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A N O T E  O N  C O N V E X I T Y  IN S M O O T H  N O N L I N E A R  SYSTEMS* 
S. A. V a k h r a m e e v  UDC 517.977.57; 517.977.1 

I n t r o d u c t i o n  

This paper is an extended version of the lecture given by the author at the International Conference 
Dedicated to the 90th Anniversary of the Birth of L. S. Pontryagin (Moscow, Aug. 31-Sept. 6, 1998) [23]. 

The results presented below in a short form can be found in [24]. It should be emphasized that the author, 
being one of the students and collaborators of R. V. Gamkrelidze, is, at the same time, one of the so-called 
indirect students of L. S. Pontryagin, and, therefore, it was very important to him to participate in this 
conference. Thus, the author expresses his grat i tude to the Organizing Committee for their invitation to 
participate in the conference and give a lecture at it. 

Our goal is twofold. First, we present an existence theorem for the two-point, time-optimal control 
problem associated with a smooth control system 

,~ = f ( x , , ~ ) ,  ~ �9 M ,  u �9 U; (0.1) 

this theorem improves the existence theorexn proved by the author in [20] (see also [22]). In (0.1), M is an 

n-dimensional smooth (of class C ~r manifold that  is regularly embedded into some Euclidean space Rd; U is 

a compact convex polyhedron in Rm; {f(.,  'a); u �9 R m} is a family of smooth (of class C ~)  vector fields on 

.~I that smoothly depend on the paraxneter u in the natural topology (see, e.g., [7, 19, 22]). 
Let us briefly explain why this theorem is necessary precisely in the statement presented below. 
Recall that in 1994, the author had proved tim bang-bang theorem in [18] (see also [21, 22]), which 

generalizes to the nonlinear (in control and state) case the well-known theorem of R. V. Gamkrelidze on the 

finiteness of the number of switchings (see, e.g., [14]). But this theorem itself has no sense if we do not have at 

our disposal an existence theorem under its conditions (or under a part of them). This is the main motivation 
of the present research. 

Second, and this is a bypro(luct of the search for the proof of the above-mentioned existence theorem, we 
present a test for convexity, which has a very clear geometrical selme. We mention here two tests for convexity 
of such a type: the famous Motzkin theorem [11] (see also [9]) and the recent result by A. V. Arutyunov [2]. 1 

Recall that the Motzkin theorem consists of the following. Denote by dist (x, K)  the Euclidean distance 

from a point x �9 R m to a nonempty set K C R m. Then the theorem asserts that a nouempty closed set 
K C R m is convex iff, for each point x �9 R ~, there exists a unique point y �9 K that is nearest to x, that is, 

I x - Yl = dist (K, x), 

where I" ] stan(ls for the Euclidean norm on R m. 
The result by A. V. Arutyunov refers to sets in an arbitrary locally convex space E and is formulated as 

follows. Let a nonempty set K C E be connected and locally convex in the topology of I4 that is induced by 
E, and let this set be closed in the topology of E. Then K is convex. 

* This work was supported by the Russian Foundation for Basic Research, project No. 96-01-00860. 

1 Added in proofi. As was revealed later, this result (formulated in somewhat different terms) is already known and 
is called the Tietze convexity tes~, see J. Cel, "A generalization of Tietze's theorem on local convexity for open sets," 
Bull. Sac. Roy. Sci. Liedge, 67, No. 1-2, 31-33 (1998) and further references given therein. 

Translated from Itogi Nauki i Teklmiki, Seriya Sovremennava Matcmatika i Ee Prilozheniya, Tematicheskie Obzory. 
Vol. 60, Pontryagin Conference-l, Optimal Control, 1998. 
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For other tests for convexity of a geometrical and topological nature, see [4]. 
The paper is organized as follows. 
In the first section, we state the main result, our existence theorem, and consider some particular cases 

where the proof of this theorem can be directly obtained. 
In Sec. 2, we present the test for convexity and give the proof of the main theorem. 
Section 3 contains auxiliary lemmas that were used in Sec. 1. 
In Sec. 4, we present one more application of our test for convexity. Namely, we study conditions for 

the convexity of images of matrix exponentials and their applications to the geometry of reachable sets of 
commutative bilinear systems. Here we restrict ourselves to the consideration of tim simplest case; the author 
hopes to give more comprehensive results in r.he near future. 

In conclusion, we note that there are no difficult theorems in convex analysis; all its results are visual, 
and the problem consists only of their detection. The author found his test for convexity when he translated 
into English the famous book by A. D. Aleksandrov Intrinsic Geometry of Convex Surfaces (it may published 

by Gordon and Breach this year). The reading (and translation) of this remarkable book stimulated him to 
understand the geometrical nature of many facts which he knew only from the analytical point of view and 
helped him to find the above-mentioned test for convexity. 

As for the existence theorein, it demonstrates the phenomenon of the so-called "implicit convexity" (this 
teml was introduced by V. M. Tikhomirov at the Soviet-Poland International Workshop "Mathematical 
Methods of Optimal Control and Their Applications," Minsk, May, 1989). Also, we recall here that L. S. 
Pontryagin himself regarded the existence problem as a very difficult one: "However, it should be noted that 
from the matheinatical viewpoint, the question on the existence of an optiInal t rajectory seems to be very 
important and ditticult" ([13], p. 189). This is also one of tim reasons why the author dealt with the existence 

problem for several years. 
W'e nse the standard notation in this paper. Thns, R '~ always stands for the n-dimensional Euclidean 

space with the norm I I generated by the standard inner product (-,-). We identify a vector field X on a 

smooth manifold M with a derivation of the algebra C~(M) of all smooth functions on M. Recall that a 
derivation D of any R-alget)ra .4 is an R-linear mapping that satisfies the Leibnitz rule 

X(ab) = bX(a) + aX(b) Va, b �9 ,4. 

The set Vcct (M) of all vector fields on h i  has a natural structure of a Lie algebra with Lie bracket 

[ X , Y ] = X o Y - Y o X  VX, Y �9 Vect(M). 

Any field X �9 Veet (M) defines an R-linear operator a d X  : Vect (M) --+ Veet (M) by 

ad X Y  = [X, Y] VY � 9  (M). 

In a natural way, one considers the powers (iterations) of this operator: 

a d ~  a d m X = a d X o a d m - t X = a d m - t X o a d X ,  m>1 1, 

where Id is the identity mapping of Vect (M). By T~(M), we denote the tangent space to M, and T M  
stands for the tangent bundle of M. Of course, if M is smoothly embedded into a certain Euclidean space, 
it is convenient to identify the tangent space T~M with the affine plane x + L~ in this space, where L~ is 
a hyperplmm in R '~ that is uniquely defined by T~M. Smooth vector fields on M are also smooth sections 
of the tangent bundle and, in the above case, can be identified with smooth vector-valued functions (of the 

corresponding dimension) that are tangent to M at each point of M. If f : _h./ --+ N is a sinooth mapping 

of smooth manitblds M and N, then by f~,. we denote the tangent mapping (differential) which maps from 

T~(M) into Tf(~)(N) and thus defines the sxnooth mapping f .  : T M  --+ T N  of the corresponding tangent 

bundles. For a subset K �9 R k, we denote by conv A the convex hull of this subset. Also, span K stands for 
the linear hull of K, but we prefer to denote it also by aft K = span K. By el A we denote the closure of a set 
A, and int (K) denotes the interior of a set K, while the notation relint(K) is used for the relative interior 
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of a convex set K in a finite-dimensional space; it is well known that the latter set is always nonempty. For 
a mapping f ,  im f always stands for its image, and for K C dora (f) ,  where dora (f)  is the domain of f ,  

f - t ( K )  stands for the inverse image of the set K under the mapping f .  

A c k n o w l e d g m e n t s  

The author express his gratitude to R. V. Gamkrelidze for his attention to this work and to S. M. Aseev 
and N. A. Bobylev for a fruitful discussion of the results obtained. 

1. Exis tence  Theorem 

Let M be a smooth (of class C a )  manifold smoothly embedded in a d. Consider a smooth control system 

= f ( x , u ) , u  �9 U,x �9 M, (1.1) 

where f (u) ,  u �9 R m, is a family of smooth (of class C ~)  vector fields on M depending smoothly on a 
parameter u �9 R and U is a compact convex polyhedron in R m. Without loss of generality, we can assume 
that aft U = R TM- We assume that  there is a function g : R+  --+ R+ such that 

for a l l x � 9 1 4 9  Uand 

I f ( x , u )  I~ g(I x I) (1.2) 

q(s) 
lira sup < c~. 

s - - ~  8 

Under this condition, for any admissible, i.e., bounded and measurable control u(t), t E R, with values in U, 

the flow pt(u), t E R, is well defned on the manifold M. 
Consider the following two-point, time-optimal control problem for system (1.1): given two points Xo and 

XT, find an admissible control u(t), t E R,  such that the trajectory x(t) = x(t; Xo, U(-)) = pt('a)(xo),t E R,  
of system (1.1) corresponding to that control and to the initial position Xo (x(O) = Xo) satisfies the condition 

x(T) = xT, and time T is the minimal possible. 
The classical existence theorem states that this problem is solvable if tim set 

a(x) = { f ( x ,u )  : u �9 U}, 

which is called the vectorgram of the system, is convex for all x �9 h i  (see [6], pp. 203-204). In the present 
paper, we give the ibIlowing (explicit) condition for verification of the convexity in the case considered. 

T h e o r e m  1.1. The vectorgram a(x) is a convex set if the following condition holds: for any edge F of the 
polyhedron U, there exists a smooth function ar : M x U • R. m -+ R such that 

02 f (x, 'u) Of(x, u) 
02,u ( v , w ) = a r ( x , u , v )  o ~ w  (1.3) 

for" all v �9 R m, u �9 U, x �9 M,  and for any nonzero tangent vector w to the relative interior of this edge. 
Therefore, the ex~tence theorem holds for the considered time-optimal contwl problem under this condition. 

R e m a r k  1.1. This theorem was proved in [20] (see also [22]) under stronger conditions, in particular, it was 

required early that condition (1.3) hold for any vector w E R m. Note that this weakness of the condition is 
very significant, as the following example shows. 

E x a m p l e  1.1. Consider the following two-dimensional system: 

~1 ~__~eU ~ ~2-- -_eV ~ 
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(u,v) E U = {(u,v)10 _< u_< 1,0 < v < 1}. 

One can directly verify that condition (1.3) holds for this system, while this is not the ease when one considers 

this condition for an arbitrary w E R 2. 

R e m a r k  1.2. Note that the function ar(x ,u ,v)  depends on the edge F but not on a particular nonzero 

tangent vector w to the relative interior of this edge. Indeed, assume that ar(x, u, v) = ar(x, u, v, w) in (1.3). 
Replace the tangent vector w by )~w with s E R.  Then 

0 2  u ~ W. 

If 
Of(z, u) 

r O 

(note that we can always assume this; see Proposition 2.1 below), then we have 

aF(x,u,v, =  aF(x, u, v, w). 

Since A is arbitrary, the latter relation means that the function at(x,  u, v, w) does not depend on w, i.e., the 

function ar is well defined (that is, this function depends only on the edge F). 

Let ns consider some simple cases where the proof of this theorem is a direct verification of the convexity 
condition. To this end, we take into account tile following observations, which will be proved in the next to 
last section: 

L e m m a  1.1. For any two points u' and u" of the polyhedron U, there is a broken line lying entirely in U 
and consisting of a finite number of links, each of which is parallel to a certain edge of the polyhedron U that 
starts at the point u' and terminates at the point u". 

L e m m a  1.2. For any smooth flmction b : R --+ R,  the boundau]-value pwblem 

{ '5 +'~2b(u) -- O, O < t < l ,  (1.4) 
'u(0) ---- 0, u(1) ---- 1, 

has a monotonically increasing solution u(t), 0 < t < 1, satisfying the condition 0 <_ u( t ) <_ 1, 0 < t < 1. 

L e m m a  1.3. The equation in the boundary-value problem (1.4) is invariant with respect to the action of any 

aJfine transfoT"mation of the time axis: if u(.) is a solution to this equation, then, for any function s(t) = kt +l, 
the function u o s(. ) is also a solution to this equation. 

L e m m a  1.4. I f  at some point u E U, 
02 

w2) r o 

for two nonzero tangent 'vectors wl and "w2 to the interiors of two edges Fl and F2 of the polyhedron U, 
respectively, then the vectors 

~af(x , 'a)wl  and ~,af(X, U)W,2 

lie on one and the same line L(x,  u) C T~M. Moreover, this line is independent of u E U: 

L ( x , u ) = L ( x )  for all u E lf, x E M. 

First, we consider the case where the functions ar do not depend oil the edge F at all: 

a t(x,  u, 'v) = a(x, "a, v) Vx E 1~I, u E U, v E a d. 
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Given two arbi t rary points u' and u" in U, we will find a smooth  (of class C a) function s()~), 0 < A _< 1, such 

t h a t 0 < s ( A ) < _ l ,  0 < A < l ,  and 

f ( x ,  s ( s  + (1 - s ( A ) ) u ' )  = A f ( x , u " )  + (1 - )~)f(x, u'). (1.5) 

Since a f fU  = R ~, we can find, for any w E R 'n, some edges w l , . . . ,  Wm of the po lyhedron  U such that  

m 

W ~-- Z OtiWi 
i=l 

for certain o~ i E R.  Therefore, according to (1.3) with at (x ,  u, v) - a(x, u, v), we have Vv E R m, x E M,  

0~/(~, u) 0" f (x ,~ )@,~)  = ( ~ , ~ )  
Ou 2 Ou2 

i = l  

~-, 0 2 f ( x , u ) ,  , m . O f ( x , u )  
= L ~  ~ c v , ~ = ~ ( x , ~ , v )  ~ wi 

i = 1  i = i  

---- a(x, u, v) Of(x ,  u) ~ , Of (x ,  u) 
O~ ~ ~ = ~(~' ~' i=t v) Ou w.  

Thus, condition (1.3) holds for any w E R m with the function at (x ,  u, v) - a(x, u, v). 

Now to find a C" function s(A), 0 < ~ < 1, for which (1.5) holds, we set u(s = s ( A ) u " +  (1 - s(A)u') and 

differentiate (1.5) with respect  to A: 

ds(A) O f ( x , u ( A ) ) ( u "  u'); dr(m, .st(A)) _ f ( x ,  u") - f(:r., u') - 
dA d~ O'u 

d2f (x ,  u(.~)) 

dX" 

d 2 s ( A )  Of(x, ' u ( A ) ) ( u "  - u ' )  + - - 

dX "- Ou 

Using (1.3) with ar(:r, u, v) = a(x,  u, v), we have from the lat ter  relation that  

(des(A) " " / d s ( A ) ~ 2 ~ O f ( x ' u ( A ) ) ( u " - u ' )  = O. 
~ + a ( x , u ( A ) , u  - ' u ) t ~ )  ) Ou 

Now we set b('u) = a ( x , u , u " - u ' )  and use Lemma 1.2. According to this lemma, there  is an increasing 

C2-function s(A), 0 < A < 1, s(0) =: 0, s(1) = 1, such that  

d2s(A) 
d)~ 2 

Thus, we see that  the C"-curve u(,~) = s(A)u" + (1 - s(A))u'  lies entirely in U for 0 _< A _< 1 and 

f(~,  . (~))  - ~/(x,  d ')  + (1 - A)f(x, ~'). 

This proves tile convexity of f ( x ,  U) in this simple case. 
Consider now the second part icular  case. Given two arbi t rary  point u' and u", we const ruct  a broken 

line according to Lemma 1.1; let this line consist of N links [si, 8 i+l ] ,  i = O, 1 , . . . ,  N 8  0 -~- 'u I, 8 N  = tt I'. Set 

hi = i / N ,  and let 

,<(A) = - s ,  + ( 1 - , L , (  - 

where ui(-) is a sohition to (1.4) with 

b(t) = ar~(X, tsi + (1 - t ) s i - l ,  si - si-1) 
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and r i  is the edge of the polyhedron U, which is parallel to the link [si-1, si]. Then it is easily seen that the 
curve u(A), 0 _< A _< 1, is a piecewise-smooth, continuous curve lying entirely in U. 

Denote by wi any nonzero tangent vector to the interior of the edge Fi of the polyhedron U. In this 
particular case, we assume tha t  for any i -- 1 , . . . ,  N - 1, 

02 
Ou 2 f (x ,  u(A~))(wi-1, w~) r 0. 

According to Lemma 1.4, we obtain that at each point of [0, 1], including the points of discontinuity of 
the derivative 7~(,~), )~ E [0, 1], the vector 

~---f(x, u(A))g(A) 

lies on the line L(x) C T~M. Indeed, we have 

0 2 
OA 2 f(x,  u(A)) = 0 

at all points of [0, 1], except for the points ,~, i = 1, ...,, N - 1, by the choice of u(,~), 0 < A < 1. At the 

points where there is no derivative g(A), we have that both right and left derivatives of this function belong 
to this line by Lemma 4. This implies that the image of the mapping f (x,  u(A)), ,~ E [0, 1], is contained in 

this line L(x). Since 'u()Q, ,~ E [0, 1], is continuous, this image is a segment because of the connectcdness of 
any continuous image of the connected set [0, 1]. Moreover, by construction, this segment contains the points 
f (x,  u') and f(x,  u") and lies entirely in f (x ,  U). This proves the theorem ill  this "nonsingular" case. Note 

that this segment can be several times covered under the mapping I(x,  "), i.e., the curve I(x,  u(A)), A E [0, 1], 
can have self-intersections and parts that overlap each other. 

To conchlde this section, we state the following theorem, which unifies the above theorem and the previous 
results of the author obtained in [18, 21] (see also [22]). 

We say that system (1.1) satisfies the general-position condition "with respect to tlze polyhedron, U if, for 
any nonzero tangent vector w to the relat, ive interior of ally edge F of tile i)olyhedron U, the vectors 

Of(x,Ou u) Of(., u) _ _  w, adf(.,u)~o-~-u (x)w,...,ad'~-l f ( . ,u)  (x)w (1.6) 

are linearly independent for all x E M and u E U. Of course, this condition is a generalization of the well- 
known general-position condition, which was initially discovered by R. V. Gamkrelidze and was later (in a 
rather simple case) formulated by R. Kalman in his controllability conditions fbr linear systems. 

We say that the strengthened bang-bang conditions hold for system (1.1) on some edge F of the polyhedron 
U if, for any coral)act set K C _~I, there exist linear functionals 

ar(x,u, .)" R r" -4 R, 

(~ l l!  R 7 1 ~ ,  . . . ,  b~r(X u u -): --+R m, ct>/2,  c~=0,1 ,  

depending smoothly on (x, u) E K x U and (x, u', u") E K x U x U, respectively, such that 

0'->f (x, u) at(x, u, v) Of(x, u) 
( v , . w )  = o.u. w ,  (1.z) 

.Of(.,u") ~ , Of(. u') u', v)ad~f( -, u) Of~.fU')w(x) [ -Ou v, ad f(.., 'u ) ~ w ] ( x )  = s b~,r(X, u ,' (1.8) 
/3=0 

for all (x, u) E _h" x U, (x, u', u") E K x U x U), v E R TM, c~ = 0, 1, . . . ,  and for any nonzero tangent vector w to 
the relative interior of the edge F. If this condition hokts for every edge F of the polyhedron U, then we say 
that system (1.1) satisfies the strengthened bang-bang conditions with. respect to the polyhedwn U. 
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In the case of a single-input, real-analytic, control-linear system 

~ = f o ( x ) + u f ~ ( x ) ,  x E M ,  u E R ,  l u I < l ,  

this condition is in fact equivalent to the condition A by H. Sussmazm, which is as follows. Locally, in a 
neighborhood of each point of M,  for each m = 0, 1 , . . . ,  there exist real-analytic functions a~, i = 0, 1 , . . . ,  m, 
and a real-analytic function b, Ib(x)] < 1, in this neighborhood, such that 

[fl, admfofl](x) = ~ a~(x)ad~ fofl(x) + b(x)adm+~ fofl(x) 
i=O 

for all x in that neighborhood. For more details, see [21]. 
Recall ttlat an extremal control is an admissible control that satisfies the Pontryagin maximum.principle 

for the two-point, time-optimal control problem. By an admissible control, we mean a measurable function 
u(.) : R --+ U, i.e., we deal with the maximal possible class of admissible controls. 

T h e o r e m  1.2. Let (1.1) be a smooth control system that satisfies the strengthened bang-bang conditions 
(1.7) - (1.8) with respect to the polyhedron U and the general-position condition with respect to this polyhedron. 
Assume that the gwwth condition (1.2) holds. 

Then, 'if there exists at least one admissible control that steers an initial state Xo to a final state xT at 

some time T, there exists an optimal control that steers Xo to XT at the optimal time T < T, and, moreover, 
this control is a piecewise-constant function that assumes its values in the set of vertices of the polyhedron U. 
This control is an extremal control, and, in addition, any extremal control is a piecewise-constant function 
that assumes its values in th.e set of vertices of the polyhedron U. 

Controls that possess the last property in the above theorem are usually called the bang-bang controls 
with a finite number of switchings. We see that the set of conditions (1.7)-(1.8) includes condition (1.3) of 
Theorem 1.1 as a particular case, and, in addition, they imply that for any nonzero tangent vector w to the 
relative interior of any edge F of the polyhe(lron U, we have 

Of(x, u) 
cOu w ~ 0  for any u E U ,  x E M .  

In some sense, this theorem gives us a complete solution of the bang-bang problem in nonlinear system theory. 
In tile author's opinion, it is not possible to weaken the conditions of Theorem 1.2, but it is possible to consider 
more general objects than polyhedrons. 

These objects are called manifolds 'with corners and were introduced by A. A. Agrachev and ttle author 
in order to generalize Morse theory in such a way that it can be applied to optimal control problems. We 
refer the reader to [16, 19, 25] for inore details. Here we present only the main definitions and the statement 
of the corresponding theorein on existence and bang-bang properties of an optimal control in this case. 

Let N be an m-dimensional smooth manifold. A closed subset v C N is called a submanifold with corners 
in N if, for each point x0 E N, there exists a chart (O~o, ~) of tile manifold N such that ~(x0) = 0 and 

= n V)  

is a closed polyhedral cone in R m with vertex at the origin. 
Every polyhedral convex cone is given by a finite set of linear inequalities, and, therefore, submanifolds 

with corners are locally defined by a finite set of nonlinear inequalities 

gi(x) _~ 0, i = 1,2,. . ,k, 

on N that satisfies the "straightening condition" that  appears in their definition. Note that  these objects are 
Whitney stratified spaces (see [10]). Their stratification is naturally defined by faces of submanifolds with 

corners. An open face F of a submanifold with corners V is a ma.xhnal (with respect to inclusion) smooth 
connected submanifold of N that lies entirely in V. A closed face of V is the closure of a certain open face. 
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Any/-d imensional  s t r a tum F (l) ( an / -d imens iona l  open face) of our  strat if icat ion admits  the following explicit  

description: it coincides with a cer ta in  connected component  of the set 

{x E VI dimV N ( - Y )  = l}. 

One-dimensional faces are one-dimensional  s t ra ta  of the W h i t n e y  strat i f icat ion and are called edges of V, while 

zero-dimensional faces (s trata)  are called vertices of V. Of course, any polyhedron in R ~ is a subnmnifold 

with corners in this space. 

In a natural  way, we can consider system (1.1) in the case where U is now a compact  submanifold with 

corners in a certain snmoth  manifold  N,  dim N = m. Fur thermore ,  the  general-posit ion conditions and  the 
s t rengthened bang-bang condit ions admit  a straightforward general izat ion to the case of such a system: it 
suffices to mean by an edge now the edge of the submanifold U with comers.  In a similar way, a bang-bang 
control  with a finite number  of  switchings is now a piecewise-constant function tha t  assumes its values in the 

set of vertices (zero-dimensional s t ra ta)  of U. Now we s ta te  the result  which is an obvious generalization of 

Theorem 1.2. 

T h e o r e m  1.3. Assume that all conditions of Theorem 1.2 hold for the polyhedron U replaced by a certain 
compact connected submanifold with corners in some smooth manifold N,  which is denoted by the same letter. 
Then there exists an optimal control for the corresponding two-point, time-optimal control problem, every 
optimal control is an e~remal one, and each extremal control is a bang-bang control with a finite number of 
switchings. 

2. P r o o f  o f  t h e  M a i n  T h e o r e m  

Tile proof of our theorem in the general c ~ e  is based o11 tile following observation,  which itself is of 

independent  interest. 
Recall (see [5]) that  the Clarke tangent cone of a set K C R '~ at a point  :c E K is the set. of points v E R '~ 

such tha t  for any monotonical ly decreasing sequence of real numbers  ti -+ 0 and for any sequence {xi} with 

x~ -+ x, there is a sequence of vectors {v~} such that  x~ + tivi E K and v~ --+ v as i -+ co. We denote  this 

cone by 7"K(x) and set T K ( x )  = :~: + T K ( x ) ,  x E K. As is known, in the case where the set K is a convex 

body, the set T K ( x )  is also called the support cone of this b o d y  and can also be defined ~ the closure of all 

secant lines to this body that  are drawn from the point x (see, e.g., [3]). 

Fig. 1. Suppor t  cone to a convex body.  

Tile following "convexity cri terion" holds: 

T h e o r e m  2.1. ( C o n v e x i t y  C r i t e r i o n ) .  A closed set It" vJith nonempty inteTior in R '~ is convex if and only 

if 
I (  C T K ( x )  V:r, E t f .  

Moreover, 

K = A T K ( x ) .  
xEA" 
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This criterion is an immediate consequence of definitions and the fact that  a closed set with nonempty 
interior is convex iff we can draw a support hyperplane through each of its boundary points (see [9]). 

Indeed, the necessity is obvious, since, in this case, the cone TK(x) is the support cone to the closed 

convex body K and we can refer to [3], where it is proved that TK(x) D K for any x E K.  

To prove the sufficiency, it suffices to draw a support plane to the cone TK(x) for any x E K. This is 

always possible, since TK(x) is closed and convex. Since this plane is also a support plane for K, the result 

follows from Theorem 3.3 in [9]. 

R e m a r k  2.1. In a private communication, S. M. Aseev told the author  that  he has proved this test for 
convexity without the assumption that  the interior of the set K is nonempty. Nevertheless, we preserve the 
original proof, since some of its aspects are of independent interest. 

Now the proof of the theorem is a direct verification of this property, where condition (1.3) is substantially 
used. 

It is easy to verify that the Clarke tangent cone to f(x, U) at the point p = f(x, u) E f(x, U) is 

i f ( x ,  U)(p) - Of~_~ u)TU(u), 

where TU(u) is the Clarke tangent cone to U at the point u. This follows from the fact that  f(x, U) is a 

transversally convex set (see [17]), since, by condition (1.3), the mapping u ~ f(x, u) is a mapping of constant 
rank (see [15]), i.e., the rank of the differential f.,~ of this mapping does not depend on u E U. 

In fact, we will prove here a more general fact. Obviously, the polyhedron U is a submanifold with 
corners in R '~, and, therefore, it can be considered as a Whitney stratified space: this stratification is defined 
by (open) faces of U (of all possible dimensions). We assert that the mapping u ~-+ f(x, u) is of constant rank 

on any stratum U of this stratification, and, moreover, the plane 

span {f.,,~w;w E T~U} = im f.,~[~ 

is independent of 'u E U. 
To prove this, we use the induction on dimension of strata of oar stratification. 
Indeed, for a one-dimensional s t ratum (edge of the polyhedron U) this is implied by Lemma 1.4 and 

Proposition 2.1 below. 
For an arbitrary k, 1 _< k _< m, every (k + 1)-dimensional s t ra tum (face) of U is obtained from some 

k-dimensional stratum (face) by adding to it a certain set of vertices tha t  do not belong to this stratum and 
then by taking the convex hull of this set of vertices and the previous k-dimensional stratum. Therefore, the 
tangent space to this new (k + 1)-dimensional stratum is a linear hull of the tangent space of the preceding 
stratum and a finite set of tangent vectors to some edges of U. But when we apply f.,~ to this new tangent 

space, by Proposition 2.1 and Leimna 1.4, the image of tiffs mapping does not depend on u belonging to this 
new stratum, since each of the additional vectors f.,,,w are either zero or its linear span does not depend on 
' a .  

Recall that a set V C N of a smooth manifold N is transversally convex if for any point x E V, there 
exist a chart (O, r r " O -+ R '~, of the manifold N, a closed convex cone K C R "  with vertex at the origin, 

and a smooth mapping F - R ~ -+ R m that  preserves the origin and is transversal to the cone K, that is, 

such that 

+ r  = TF( )R m 

V x  R . F( : : )  E K, 

r  n v )  = F - ' ( K ) .  

We note that every submanifold with corners is a transversally convex set; the converse statement is not true in 
general. The class of transversally convex subsets (which was introduced by the author in order to generalize 
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the Lyustern ik-Shni re l 'man theory to manifolds with singularities; see [6, 7]) is closed under transversal  
intersections, contains all closed convex subsets, and, moreover, at least for a compact  transversally convex 
set, the image of ally transversally convex set under  any surjeetive submersion is a transversally convex set 
(see [16, iT, 19]). 

Now our conclusion that  f (x,  U) is a transversally convex subset of M follows from the fact tha t  the image 
of a t ransversal ly convex subset V C N under any surjective submersion F " N --+ L of smooth manifolds N 
and L is a transversally convex subset F(V) of L. Indeed, take N = R m, V = U, where U is our polyhedron,  

which is a nmnifold with corners, and the more so, a transversally convex subset of R m [16]. Also, we see 

tha t  f (x ,  .) " U ~ T~M is a mapping of constant  rank; thus, 

f (x ,  aft U) -- ~-(x) 

is a smoo th  manifold (see [17], where this fact was proved in tile infinite-dimensional setting), and, therefore, 
the mapping  

F:  u ~ f (x ,  u ) :  a f fU --+ ~'(x) C T,:M 

is a surjective submersion. 
Since U c aft U is transversally convex, the same is true for its image f (x,  U) = F(U). 
Ill the case where f(x,  U) is transversally convex, the Clarke tangent  cone coincides with the tangent  

cone defined by using smooth curves lying in this set (see [16]). 
To be more precise, the Clarke tangent cone at  a point p here is the closm'e of all vectors tangent  to 

f (x,  U) at  this point; a vector v is called tangent to f (x ,  U) if there exists a smooth curve a(r 0 < e _< e0, 

such tha t  cr(e) E f(x,  U), 0 < e < e0, and 
d 

Now the above representation for the Clarke tangent  cone follows from the chain rule for the differentiation. 
Let q = f ( z ,  v) E f ( x ,  U) be an arbitrary point. We have to prove tha t  q E Tf(:v, U)(p), i.e., tha t  

Of(.r,, u) TU(u). 
f(:r, v) E f (x ,  u) + O't----7 

We have 

~ Of(x, sv + (1 - s)u) 
f (x,  v) = f(x, u) + Ou (v ds. 

0 

By definition, w = v - u  E TU(u). Let us consider the tangent cone 7~U(u). Since U is a polyhedron, this cone 

can be represented as the sum K1 @K2, where K t  is a pointed polyhedral cone a n d / ( 2  = 7"U(u)N ( -TU(u) )  is 

the maximal  linear subspace lying in TU(u). Both these cones are generated by vectors that  have directions of 
some edges of tile polyhedron U, that  is, by tangent  vectors to tile interiors of these edges of the polyhedron 
U: tile cone K1 is generated by nonnegative linear combinations of some finite set of these vectors, while 
the cone t(2 is generated by linear combinations of another set of them, and these sets can be chosen so 
tha t  for the corresponding vectors, the coefficients of these linear combinations are mliquely defined. Let 
w t , . . . ,  w~ be these vectors (the f rs t  l of them generate Kl  and the other vectors generate K2). Thus,  any 

vector w E KU(u) is represented in tile form 

k 

W = Z O~iWi" (2.1) 
i = l  

We now show that  there are smooth nonnegative functions uj(t) ,  0 < t < 1, i = 1 , . . . ,  k, such tha t  

Of(x, + (1 s)U)wj = uj(s) Of(z 'u)wj,  0 < s < 1. (2.2) 
O'IL O"lZ 
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We assume first t ha t  
Of(x, u) 

Ou 
and then omit  this assumption. 

Now, differentiat ing (2.2), we obtain 

- - w j  # O, j =  l , . . . ,k ,  (2.3) 

02 
f(x, sv + (1 - s)u)wj = ~u2f(x, sv + (1 - s)u)(wj, w) 

---- a j (s)~f(x ,  sv + (1-  s)u)w i = aj(s)uj(s)~ u f(x, u)wj = itj(s) ff---~f(x, u)wj, 

where w = v - u and  the functions 

aj(s) = arj (x, sv + (1 - s)u, w) 

are taken from condit ion (1.3). This  implies 

and, therefore, taking into account the initial condition u j ( O )  -~- 1, we obtain 

= _> 0, j = 1 , . . . , k ,  0 < t < 1. (2.4) 

0 

Thus, we have 

where 

since 

Of(x, sv + ( 1 -  s)u) 
f ( x ,u )= f (x , v )+  Ou 

0 

w ds 

= f ( : ~ , u ) + ~  exp aj(~)d~ Ou ajwj ds 
i = 1  0 0 

~ i  , u) Of(x,u) -- f (x ,  u) + .u~(s) d s c h ~  w~ = f(x, v) + 0 ~  "~' 

k 

= E E 
i = l  

I s 1 

&j =aj f exp f aj(~)d~ds=aj f uj(.s)ds 
0 0 0 

are nonnegat ive for j = 1 , . . . ,  l. 
Now, to complete the proof, it is necessary to verify tha t  the set f(x, U) has a nonempty  relative interior. 

To be more precise, we show tha t  there exists an aff-ine plane H(x) C R d tha t  contains f ( x ,  U) in which our  

set f(x, U) has a nonempty  interior. We give tile following explicit description of this plane H(x): 

Of(x, 
H ( x , u ) = f ( x , u ) + s p a n  { O ~ ' w j ; j = l  .... , N } = H ( x ) ,  

where wj are all nonzero tangent  vectors to the interiors of all edges of the polyhedron U. 

First,  using condit ion (1.3) we verify that  the plane II(x,u) = span I ~ w . ' j  = 1. N} does not  , t Ou 3 '  , " ' "  

depend on 
u E aff U = s p a n  {wj;j = 1, ..., N} = R"~; 
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this is already proved when we verify that the mapping u ~+ f (x ,  u) is a mapping of constant rank on each 

s t ra tum of U (it suffices to use the concluding step of induction: II(x, u) is the tangent space to int U, the 

maximum stratum of the stratification, and, by the way, this can also be done in full analogy with [15], 

pp. 148-150, where this fact was proved in a substantially more complex infinite-dimensional case). Thus, 

l=I(x, u) = l=I(x). Then, arguing as above, we prove that 

f ( x ,  R m) C f (x ,  u) + II(x). 

Finally, we see that for any u, v E aft U, 

f (x ,  v) + fI(x) = f (x ,  u) + fI(x). 

Indeed, let z E f (x ,  u) + l'I(x); then 

N Of(x,~,) 

i=O 0%2 

for certain ai E R and tangent vectors wi to edges of the polyhedron (i = 1 , . . . ,  N). Then, for any v E U, 
w e  h a v e  

N Of(:c,u) 
z : f ( x ,v )  + f (x ,  u) - f ( x , v ) +  Y ' ~ o i - - w i  

i=0  OU 

~ O(:c, su + (1 - s)v) N cOf(x, U) 
= f (x ,  v) + Ou (u - v) ds + ~ o q - -  

0 i = 0  (9'//, 
W i .  

Since (u - v )  E aft U, we find &i, i = 1 , . . . ,  N, such that 

N 

"It - -  1; = ~ (~iWi . 

i=1  

Therefore, 

N If  Of(x,  s'u + (1 - s)v) N a.f(.r., u) 
z =  f ( x , v ) +  ~_, 5, j Ou w, ds + ~ T a i ~ w , .  

i=1  0 i=O 

Proceeding as above, we see that there exist, positive smooth flmctions ui(s), 0 < s < 1, such that 

Of(z,  su + (1 - s)v) 
&L i = l , . . . , N .  

Thus, 

m ~ iOf~ ,u )  Z = f (x ,  v) + 
i = 0  

- - w i  E f(x,  u) + l=i(x), 

where 

Consequently, 

& =~i+f ,u~(s)d ,~C~.  i =  1 , . . . , N .  
0 

f (x ,  u) + l=I(x) C f(x,  v) + [I(x). 

Interchanging u and v, we obtain tile converse inclusion 

f (x ,  v) + [I(x) C f(:r, u) + [I(x). 
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Therefore, 

f ( x ,  R m) C f ( x ,  u) + fI(x). 

Thus, our affine plane H(x, u) = H(x) is well defined. Now, similarly to [17], pp. 164-166 (where once again 

a more complex infinite-dimensional case is considered), we confirm that f ( x ,  rel int U) is an open subset of 

H; here the fact that  x ~ f ( x ,  u) is a mapping of constant rank plays a crucial role. 
Now we omit the assumption that 

Of(z ,  u) 
O w# o 

for the nonzero tangent vectors w to the interior of the corresponding edges of the polyhedron U, whictl were 
considered above. Meanwhile, we note that in the framework of Theorem 1.2, this assumption always holds 
because of the general-position condition. Nevertheless, we assert the following: 

P r o p o s i t i o n  2.1. Assume that the conditions of Theorem 1.1 hold. Let F be an arbitrary edge of the 
polyhedron U, and let w be a nonzero tangent vector to the interior of this edge. Then either 

Of( , 
# 0 (2.5) 

for alI u E U or 
Of(x,  u) 

Ou 
- - w  - 0 .  

P r o o f .  We can assume that there is a point u0 E U such that (2.5) holds for u = u0 (if there is no such 

point, ttlere is nothing to prove). Let 'at be an arbitrary point of tile polyhedron U, and let u~ ~ u0. We have 

to prove that (2.5) holds for u -- ul. Since U is convex, we can connect the points u0 and Uz by a segment 

u(s) = s'al + (1 - s)u0,0 < s < 1, so that u(0) = Uo, u~(1) = 1, and u(s) E U, 0 < s < 1. 

As above, by using condition (3.1), we see ttlat there is a positive Ct-function a(s) ,  0 < s < 1, such that 

c0f(x,07,u(s)) w : (~(s) Of!~,Uo): " w. (2.6) 

Indeed, diffcrentiatiug (2.6) and using (I.3), we have 

d Of(x, u(s)) O2f(x, u(s)) 
.w - w) 

ds ~a Ou 

u0) f('% u(s)) 
-- ar(x, u(s), 'ul - Ou 

so that we have the Cauchy problem 

w = a ( s ) a r ( x , u ( s ) , u l  -Uo) 
Of(x, Uo) .~ , Of(x,  Uo) 

Ou w = a~s) '! U, 

&(s) = (~(s)ar(x, u(s),'a~ - u0), c~(0) = 1, 

which, obviously, has a unique positive smooth solution 

a(s) =: efo ~r(~''(t)'''-~~ 0 < s < 1. 

The proposition is proved. 
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3. P r o o f s  o f  the  L e m m a s  

Here we prove Lemmas 1.1-1.4. 

P r o o f  o f  L e m m a  1.1. Let u' and u" be two arbitrary points of the polyhedron U. First, we show that 
there exists a broken line L', each link of which is parallel to a certain edge of U that connects the point u' 
with a certain vertex e' of the polyhedron U and lies entirely in this polyhedron. Draw any line L1 through 
the point u' parallel to some edge of the polyhedron U. This line intersects the boundary of this polyhedron 
at one point, say ut, which belongs to the boundary  of U. Thus, the point ul lies in a certain face U1 of 
the polyhedron U; this face is also a polyhedron of dimension less than the dimension of U. Draw a second 
line L2 through ul that is parallel to a certain edge of UI (of course, each edge of U1 is an edge of U) and 
consider the point u2 at which this line intersects the boundary of U1. Iterating this process, we obtain a finite 
sequence of points u0 = u', Ul , . . . ,  uN, = e', where e' is a certain vertex of U. Thus, we have constructed 
the desired broken line L': the links of this broken line are [ui-1, ui], i = 0 , . . . ,  N'. Second, proceeding in the 
same way, we obtain an analogous broken line L" that connects the point u" with a certain vertex e" of the 
polyhedron U. Finally, according to [12], we can connect two vertices e' and e" by a broken line L "  whose 

links are exactly the edges of the polyhedron U. Thus, the union of the broken lines L', L'", and L" yields 
the desired broken line L. Lemma 1.1 is proved. 

P r o o f  o f  L e m m a  1.2. We will use the direct variational method. Let Wt'~[0, 1] be the (Sobolev) space of 

all absolutely continuous functious with essentially bounded derivative on the closed interval [0, 1! endowed 
with the usual noi'm 

Consider the functional 

II'all,v',  = IlullcIo, l + II' llL tO, l" 

1 IL  

J(u) = ~ exp 2b(u(O))dO) dt 
o o 

with domain 9II = {u E W"~[0,  1]: u(0) = 0, 'a(1) = 1}. This functional has the integrand 

I t  

a) = exp f 2V(<0)) d0 
0 

satisfying the coerciv'ity condition 
v 

- -  --+ 0<3 as I v [ - +  (x~, 
L(u, v) 

and which is regular, i.e., the function L is bounded from below and is convex with respect to the second 
argument (cf. [6]). Therefore, the wu'iational problem 

J(u) --+ inf, u E ~ ,  

�9 ) f has a solution u(t), 0 < t < 1. First, we show that  this solution is of class C-j0, 1]. Indeed, for any t, 0 <_ t <_ 1, 

,,(t) 

L,i,i('a(t), ~k(t)) : exp f 2b(u(O)) dO > 0: 
o 

therefore, by the Hilbert theorem [1], u E C'[0, 1]. Hence we can write the Euler-Lagrange equation for this 
extremal in the differential form 

L ~ ( u ( t ) , h ( t ) -  d -~ L~(u(t), it(t)) = O. 

A direct comt)utation shows that 

2483 



Since 

d 
L,,(u(t), it(t)) - -~ L~,(u( t), it(t)) 

,,(t) u(t) 

--- b(u(t))(it(t)) 2 exp f 2b(u(O)) dO - /~( t )  exp / 2b(u(O)) dO 
o o 

u(t) 

-2b(u(t))( i t ( t ) )  2 exp f 2b(u(O)) dO 
o 

u(t) 

= - e x p  f 2b(u(0))dO[b(u(t))(it) ~ +/~(t)] = 0. 
0 

~,(t) 

f dO > O, 
0 

we have that  this extremal  is a solution to our boundary-value problem. 
Now it remains to prove tha t  this solution u(t), 0 < t < 1, satisfies the condition 0 _< u(t) <_ 1, 0 < t < 1. 

To prove this assertion, observe that  the c()mplete solution of the Cauchy problem 

{ '5+b(u)( 'h)  "2 = O, O < t <  1, 
u(0)  = 0 

has the closed form of the integral equation 

t 
dr  

--  J o b(x(O)) dO - c' 

where c = const. Since our solution 'u(t), 0 < t < 1, is of class C2[0, 1], we have tha t  the first, derivative 

d 1 

.utt)r ~ = fo b(u(O)) dO - Co' 

where co is the constant  corresponding to this solution, exists for any t, 0 < t < 1, but  this means tha t  the 
function 

t 

f b(u(O)) d O -  0 < t < Co; 1, 
o 

canuot change its sign because of coutinuity. Of course, this implies the monotouici ty of the functiou 'u(t), 0 <_ 
t _< 1; since u(O) = 1 and u(1) - 1, we have tha t  0 < u(t) < 1, 0 < t < 1 , and, certainly, "h(t) > 0 for 0 < 
t _< 1. This completes the proof  of the lemma. 

P r o o f  o f  L e m m a  1.3. This is a direct computat ion:  

du(kt + l) = kit(kt + l) 

dt .d', u( kl . + l) = k2ii(kl + t); 

thus, for y(t) = u(kl  + t), we have 

ij(t) + y(t)"b(y(t)) = k"i't(kt + l) + k"it2(kt + l)b(u(kt + l)) = k'2(ii(kt + l) + ~)2(kt + l)b(u(kt + l)) = O. 
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P r o o f  o f  L e m m a  1.4. Let u E U be such that 

Ou" (w ,we) # 0 (3.1) 

for certain nonzero tangent vectors w~ and 'we to the interior of two edges F~ and I-'2 of the polyhedron U, 
respectively. According to condition (1.3), we have 

02.~ ~{(,r U) (W 1 W2 ) _-- ar2 (x, u, w~) Of(x, u )  

, O w2 U u  ~ 

O2f(x, u) "w Of(x, u) 
- -  ~ { 2, wt)=ar,(X,U, W2) o ~ w ~ .  

Since ~ ( w l ,  w2) # 0, we have that both ar,a(x, u, we) and ar2a(z, u, w~) are different from zero. There- Ou' 
fore, we can divide both sides of the previous relation, e.g., by ar~ (x, u, w.,). This yields 

Of(x, u) u) - - w t  = A cgf(x' 
O'u Ou 

- - W 2 :  

where 

A -  ar.,_(:c,u, wt) 
at. (x, u, we)" 

This means that the vectors 

Of(x, u) Of(x, u) 
- -  " W  1 ~I1(]. - -  'lU 2 

O'u O'u 

lie on one and the same line L(x, u). 
Now let us prove that this line does not depend on u E U: 

L(:c,u)--L(x) VuEU,  x E M .  

Choose two arbitrary points u' and u" such that at least, at one of this point relation (3.1) holds and show 

that 

L(x, u') = L(x, u"). 

To this end, we first note that  both ~ and ~ w  with w being equal to w~ or 'w2, are different Ou Ou ' 
from zero. Indeed, this is implied by Proposition 2.1. Moreover, proceeding as above in Sec. 2 when proving 
Proposition 2.1, we see that there is a smooth positive function cz(s), 0 < s < 1, such that  

Of(x, su" + (1 - s)'u') Of(x,u') 
Ou w = a ( s )  ~ w, 0 < s <  1, 

In particular, the vectors 

cgf(x, u')w and Df(x, u")w 
0% Ou 

are collinear. But the linear spans of these vectors are the lines L(x, u') and L(x, u"), respectively, and 

therefore L(x, u') -- L(x, u"). The lemma is proved. 
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4. O n  t h e  Convex i ty  o f  Images  of  M a t r i x  E x p o n e n t i a l s  a n d  R e a c h a b l e  Sets  of  C e r t a i n  
B i l inea r  S y s t e m s  

In this section, we present one more application of our convexity criterion to control theory, which seems 
to be of independent interest. 

Let M,,(R) be the linear space of all square real matrices of order n. 

Recall that  for any n x n-matrix A, tile matrix exponential e A is defined by the series 

A A 2 A" e A =  [ +-~. + ~. + . . .  +-'~. + . . . ,  

where I is the identity matrix. 
We say that  a set ,4 of n x n matrices is commutative if each A, B E `4 commute with each other: 

[AB] = B A  - A B  = 0 (4.1) 

We take such a matrix commutator in order to put in correspondence the notation used. Indeed, to any n x n 
--+ 

matrix A, there corresponds the linear vector field Ax,  and, as a direct calculation shows, we have 

fAx, = [A, B]x, 

where on the right-hand side we have the linear vector field on R '~ defined by the matrix commutator in (4.1). 
As is well known, 

eAe B = E A + B  ~-  eBe A VA, B E .4 

iff A is a commutative fanfily of matrices. 

T h e o r e m  4.1. Assume that .4 C M,~(R) is a compact, connected, transversally convez, commutative family 

of matrices such that for any Ao E A ,  

( d  - Ao) k C TA(Ao)  

for eveT~j A E .4 and n = 1, 2 , . . . .  Then the set 

e A = {e A : A E .4} 

is a closed convex subset of M,~(R). 

P roof .  To prove the theorem, we will use our test for convexity (Theorem 2.1). First, we see that  the Clarke 

tangent cone to the set e A at any point e A~ E e A is equal to 

TeA(e A~ = eA~ (4.2) 

Indeed, the set e "a is a conlpact subset in Mn(R); moreover, it has a nonempty interior in the so-called derived 

orbit of .4, where A is considered as a family of (invariant) vector fields oll GI,~(R), and is the closure of its 

interior points. This follows from the general theorems on orbits of vector fields (see, e.g., {7]): 
In fact, this set is a transversally convex compact subset of the derived orbits of `4, and, therefore, 

the Clarke tangent cone and the tangent cone generated by tangent vectors defined by smooth curves in 

e "4 coincide with each other. To prove this fact, it suffices to note that the restriction or" the nlapping e to 
the linear space M~(R) consisting of all commutative nlatrices is a mapping of constant rank. Therefore, 

the image im e of this mapping is a smooth submanifold in the general linear group GI,~(R) (in fact, in the 

corresponding derived orbit ~ of `4 that passes through the point e A, where A E `4 is a rb i t r~y) .  Therefore, 

e is a smooth subnlersion of M~(R) onto ~ .  On the other hand, the set ,4 is a colnpact transversally convex 

set consisting of commutative matrices. Therefore, it is a transversally convex set in M~(R); thus, according 

to [17], its image s A is a transversally convex subset of ~ .  
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Therefore, to compute the Clarke tangent cone to this set, it suffices to compute tile ordinary tangent 

vectors defined by smooth curves in e "4 and then take their closure. Let A(s), s E [0, ~o], be a smooth curve 

in `4 such that A(0) = A0. Of course, it defines a smooth curve in e "4, and any smooth curve in the latter set 

can be obtained in such a way. Using the assumption on the commutativity of the set .4, we have 

d e A ( ~ > i ~ = ~  eA(~)-eA~ s =eA~176 

eAo dA ( ~ ) - l im  cL - I] = lira -t~lA~s) - Ao) + o(s ) ]  I~=0. 
e~0 ~o e dc  

This implies representation (4.2). 
Now, for any A E .4, we have 

e A ~ e A o + ( A - A o )  ~ e A e A - A 0 .  

By the assumption of the theorem, the matrix (A - A0) k E T.4(A) for any k = 0, 1, ... (A - A0 E T.4(A0) by 

definition). Now 
or 1 

e = 7 , ( A -  A0) 
i = 0  " 

Each term of the series 

• (A - A0) i 
i = 1  ' " 

belongs to T`4(A0) by assumptiou; in turn, the convexity and closedness of the Clarke tangent cone imply 
that tile sum of this series is also in it. Thus, for any A, A0 E `4, we have 

i = l  "'" 

i.e., 
e A C e A~ -~- TeA(eA~ 

All conditions of our test for convexity hold. The theorem is proved. 

It seems to be a very interesting problem to describe classes of matrices for which the above condition 
holds. The author intends to deal with this problem in the near future. 

We now apply this result to the following bilinear system (left-invariant system on GL,~(R)): 

f (  = X A ( u ) ,  u E U, (4.3) 

where U is an arbitrary nonempty compact set in R m. We assume that the inapping A : R m --~ M~(R) is 

linear, and, moreover, for each u', u" E U, 

[ d ( u ' ) ,  d (u") ]  = 0. 

Note that whenever this condition holds our system is also a right-invariant system; such systems are also 
called invariant systems on tile matrix Lie group (general linear gToup GI,~(R)). We take the set of all 

measurable essentially bounded functions u : R ~ U ~ the class ~(U) of admissible controls. 
We restrict ourselves to this simple case in order to illustrate our results only; a wider scope of examples 

will be presented in forthcoming publicatiolm. 
Now we want to find conditions under which the reachable set 

u )  = 

{X(t; u)iX(-; u) is the trajectory of (4.3) corresponding to an achnissible control (-) E ~(U)l[0,t]} 
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at time t > 0 from the identity matrix I is a closed convex subset of M,~ (R). 

Since system (4.3) is commutative,  we have that the reachable set of this system at time t from the 
identity matrix is exactly the set 

~ ( t ;  U) -~ {e f t  A(u(s))ds i / t ( . )  �9 ~ ) (U) l [0 , t ] } "  

Now we use the linearity of the mapping A �9 R m -+ Mn(R) and the A. A. Lyapunov theorem on the range of 

a vector measure (see, e.g., [8]) in order to show that, in fact, 

9.t(t; U) = {etAlA �9 A(U)}, (4.4) 

and, moreover, that the set cl cony A(u) = .A consists of pairwise-con~nuting matrices. 

First, we see that for any u(-) �9 ~[[0,t, 

t t 

f A(u(s))ds = Af t ( s ide ,  
0 0 

since the mapping A " R m --+ M~(R) is linear. Therefore, 

t t 

{ f  A(u(s ) )ds ;  u � 9  ~I[0,t,]} = A(f uds) = tg(conv (U)). 
0 0 

Since U is compact, conv A is corot)act, and since A is continuous, the set A(conv U) is also compact and 
convex. Let us show that 

A(convU) = cony A(U). 

Indeed, A(convU) D A(U) and is convex; therefore, 

A(conv U) = convA(convU) D con~ A(U). 

On the other hand, any u � 9  U can be represented as a convcx combination 

u=~'~cti'ui, ai>O, ~-~ai=l, 'ui�9 
i=1  a,=l 

by the Caratheodory theorem (see, e.g., [6]). 
Consequently, by the linearity of A, 

A(u) = A(ff~ a,u,) -- a~A('ui) �9 conv A(U), 
i ~ l  i=1 

i.e., 

and, thus, 

A(conv U) c conv A(U), 

A(conv U) -- conv A(U). 

Let us show that the family cony A(U) is commutative whenever the same property has the family A(U). 
Indeed, using the Caratheodory theorem again, we see that for any 

m2-bl m2+l  

A = ~ aiA(ui) �9 convd(U)  and B = ~ ZiA(vi) �9 convA(V) 
i = l  i= l  
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where 

we have 

m2+l m2+l 

�9 U, F_, = Z = I, >_ o, >_ o, 
i=l i=1 

rn2+l m2+l rn2+l m2+l 

[ E  a,A(ui), E Z,A(v,)] = E E a,Z3[A(u-i),B(vj)] = 0 .  
i=~ i=1 i=~ 2=1 

This proves fommla (4.4). 
Finally, using Theorem 4.1, we conclude that the following assertion holds. 

T h e o r e m  4.2. Under the above assumptions, the reachable set ~(t; U) of system (4.3) at any time t > 0 
from the identity matrix is convex if for any Ao �9 cony A(U), 

(A - A0) k �9 :Fconv A(U)(Ao) 

for all A E conv A(U) and k = 1, 2, . . . .  
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