owifn=2andn-1<p<ooif
n > 3. Then f € qu’,oc(G) with ¢ = ;”_El- by Lemma 3; moreover, f is monotone (and consequently
locally bounded) by Theorem 3, preserves orientation, and is almost everywhere differentiable by
Theorem 4. The theorem will be proven if we establish that the inverse image f~!(y) is totally
disconnected for every point y € R™. Since all arguments are of a local nature, without loss of
generahty we may assume that a nonconstant mapping f is defined on a compact domam D e G,

= 0 € f(D), and f(D) C B(0,e”®) = . To prove that the inverse image f~1(0) is totally
disconnected, it suffices to validate the estimate

/lVloglog @) *dz < o0 (21)

for every compact domain D’ @ D, wheren—l<s<q<nfor1<qa.nds—-1forq-1 n = 2.
Indeed, the function u = log log-——’- is lower semicontinuous in D and u|s-1(g) = oo; therefore,

cap,(f~1(0)) = 0 by Lemma 5. Hence, f~1(0) is totally disconnected. To prove (21), we use the
special approximation of log & wl of [10].

Lemma 10 [10]. For each 0 < a < e™® the function 9, : ' — R, defined by the formulas
log 757 ifr =ly| > a,
log%—(ml:—a)+m’—é;7—q)—2‘ if <yl <a,
logl +log2+1+ (5= 12log2)]%§

+4(-T+1210g 2) 147 + 8(5 —8log ) if [y] < &,

Du(y) =

possesses the following properties:
(i) @ € CH(QY);
(i) ®o(y) > e foreach y € ;
(iii) ®, is radial;
(iv) @o(r) = Po(lyl) < 0;
(v) @, is n-superharmonic;
(vi) log% <P, (y) < log% + % + log2 for each |y| < q;

4

(vi) @a(y) =log gy fora <yl <™
(viil) |V®a(y)|" 2V Pa(y) € CHSY).

To prove (21), fix an arbitrary nonnegative function 7 € C§°(D), n > 0, and the function ®,,
0 <a<e® of Lemma 9. We can derive (21) by passing to the limit as @ — oo in the estimate

[ I90s@a 0 NP ) do
D

n—s

<Ca ( ! Vn@) K™ (z) dx)( I[ K#(@)ds) (22)

for some 1 < s <2ifn=2andn—-1< s <nifn>2such that -2 < p. Applying Holder's
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inequality to the left-hand side of (22),.we obtain

[[ IV (log(@a© )(@)/°n’(x) do = l[ 908200 )@ @K@ 2y
W, dz \7 - et
<( D/ IV log(®. 0 )P 05 ) ( D/ K@)
Inequality (22) will be proven, if we establish the estimate
D/ V(o ® o f)(@)"17(c) 77 < O L[ V@K™ ) do (23)

in which we should replace ® with the function ®,.
REMARK 6. In the case of mappings of the class W;JOC, (22) and (23) were proven in [10] (see

below). The authors of [10] treat (13) as a differential equation and take ¢ in (14) to be a test function
of the form n®™ o f. We cannot proceed in this way under the conditions of Theorem 1, since we
cannot guarantee convergence of the integrals in (14). Our method bases on the further employment
of Lemmas 8 and 9 and calculations (15). Inequality (23) is a weak Harnack type inequality and
is of interest in its own right. In the following assertion we present conditions under which we can

prove (23).

Lemma 11. Suppose that the conditions of Theorem 1 are satisfied. Suppose that a function
® € C?(Y') possesses the following properties: ® > § > 0, ® is n-superharmonic, and the vector field
|V®(y)|"~2V®(y) € C}(Y) has bounded derivative. Then (23) holds for every function n € C§°(D),
n >0, where D = f~1() C G. _

ProoF. Fix a function 7 € C§°(D), n > 0, and a function ® € C?(Q) which possesses the
following properties: ® > 6 > 0, ® is n-superharmonic, and the vector field |[V®(y)|"~2V®(y) €
C(Y) has bounded derivative.

Insert the compactly-supported test function ¢(z) = v*®1~"(f(z)) in (15). Using Lemma 3, we
find its gradient '

Vo(z) = "} (2) 81" (£(2)) V(z) - (n - Dn™(2)®™"(f(2))(Df(2))' V&(f(x))

and insert it in (15), assuming for a moment that V is an arbitrary C!-smooth vector field. We obtain

=(n — 1){adj Df (2)V (£(2)), (Df (2)) VO(f (z)))n"(z)®~"(f(2))
+n(adj Df (z)(V(f(2))), V(z))n"~* (z) @' (£ (x))

=Y Aija%i(vj(f(x))V"CPI'"(f(-'r))) ~div V(£ (2))n"™(2)®'~"(f(2))J (z, f) da.

ij=1
Since D f(z) adj D f(x) = J(z, f) Id, transforming the first summand on the left-hand side of the above
equality, we find that
(n = 1)V (f(2)), VO(f (@)™ (z)@"(f(2)) (=, f)
—n(adj Df(z)(V(f(2))), Va(2))n"™~} (2)®'"(f())

==Y Az-ja%i(vj(f(w))V"QI'”(f(z))) +div V(£ (2))n"(2)@' " (f (2)) I (=, f)- (24)

3,j=1
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Consider the field V; whose all but the jth components are zero and the component v; is the jth
component of the vector field |V®(y)|*~2V®(y). Then we can easily see that both summands on the
left-hand side of (24) and the second summand on the right-hand side of (24) are summable func-

tions. Therefore, so is the function ¥ i, Aij%(vj( f(z))v*®~"(f(z))). Note that both functions
vjo f and &1~ o f belong to qu’loc and moreover are differentiable almost everywhere (as compos-

ites of a smooth function and an almost everywhere differentiable mapping). Thereby the product
vi(f(z)p"®1"(f(x)) as well is differentiable almost everywhere in D (see Remark 2). Moreover, the

mapping
z = (fl(z)v LRRE ] fj—l(x)7 Vn(z)((vjél—n) o f)(fL'), fj+1(x)’ cees fn(w))

is £ *-differentiable and satisfies Luzin’s condition .#” under the assumption (M6) (see the end of the
proof of Theorem 8). Thus, the conditions of Corollary 6 are satisfied. Hence,

3 s s F @) 1) da =0,
D =1 t

If (M6b) is satisfied then the vanishing of this integral ensues from Lemma 9. Indeed, take the vector
field V in Lemma 9 to be (0,...,0,v;®17",0,...,0) (the nonzero component occupies the jth place).
Then (13) holds for this vector field. Substituting the function ™ for the test function ¢ in (14), from
(15) and (13) we infer that the integral in question vanishes.

Since we can take j to be an arbitrary number from 1 to n, we have

(n=1) [ V(7). VR ()8 F () (@, ) de
D

- [ (6 DF @V @) T (2)81 " (@)

D

- / div V(£ (2))"(2)@""(f(2)) ] (z, f) de. (25)
D

Since ® is n-superharmonic, div|V®(y)|* 2V&(y) < 0. Putting V = |V&(y){*2V&(y), from (25)
we arrive at the inequality

n n~1
U 0y, s < 2 [ 1aai Dro Ep D
D

dn(f(z)) IVn(2)in"~ (<) da.

Using the estimate |adj Df (x)l’vfréT < cn|Df(z)]" = ecnK(x)J(x, ) with some constant ¢,, depending
only on n, and applying Holder’s inequality to the right-hand side of the last inequality, we obtain

@)@ e < &0 [19n@rEe-i@) iz
- D

Finally, to derive (23), it suffices to recall the relations J(z, f) = %’i and |V(® o f)(z)] <
|IDf(x)[|Ve(f(z))l-

Lemma 11 is proven.
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