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S I M P L E  Q U O T I E N T  A L G E B R A S  A N D  S U B A L G E B R A S  
O F  J A C O B I A N  A L G E B R A S  

A. P. P o z h i d a e v  UDC 512.554 

Starting from an associative commutative algebra A and its commuting derivations, in [1] V. T. Fil- 
ippov constructed a certain n-Lie algebra A* whose n-ary operation bases on the notion of Jacobian. 
In [2] this algebra was called the Jacobian algebra. In the same article, the  class of the Jacobian 
algebras A G ( h l , . . .  , ha, t) was distinguished and the question was raised of describing simple factors 
of these algebras. 

In the present article we consider the Jacobian algebra A R ( h l , . . .  , ha, t), where R is the field of 
real numbers and hi(x) = xi is the ith projection of a vector x = ( Z l , . . . ,  xn) E R".  This n-Lie 
algebra is denoted by A(n,  t). In Theorem 1 we prove simplicity of the quotient  algebra of A(n,  t) 
by a one-dimensional ideal. Next, we distinguish some class of subalgebras E(n ,  L, J )  of A(n,  t) (see 
the definition below) and establish isomorphism between some algebras of this class. In particular, 
we prove that over an algebraically closed field they all axe isomorphic (for a fixed n E N, n > 
2). In Theorem 2 we prove simplicity of the n-Lie algebra E(n,  t, J) over an arbitrary field ~ of 
characteristic 0. In the case of a field ~ of characteristic p > 0, we construct examples of simple 
finite-dimensional n-Lie algebras of dimensions p'* - 1, pn _ 2, pn-1, and pn-1 _ 1. 

We now recall some definitions. Let ~I' be an associative commutative ring with unity. As usual, 
by an ft-algebra we mean a unitary ~-module furnished with a system fl of polylinear n-ary algebraic 
operations. An n-Lie algebra is an 12-algebra L with one anticommutative n-ary operation [Xl , . . .  , x,,] 
satisfying the identity 

[ [ X l , . . .  , X n ] , y 2 , . - *  ,Yr~] = ~ " ~ [ X l , - . - , [ X i ,  y 2 , - . .  , Y n ] , . - - , = h i *  
i----1 

Let r be a field and let L be an arbitrary n-Lie algebra over 4>. Henceforth we assume that  n > 2. 
A subalgebra I of L is called an ideal if [I, L , . . . ,  L] C I. The subalgebra L 1 = [L , . . .  , L] of L 

is called the derived algebra of L. The algebra L is called simple if L 1 r 0 and L lacks ideals other 
than 0 or L. 

Henceforth we denote by (Wv; v E T) the vector space that  is spanned by the  family of vectors 
v e T}. 

Unless otherwise stated, from now on we assume that r is a field of characteristic 0 which includes 
R, R is as usual the field of real numbers, and R n is the abelian group of n-rows with entries in R. 

Let X = { x l , . . . ,  x,,} be a set of variables and let A(n) be the associative commutat ive ~-algebra 
generated by all powers x~ i, where ai E R and xi E X .  If we denote an arbitrary basis element 

a, . .za~ of A(n) by x(a), w h e r e a  = (al, . , a , , )  e R n, then A(n) = (x(a) : a E Rnl with the X 1 �9 . .  
following multiplication table for the basis elements: x(a)x(b) = x(a+b). 

i 
Observe that  if r = (0 , . . .  , 1 , . . .  ,0) E R n then xi = x (ei). As usual, the partial derivatives 

0 : x(a) ~ nix (a-~i) are written on the left and denoted by Oi; i.e., Oix(a) = n ix (a -~ i ) .  

Fix t I = ( t l , . . .  , tn) E R n and define the following n-ary operation on the underlying space of the 
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algebra A(n): 
2~tll O1 z ( a l ) . . ,  xtnOnX(al) 

[ ~ c - ~ ) , . . . ,  ~c- , ) ]  = .: . . .  .: (1) 

Operation (1) defines on the underlying space of A(n) the Q-algebra which we denote by A(n, t), 
where t = t ~ - e, e = ( 1 , . . . ,  1) E R n. It is easy to verify that  the mappings Di : x (a) ~ x~Oix(a) 
are commuting derivations of A(n). Therefore, by Theorem 1 of [2] the Q-algebra A(n, t) is an n-Lie 
algebra. Notice that the n-Lie algebra A(n,t)  is isomorphic to the algebra AR(ha , . . . ,  ha, t) of [2], 
where hi(x) is the ith projection of a vector x = ( x l , . . . ,  xn) E R n. By Theorem 2 of [2], the algebra 
A(n, t) is a Jacobian algebra. 

Henceforth, given a matrix (aij) E oh,, with entries in (I), we denote by laij] the determinant  of 
(~/j). 

L e m m a  1. In the algebra A(n, t) 

[ x ( ~ ) , . . .  , x (~") ]  - -  laijlx(~t+...+~=+t). (2) 

PROOF. The claim follows from [2, Lemma 1]. 
Let U be some fixed basis for the algebra L. If u E L is an arbitrary nonzero element and 

k u = ~']i=1 aiui, where ui are distinct elements of U and ai ~ O, then we call k the length of u and 
denote it by h(u). 

Put 
A(n,O) if t = 0; 

A . (n , t )=  ( x ( a ) : a E R  n k { t } )  if t 0 0 .  

Using (2), we can easily verify that A.(n,t) is a subalgebra of a(n, t )  for every t E R". 
Let ~,(n,t) = A(n,t) /r176 be the quotient algebra of the n-Lie algebra .4(n,t) by the one- 

dimensional ideal r  (~ By definition, 

.~(n,  t) = (~(~) = z(") + vz (~  : a ~ R' = R" \ { 0 , t } ) .  
m 

T h e o r e m  1. For arbitrary n > 2 and t E R n, the n-Lie algebra A(n, t) is simple. 
PROOF. Let J be a nonzero ideal of A(n,t)  and let k be the least length of elements of J. 

Demonstrate that k = 1. 
Assume that  k > 1 and let u be an arbitrary element of J of length k: u = ~ki= 1 aiYc(ui), where 

ui E R ~ and ai E (I). Two cases are possible: 
I. (ul) -~ (u2). In this case there are ha , . . .  ,an E R t such that  dim(ul ,u2,  a3 , . . .  ,an) = n. Then 

k 

i=l  
k 

__ ot 1 [e(u,) ~:(u2) ~7(aa),... , ~(an)] + Z ai[~c(ui)' e(u2)' ;~(a3),... , ~(an)] E J 
i=3 

and 1 < h(v) < h(u), which contradicts the choice of u. 

II. (ul) (u2). Put her (0 , . . .  r . . .  R'. = = a,  ,0) E Take a E R and r E { 1 , . . . , n }  such 
that  (met) ~ (ul) and ( a e r -  t) ~ (Ul). Then there are a2 , . . .  ,an-1 E R' such that d im(act  - 

n - I  R t. t .  tl 1. a-2 . . . . .  a , -1 )  = n and a,  = ta~r - t - ~ i=2  ai E We have 

[.~.(ui} ;~;(a2) . . . . .  j3(an )] ._ ~i.~.(ui+a2+...+an+t) __ ,[i,~(ui+cxe,.) (a) 
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where 7i (5 r i = 1 , . . . ,  k, 71"r2 # O, and (Ul + ae,) r (u2 + ae,). Using (3), we obtain 

k k 
V -- [U, 5:(a2), . . . ,  ~(an)] ._ Z ai[:~(ui)' ~:(a*)'""" ,~(an)] ._. ~ Oti~li~(,i) (5 j ,  

i=1 i=1 

wherea iT i  ~ 0 for i = 1,2 and vi = u i + a e ,  f o r i  = 1 , . . . , k .  Thus, v E J ,  2 < h(v) < h(u), 
(vl) r (v2), and we arrive at the first case. 

Hence, k = 1 and ~(al) E J for some al  E/i~.  Demonstrate that  in this event ~(c) E J for every 
c E R ' .  

Two cases are possible: 
I. (c - t) -~ (al) .  Let a 2 , . . .  ,an-1 E /i~ be such that  d im(a1 , . . .  , a n - l , C -  t) = n and an = 

c - t - y'~__S1 a ai E Re. Then [~(a l ) , . . . ,  ~(a,)] = laq[2(ax+._+a,+t ) = laiil~(, ) e a.  Since la~jl r 0, we 
have/:(c) E J.  

II. ( c - t )  = (al) .  There i s d E  /~ such that  (d) r (ax) and ( d - t )  -~ (al) .  Then, by case I, 
~(d) E d. Since ( c -  t) ~ (d), we have .~(c) E J by case I. 

Thus, J = A(n, t), and since J is an arbitrary nonzero ideal of A(n, t ) ,  the algebra ,4(n, t) is 
simple. The proof of the theorem is over. 

Take t E Z".  Observe that  Az(n, t )  = (~(") E A(n, t )  : a (5 Z ") is a subalgebra of A(n,t) .  So the 
following assertion holds: 

T h e o r e m  1 ~. For arbitrary n > 2 and t (5 Z n, the n-Lie Mgebra ~,z(n, t) is simple. 
PROOF repeats that  of Theorem 1 verbatim. 
In the case of a field ~ of characteristic p > 0, instead of A(n) we consider the algebra Av(n ) 

of truncated polynomials in variables X = {Zl , . . .  , xn} which is generated by all powers x ai, where 
ai E Z v. Thus, 

Ap(n) = (z(") : a (5 Z ; ) ,  z(~)x (b) = x(~+b). 

Fix t (5 Z~ and define an n-ary operation on the underlying space of the algebra Av(n ) by the 
formula (1). Denote the so-obtained fLalgebra by Ap(n, t). As before, Ap(n, t) is an n-Lie Jacobian 
algebra. 

Put  
- I Av(n'O) if t = 0; 
mv(n't) = t ( z(a) : a (b z~ \ {t}) i f t ~ 0 .  

The following assertion is valid: 

T h e o r e m  1".  For arbitrary n > 2 and t (5 Z~, the quotient algebra of the n-Lie algebra Ap(n, t) 
by the one-dimensional ideal ~x(~ is simple. 

PROOF is analogous to that  of Theorem 1. 
As a corollary, we obtain examples of simple finite-dimensional n-Lie algebras of dimensions pn _ 1 

and pn _ 2. 
Take t = ( t l , . . .  ,t,,) (5 R" and J C {1, . . .  ,n},  1 <_ c a r d J  _< n. Henceforth by t j  we mean the 

real number defined by the formula 

t g = ( 1 - n ) - l Z t  j. (4) 
jEJ 

Consider the following class of subalgebras of A(n, t): 

j f J  
(5) 

514 



It is easy to s e e  that  E(n,  t, J)  is a subalgebra of A(n,  t). 
Let E(n)  = (x (a) : a ~ R n- l )  be a vector space over a field (I). 

operation 

[x(~l) , . . . ,  z (")] = ( - 1 ) " - i t s  

a l l  "" " a l n - 1  1 
: : : 

a n l  " '"  a n n - 1  1 

Furnish E(n)  with the n-ary 

x (6) 

where j E J and t = ( q , . . . ,  t j -1,  t j + b . . . ,  tn) E R n-1. Operation (6) d e f i n e s  o n  the space E(n)  the 
O-algebra which we denote by E s ( n , t , j ) .  In the case when t = 0, we denote the algebra E l ( n , t , j )  
by E(n , r ) ,  where r = ( - 1 ) n - i t j  E R. 

L e m m a  2. For every jo E J, the isomorphism holds: Eg(n,  t ,jo) ~- E(n ,  t, J).  

PROOF. Suppose that  x (aD E E(n,  t, J)  with ai = (a l l , . . .  , ain) E R n and i = 1 , . . . ,  n. Denote 
by Ai the i th column of the matrix A = (aij). As follows from (5), Y]'JeJ AJ = ( t s , . . . ,  t j )  T = t s e  T. 
From here and elementary properties of determinants we obtain 

[A[ = t s l A x  . . . Ajo- le  T Ajo+l . . . An[ = ( -1)n-J~  JlA1. . . Ajo- l  Ajo+l . . . A~eT[. (7) 

Define the linear mapping ~o : E ( n , t , J )  ~ E s ( n , t ,  jo) that  acts at the basis elements by the 

rule r (a)) = x (a), where a = ( a l , . . . ,  an) E R n and 5 = ( a l , . . . ,  a j o - 1 ,  a / 0 + l , . . .  ,an)  E R n-x. 
Demonstra te  that  ~ is an isomorphism. Using (6) and (7), we derive 

= ( - 1 ) " - J o t j  

[ v ( x ( ' , ) ) , . . .  = 

a l l  ' ' '  a l j •  a l j 0 + l  " ' "  a l n  1 [ 
: �9 : : ~ [ ~(x(*~+"+~"+O) 

a n l  " '"  a n j o - 1  a n j o + l  �9 �9 �9 a n n  1 
= ~9(Ialx(a'+'"+a'~+t) ) = q0([x(a'),... ,x(a")]). 

Hence, T is a homomorphism. 
It follows from (5) that  x (a) E E(n,  t, J)  if and only if aio = t j  - ~-,jeJ\{jo} aj. Therefore, ai E R 

can be taken arbitrarily if i = 1 , . . .  , n, i ~ j0. Hence T is an epimorphism. 
If x (a) ~ x (c) then by (5) ~(x  (a)) ~ T(x(C)). Thereby ~a is a monomorphism. The proof of the 

lemma is complete. 
Call n-Lie algebras A 

mapping r : A ~-~ B and a 

all a l , . . .  , an E A. In this 

and B over a field (I) parametrically isomorphic if there are a one-to-one 
nonzero element v E (I) such that  [qo(al),. . .  ,~(an)]  = v ~ ( [ a l , . . .  ,an]) for 

case we write A ~ B. 
'0 I/. ~)U 

The definition readily implies that if A ~ B and B ~ C then A ~- C. 

L e m m a  3. Let A and B be n-Lie algebras over a field ~. Suppose that the equation x n - l - v  - i  = 0 
11 

is solvable in (~ for some v E r I[ A ~ B then A ~- B. 

PROOF. Let ~ be a one-to-one mapping from the algebra A into B such that  [~2(al),.. �9  ~(an)] = 
v~ ( [a l , . . .  ,an]) for all a i , . . .  ,an E A. 

Define the mapping r by the rule: r = ub for every b E B, where u E r is a root of the 
equation x n-1 - v -1 = 0. Then the mapping O = r162 : A ~-~ B is one-to-one and [0(a l ) , . . .  , 0(an)] -- 
t t n t ~ ( a l ) , . . .  , ~ ( a n ) ]  ---- Z t n / ) ~ ( [ a l , . . .  , a n ] )  ---- l z n - l l ) O ( [ a i , . . .  , a n d  - -  O ( [ a l , . . .  , a n ] ) ,  since u n-:  
v -  . Hence 0 is an isomorphism. The proof of the lemma is complete. 

P r o p o s i t i o n  1. Let t = ( t l , . . .  ,tn) E R n, n > 2. For every J C_ {1 , . . .  ,n},  there is r E R such 
that E ( n . t , J )  ~- E ( n , r ) .  
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PROOF.  Construct the following chain of sets Jk inductively. 
Take j l  E J .  Put  Jo = {jl}- If J t  has been constructed then put J/:+1 = Jk U {Jt~+2}, where 

Jk+2 E {1 , . . .  ,n},  Jr:+2 ~ Jk, and t1~+2 ~ O. If there is no such Jk+2 then put s = k and finish the 
construction. 

Put  t k = ( t~ , . . .  ,t~) E Rrt, k = 0 , . . .  ,s ,  where 

ti k = {  0 i f i E J k \ { j t + l } ,  
ti in the opposite case. 

Observe that  t~k # 0. 
Vi 

Prove by induction that,  for every i = 0 , . . .  , s  there exists vi E R such that  E ( n , t , J )  
E(n, t i, Ji). 

Lemma 2 implies that  E(n, t, J) ~ E(n, t ~ Jo) for some v0 e R. 
~ k - I  

Suppose that  E(n , t , J )  ~- E(n, tk-l ,Jk_l),  vt-1 E R, k < s. Then, using Lemma 2, obtain 
Vk 

E(n, t  k-l, ) "  E.tk ,(n,t  k-i, ) "  Ej ,(  t k, )~" Ej , (n , t  k, "~ ( tt, Jk) Jk-1 = _ jk = n, Jk = Jr+l)  = E n ,  , which was to 
be proven. 

Ut 
Thus, E(n , t , J )  ~ E(n, t ' ,Js) .  

Vs+I 
It remains to observe that,  by Lemma 2, E(n, t s, .Is) ~- E(n, r ')  for some r '  E R and E(n, t, J) 

E(n, r) for some r E R. The proof of the proposition is over. 

C o r o l l a r y .  //" the/ield r is algebraically closed then E(n ,  t, J) ~- E(n, 1). 

PROOF. The claim is immediate  from Lemma 3 and Proposition 1. 

T h e o r e m  2. For arbitrary n > 2 and r E R, the r~-Lie algebra E(n,  r) is simple. 

PROOF. Let J be a nonzero ideal of the algebra E(n,r).  Suppose that  z(al) E J for some 
al  E R n -1 .  Let c E R n - I  be an arbitrary element. Demonstrate  that  z (r E J .  

Two cases are possible: 
I. al = 0. Choose a 2 , . . .  ,art-1 E R n-1 such that  d im(a2 , . . .  ,a, ,-1,c+ al )  = n - 1. Pu t  art = 

c -  ~ Z ~  ai. Then [z(a~),.. .  ,z(  a')] = a z  (~) E J for some nonzero a E r Hence, z (c) E J .  

II. a1 # 0. Considering al  # 0 and c = 0 in the proof of case I, we infer tha t  z (~ E J .  Hence, 
x (e) E J by case I. 

Thus, if z (a~) E J for some a l  E R a -1  then z (c) E J for all c E R rt-1 and thereby J = E(n, r). 
Suppose that  there exists an element u E J such that  h(u) = min{h(v) : v E J} and h(u) = k > 1. 

Assume that  u = )-']~ik=l aiz("i), where ui E R rt-1 and ai  E r  In accordance with case II, we may 
assume that  ul  = 0. Let a2 = u2 and let a 3 , . . .  , art E R rt-1 be such that  d i m ( a 2 , . . .  , a,,) = n - 1. 
Then 

t t i l  " ' "  ~ i n - 1  l 

k ~ 2 1  " " �9 U2rt -1  1 

V =  [ U , X ( a 2 ) , . . . , x ( a n ) ]  = E a i r  a 3 1  - "  a 3 n - 1  1 X ( u i + u 2 + a n + ' " + a n ) .  

i = 1  : " : 

a n l  " " " a n n - I  1 

It is easy to see that  v E J and 1 < h(v) < h(u), and we arrive at a contradiction to the choice of the 
element u E J.  Hence, if J # 0 then x(a) E J for some a E R rt-l. However, in that  event J = E(n, r) 
as was proven earlier. The proof of the theorem is over. 

Let t E Z" and J C {1 , . . .  ,n} be such that tg is a nonzero integer. Then E z ( n , t , J )  = (x (~) E 
E(n, t, J);  a E Z") is a nonahelian sul)algebra of E(n .  t, J). 

T h e o r e m  2 ~. The n-Lie algebra Ez(n. t, J) is simple. 
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PROOF is analogous to that of Theorem 2. 
In the case of a field ~ of characteristic p > 0, we as before construct the n-Lie algebra Ep(n, t, J) 

which is a subalgebra of Ap(n, t) by using reduction modulo p. By analogy to Theorem 2, we prove 
the following 

T h e o r e m  2". Let J C_ { 1 , . . . ,  n} and t E Z~ be such that the algebra Ep(n, t, J) is not abelian. 
I f  n ~ 0 (mod p) then Ep(n, t, J) is a simple n-iie algebra. I f  n - 0 (mod p) then the derived algebra 
of Ep(n, t, J) is simple. 

As a corollary we obtain examples of simple finite-dimensional n-Lie algebras of dimensions pn-1 
and pn-1 _ 1. 

In conclusion, we note that the idea of considering the n-Lie algebras A(n, t) and E(n, t, J) was 
proposed to the author by V. T. Filippov to whom the author is grateful for supervision. 
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