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A P P L I C A T I O N  OF T H E  F O K K E R - P L A N C K  E Q U A T I O N  T O  D A T A  A S S I M I L A T I O N  

I N T O  H Y D R O D Y N A M I C A L  M O D E L S  

K. Be lyaev  (Moscow, Russia), S. D.  Meyers ,  and J .  J .  O ' B r i e n  (Florida, USA) UDC 519.2 

A numerical ocean model with an original data assimilation technique is considered. The data-assimilation approach 
is based on the well-known Kalman filter theory, but the method of computation of the covariation matrix is new. 
This method uses a diffusion stochastic representation of the error(difference between the model and observative 
values), and then the Fokker-Planck equation is solved for determination of the joint distribution of errors in each of 
two different space points. Compared to the ordinary Kalman-filter technique, which requires n z operations, where n 
is the number of grid points, this method requires only m 2 operations, where m is the number of observations. Also, 
the method does not require linearity of the model. This method is considered in conjunction with a thermodynamic 
ocean model based on the primitive equations. Some model experiments have been carried out. The stability of this 
technique is examined, and possible applications to other models is also discussed. 

1. In t roduc t ion  

During the past several years there has been an increase in the development of data-assimilation methods and 
their application. The first data-assimilation applications were in meteorology, where data assimilation is now an 
important component of numerical weather forecasting. The data revolution in oceanography is bringing the daily 
practice of physical oceanography closer to that of dynamic meteorology. There now exist large observational data 
sets of temperature and salinity in the North Atlantic (from global projects such as WOCE and SECTIONS), in the 
tropical ocean (TOGA, COARE), and elsewhere. 

Improved assimilation techniques are needed in order for ocean models to fully exploit the new observation networks. 
Data assimilation improves the estimate of a state by extracting a maximum amount of information from both the 
measurements and the dynamic model, combining them in an optimal way. Assimilation may be used to improve initial 
and boundary conditions and to estimate badly known model parameters. 

Data assimilation in ocean models has been ongoing in the scientific literature for approximately 30 yr (for a review, 
see [9, 16]). It is necessary to understand which processes can be described by the oceanographic model and what 
role measurements may play in the model. Two extreme opinions exist. One considers the ocean as a quasi-stationary 
medium and believes that it is sufficient to make measurements only once in order to have a good description of the ocean 
state. From this point of view, the numerical models are useless (or simply wrong) and data-assimilation techniques 
reduce to a statistical correction process. The second opinion is that the ocean is a highly turbulent fluid that does not 
have a memory about its previous state. In this case, information generated by measurements becomes meaningless in 
a short time interval, and it is necessary to continuously monitor the ocean. Thus, only well-designed resolution models 
are able to describe the actual processes in the ocean, and data assimilation is useful for obtaining correct initial (and 
possible boundary) conditions, needed for prescribing the development of the ocean. Reality, however, lies somewhere 
between these two extreme points of view. Thus, the scientific question is how to represent this situation numerically. 
The answer depends on both the model and the data-assimilation techniques as well as the local dynamic. 

There are two general concepts that have been discussed for data assimilation. The first, the "variational/ad-joint" 
method, has been the most popular scheme (e.g., [23-25, 27, 29]). An example of this technique is to assume the initial 
conditions to be unknown parameters for the model, which, given a set of measurements distributed in some time 
interval, result in a model trajectory that best fits the measurements in some optimal sense. This can be formulated as 
a constrained minimization problem where the ocean model operates as a strong constraint of a cost function measuring 
the difference between the model solution and the xneasurements. 

The other class of methods is "sequential data assimilation." Starting from some initial condition, the model 
solution is sequentially updated at every time step where measurements are available. The model solution will approach 
the observed state under certain conditions. This group of methods requires an updating scheme that combines the 
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model solution and the measurements to find the "best" state estimate. The Kahnan-filter method belongs to this class 
of data-assimilation technique. 

The Kalman filter is derived in a number of books on control theory (e.g., [2, l i  D. In oceanography, the Kalman 
filter has been used in [4, 8, 19, 26] and by other authors. A detailed review devoted to the Kalman-filter application is 
presented in [9]. The main idea of this method is to solve dynamic equations using the equation for the error covariance 
matrix, where the error is the distance between the model and observation values. It faces serious problems because 
the equation requires large computations and assumes, moreover, a linear operator for the dynamic system. There have 
been some attempts to extend the Kalman-filter theory to the nonlinear system operator, but this requires additional 
simplifications. These have been presented in [10, 19] and are now commonly used. 

In this paper, another method for the definition of the covariance matrix of error is presented. This idea is based 
on the stochastic-process theory and partial parabolic differential equations. 

The application of the theory of stochastic processes has been used and is well known in turbulence theory (see [14]) 
and in climate models with stochastic forcing (see [20]) but has not been dealt with in data assimilation. The method 
is relatively simple and does not require large computations, but nevertheless reflects the basic features of the physical 
interaction in the region of interest. The main idea is to consider the time variability in phase space, while avoiding the 
necessity of following each spatial point. The diffusion approximation is used for describing the time variability of the 
error, and then the Fokker-Planck equation is solved in order to obtain the joint probability distribution for each pair 
of measurements. Unlike the ordinary Kalman-filter method that requires O(n2). operations, where n is the number of 
grid points, this method requires only O(m 2) operations, where m is the number of measurements. The method does 
not depend on the linearity of the model. Naturally, it has its own weaknesses, and a discussion about the advantages 
and disadvantages compared with ordinary data-assimilation methods is presented. 

This method is applied to the primitive-equation hydrodynamic model of Sarkisyan (see [18]). The goal is to demon- 
strate the usefulness of the assimilation technique. This model is used only as a tool for calculation of thermodynamic 
fields and their prediction and variability. This model has had wide applications, and many papers have discussed 
the model and its modifications (e.g., [6]). A regional version of this model was considered by Knysh (see [13]) in the 
tropical Atlantic and by Moiseenko and Chernov (see [12]) in the North Atlantic. Also, Knysh (see [13]) considered this 
model with data assimilation based on linear Kalman-filter theory. 

The next section presents the ocean model and modificatious to the model based on a Rossby number expansion. 
The assimilation technique is discussed in Sec. 3, and the application results are presented in Sec. 4. The last section 
is a summary and conclusion. 

2. T h e  Model  

The following equations describe the thermodynamics in the ocean model: 
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in a Cartesian coordinate system, where x, y, z are axes positive to the east, north, and with depth, respectively; 19 is 
the pressure; T and S are temperature and salinity. The viscosity coefficients #, v, #T, /JS, VT, and vs are assumed to 
be constant in space and time. Further, f is the Coriolis parameter, and the fl-plane approximation is used, f = f0 +flY. 
The velocity components are u, v, v, and w; p is the density; A is the horizontal Laplacian. 

The UNESCO equation of state (UNESCO 1981) is used to close the system (1.1)-(1.6): 

p = p(T, S). (1.7) 
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This model is applied to a limited area, so boundary conditions are necessary on the lateral boundaries,  the sea 
surface and the bo t tom.  On the equilibrium sea-surface we have 

Ou Ov 
~'-~z = -~'~' v-~z = -r~, w = O, 2 : = 0 .  

On the bot tom,  when z = H(x, y), where H is the bot tom topography, we have 

vau vav 
- - 0 ,  w = O .  

Oz Oz 

Here 7"~ and ~'y are the wind stress components.  
There are two kinds of boundary conditions for temperature considered at the sea surface. First ,  the  temperature 

can be kept constant  (in time) and, second, temperature  can be prescribed by the relation V,l,(OT/vaz) = F ( T ) ,  where 
F(T) is the heat  flux. For temperature and salinity, only the first type of boundary condition is presented. On lateral 
boundaries, the first type of boundary condit ion is used, with 

T = T0(~,y , - - ) ,  S = S 0 ( ~ , y ,  ~), ( . , v )  = (~o(Z,y ,  z ) , ~ 0 ( ~ , u , ~ ) ) ,  

respectively. Here u0 and v0 are the geostrophic velocities. 
The model is initialized with seasonal fields that  have been taken from the Levitus atlas (see [15]). 
Following Marchuk and Sarkisyan (see [18]), this system can be rewritten in the following form: 

0 A 0~ f va div r )  + 7, _pA2C+~ c+~J(~C,A,)+ 27--~A,+ fJ (H,~)+/~-~x :pogHr~ (2.1) 

where ~ is the sea level, J is the Jacobian, "7 = V/-f-/2v is the inverse of the Ekman layer thickness, and the function 
is shown in the Appendix.  

Equations (1.1)-(1.3) are rewritten in the following form: 

vau Ou vau vau va~' g "/" yap 02u 
- -  + W~z  - ] dz + # A u  + Ot q- U-~x + V '~ f v = - 
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(2.2) 
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Ov av v ~  vav o~ l g f vap va2v - -  + ~ +  I , ,=-9-~  po -~dz +#,',v+~,-~.~. vat + u~x  + - - -  (2.3) 
0 

where ~' = ~ -  Po i f :  p dz is called the adynamic sea level. All other equations of system (1) are unchanged. Equation 
(2.1) requires boundary  and initial conditions for ~ or for ~'. We assume ~' equal to 0 on all boundaries and at all 
points where t is equal  to 0. 

This system is considered on a grid with spatial resolution 0.25 ~ x 0.25 ~ and with 30 standard levels in depth. The 
research area is in the mid-latitudes and the Rossby parameter r = Uo/ fL  is small (E ~ 0.1) (U0 = 10 cm/sec and 
L = 106 cm are the typical scales of velocity and space resolution, respectively.) System (2) is expanded with respect 
to s: 

c~ oo 

~ -~. E uiEi, "U = Z uiEi , 
i = 0  i = 0  

which reduces (2.2)-(2.3) to the sequence of linear equations 

Oui yv~ 02ui & = ~-ff~-~ + F, ,  (2.4) 

~2W i 
vaVi~ fui  = V-~Z 2 Jr Gi, ( 2 . 5 )  

where the functions Fi and Gi depend on u o , . . . ,  ui-1 and v o , . . . ,  v i - t -  Their  detailed form is shown in the Appendix. 
The calculation of the expansion is stopped when lui + vil~ i < 10 -2. In practice, we considered only the second order 
of decomposition (i < 2). 
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The A 2 term in (2.1) is omitted because it is small as compared to the other terms. 
An explicit time-difference scheme is used in (2.4)-(2.5) with a time step equal to 2 h. Equation (2.1) is solved 

using the iterative Peaceman-Rachford scheme (see [22]). Equations (1.5)-(i.6) are solved using standard numerical 
methods for parabolic equations (see [17]). In order to ensure the stability of the calculations, the method of simple 
iteration had been used for the system (2). 

3. Data-Assimilation Technique 

The approach presented below is new, so it will be described in detail. It is based on the well-known Kalman- 
filter theory, where the optimal linear estimation of the unknown field is determined in conjunction with an evolution 
equation for the covariance matrix of error. 

Those model equations are integrated in time from to -- 0 to t I. In our experiments, t I equals 100 days. A number 
of observations were made for this period, for instance, temperature and/or salinity. The problem was then to construct 
new temperature and salinity fields so that they satisfy the following requirements: 
1. The ensemble average of the new fields must be a solution of (2) for any time step. 
2. These constructed fields have to minimize the difference with respect to the measurements, i.e., to be as close to the 
observations as possible. 

The following notations must be introduced. Let ~- and t be two arbitrary time moments, r < t, and k(t) be 
the number of observations at moment t. Let 5 denote a spatial point, 5 = (x, y, z), and ~j be the spatial point of 
observation. All these points are assumed to belong to the model domain but generally not to coincide with those of 
the grid. Then G,~ (t, ~) and G0(t, 5) denote model and observed values, respectively. Let/9 =/9(t, 5) = G,~ (t, ~) -G0 (t, 5) 
be an error. It is reasonable to assume that/9 is a random field with E/9 = 0 for any t. (E is the symbol of mathematical 
expectation.) This suggestion means that the average of all errors at any arbitrary moment equals zero, but certainly 
at any separate spatial point/9 it does not necessarily equal zero. 

The optimal linear estimation of the unknown field G(t,~), satisfying requirements 1 and 2, is given by the 
expressions (see [30]) 

t k(r) 

~(t,~) = G~.,(t,5) + / ~ ~ ( r ,5 ,~ ) /9 (~ ,S j )  a~, (3.1) 
0 j = l  

/ k(,-) 
K(t,e, ei) = ~-~ (~j(~-,5,'Zj)K(t- ~-,ei,ej) dv, (3.2) 

0 j = l  

where _~ is the covariance kernel of/9, i.e., 

K(t,51,52) = E0(t,~l)/9(t,~2). (3.3) 

The optimal (unknown) weight coefficients are a j ( t , 5 ,~ j ) .  For brevity, scalar values are considered. In the general 
case, /9 is a vector, ~ is a matrix, and (3.1) may be rewritten in matrix form. 

In order to construct the new fields G, it is necessary to solve (3.2) for the relatively unknown functions a t (Wiener- 
Hopf equation), and then insert the solutions into (3.1). 

Note that the right-hand side of (3.2) contains the covariances only between the measurement points. Therefore, in 
order to seek a solution, the matrix of dimensionality proportional to the number of observations needs to be inverted. 

The central problem of this theory is to determine the covariance matrix of error K(t, 5i, 5.~) between two arbitrary 
points of measurement and, between each grid point and point of observation with respect to (3.2). Function K 
cannot be defined directly from the data because of an insufficiency in and an irregular network of observations. In the 
standard theory, the equations for K obtained from system (3.2) are very complicated and cannot be solved without 
some restrictions and simplifications (see [9, 10]). Without going into detail, there are at least three main problems that 
do not allow for the use of the ordinary method. First, it is necessary to set up the initial fields for the error covariance 
matrix. Second, it can only be solved currently for a linear system, as a nonlinear extension requires additional major 
assumptions. And third, the numerical solution requires a large number (proportional to the square of the number of 
grid points) of computations. Thus, a standard approach faces serious problems for realization. The method described 
below is free of these difficulties. Its own weaknesses will be discussed in Sec. 5. 

According to the definition, 

K(t,~l,52)= ; ?sup(t,s,u)dsdu, (3.4) 

- - c o  - - o o  
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where s = O ( t , ~ )  and u = 0(t, g2). A pair of measurement  points is (5~,52), and the joint distribution density of error 
at this pair is p(t, s, u). This distribution is considered in a phase of space that  represents a two-dimensional unl imi ted  
plane for each pair of observations. 

Some assumptions about the time variability of the  stochastic process O(t, .) have to be made. Suppose it  is governed 
by the equation 

O(t + dr, .) = FO(t, .) + ~b, (3.5) 

where F represents the model operator, i.e., system (3.2), and ~b is a Gaussian random variable with zero average and 
variance 0-2(t), depending on time. In other words, the error is assumed to be satisfied by the same equations as the 
temperature and salinity plns random forcing. Physically this mode[ reflects the si tuation where the next  t ime-step 
error from two components is added; the first one is the result of the model acting on the previous error (error of 
boundary conditions, spatial resolution, and so on), and the second is a Gaussian random variable independent  of 
previous errors. With respect to this model, it is possible to rewrite (5) in the form of a Langevein equation (stochastic 
diffusional equation) for each pair of points considered: 

d-O = ~(t,-O)dt + B~(t ,  ~ )dW.  

Denoted here and further: 

oct) = (O(t, z l ) ,O(t ,  x2)) ,  -gCt,O) = (al( t ,O),a~(t ,O)) ,  -~ = (s l ,s2) ,  

In accord with the stochastic-process theory (see [71), the drift vector g and diffusion matrix B 2 are defined with the 
formulas 

a(t,'$) = ~ E ( ? ( t  + dr) - 0(t) [ ?(t) = e), (3.6) 

B ~ ( t , D  = OE[(0( t  + dr) - -O(t))(~(t + dr) - -O(t)) T I -O(t) = ~1, (3.7) 

where the notations E(y I x), p(y I x) mean the conditional average and conditional probability of a random value y 
with condition x, respectively (see [7]), and (.)T meanS a transpose. 

The mathematical proof of the transition to the stochastic differential equation requires several addit ional assump- 
tions. But all of them are not essential and this point  is omitted. 

Using (3.5) for the drift vector g, we have 

~(t,~) = E(~( t+dt) -~( t )  10(t) = 7 )  = E ( r ~ ( t ) + ~ - ~ l  -~(t) =~)  = N ( ~ - ~ ) p ( ~ [ ~ ) ~ .  

Obviously, g can be chosen the same as -~,,~ (t + d t )  - C, where -~,~ (t + dr) is a pair of model values and C is its spatial 
average at this moment, because E0 should be equal to zero. 

The same is true for the variance or diffusion matrix:  

B2(t,~) = E ( r ~ ( t ) + ~ - ~ ) ( r ~ ( t ) + r  r I~(t) =~) = ~/ ( g - - ~ ) ( g - ~ ) Z ' p ( g l ~ ) d ' a + E ~ p ~ b T .  

It is natural  to set 
E~)~) T = o-21, 

= I~-I X"k(0 2 where 0-2 (k(t) - / z.-,j=l 0~ and I is the uni ty  matr ix  of order 2. 
For clarity it is necessary to discuss the meaning of the expression p('~ ] ~), because ~,~ is not assumed to be random. 

The description of the procedure to obtain this value follows. 
Two fields at moments v and t are taken. All grid points of the field at moment  r where ~m(x) = s are marked. 

Let those points be n~. Then  among those and  only those points, grid points of ~m(t) where ~m(t) = u are sought. Let 
those points be n~. Then the conditional probabili ty p(u  [ s) will be equal to n,~/n~. 
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Note tha t  this procedure does not depend on the linearity or nonlinearity of the model. Only the results of modeling 
ignoring the  process of their computat ion are dealt  with. 

The  required number of operations to realize this algorithm appears to be large. Actually, it is easy to see that  the 
conditional probability p(u I s) equals zero only if the distance between values u and s is small. This  strongly restricts 
the necessary amount of operations, which then  becomes proport ional  to the number of grid points. 

Af ter  determination of the drift vector g and diffusion matr ix  B 2 the probability distribution can be found and 
hence the covariance matrix with respect to  (3.4). This can be done by using the Fokker-Planck equation 

op(t ,~)  o(~p(t ,~))  1 o 5 
= + ~ 7~  (z~-~(t,~)) (3.8) 

or, in expanded form, 
o(~p(t ,~))  = 0(a lp( t ,~ ) )  + o(a~p(t,~)) 

O'g 0sl Os~ ' 

2(B"p(t,'g)) = 02 -~s~(br,2P(t,-g)). 

This equation is solved with the initial and boundary conditions that  the probability vanishes as $ goes to infinity. 
These are the Sommerfeld boundary conditions, p(t, +c~) = 0. Let  us say a few words about the initial values. Consider 
three cases: 

o o 1. At  the  initial t ime moment to, suppose we have made two measurements  and the observed error was ~0 = (sl, s2). 
This means  that  the probability density equals the Dirac &function ~ ( ~ -  ~o) at this moment.  Changing the time 
scale, to can be taken to be equal to zero. So the Fokker-Planck (FP) equation is solved with Sommerfeld boundary 
conditions and initial condition p(0,$) = d i ($ -  $0)- 

2. Two measurements have been made at  two different t ime moments tl  and t2, and for clarity suppose that  t~ < t2. 
Then as at  previous point t l  is assumed to be zero and the one-dimensional FP  equation is solved up to the moment 
t = t2 - t l  with the initial condition p(0, s) = 5(s - so) if the error at t ime 'moment  tl was So. Let its solution at 
moment  t be p(t, s). Then start ing from the moment  t, a two-dimensional FP  equation is solved with the initial function 
p(t, s)g(s - s~), where s~ is an error at the measurement  point at moment  t. 

There  is no problem solving this equat ion numerically. It is simply a two-dimensional equation with fixed boundaries 
and it can  be solved by using many developed methods. Here, the Peaceman-Rachford scheme (see [22]) .was used. 
Moreover, the first term in (3.7) for diffusion can be neglected as compared to the second one. This  strongly simplifies 
(3.8). 

Finally, in order to use (3.2), we have to find the covariance K(~ ,  5 j )  between the arbitrary grid point ~ and the points 
of measurements  5j.  This is done by using the Taylor expansion, K(5 ,  Sj)  = K ( S i , S j ) + K ~ ( ~ i , S j ) ( 5 - ~ j )  + o ( [ ~ - S j [ )  
in some neighborhood of points x, xi, x j .  Only the linear part  of this expansion was left in fact: 

K(~,51)  = K ( 5 1 , 5 2 ) + ( K ( ~ l , S a )  - K ( S l , ~ 2 ) ) [ ( x 2  - x l ) - l ( x - x l ) + ( y :  - y l ) - l ( y - y l ) ] ,  (3.9) 

within some radius where three observed points  are available. The  vertical derivatives were ignored because data on 
all selected levels were available. 

The  possibility of representing the covariance with respect to (3.9) depends on the homogeneity of the error field. 
The covariance function at an arbitrary grid point is constructed through the others, and within the chosen radius we 
use the same value for the spatial derivative. Wi thout  this assumption, we would need a dense observational coverage 
with at  least three points of measurement around each grid point. In practice, the assumption of the local homogeneity 
of error fields within some radius is sufficient. Outside the local circle the covariance is assumed to go to zero. 

Resume our algorithm from point to point.  
0. We star t  from the known initial field. 
1. Suppose the fields ~,~(r,~) up to the moment  t have already been constructed. The transi t ion from t to t + dt is 

as follows: 
(a) The  field ~(t, .) is taken as the initial, and model computat ion is carried out. 
(b) Using the fields ~(t, .) and ~,~(t + dr, .), as well as the observations at moment t + dr, the drift  vector ~(t) and the 
diffusion matr ix  B2(t) are obtained, using (3.6) and (3.7). 
(c) These  parameters are inserted into the Fokker-Planck equation (3.8), and the new probability distribution is found. 
(d) The  covariance matr ix is obtained with  respect to (3.4) and (3.9). 

2. The  new field ~(t + dr) is constructed by (3.1). This completes the description of the method.  

1398 



At the end of this section, we estimate the required number  of operations for numerical realization of this method.  
Let N denote the number of grid points, and let M be the number  of observations. Usually we have N ,,, M 2 << N 2. 

Suppose, for clarity, tha t  the  forward computations require N operations, where N means the number of grid points, 
and the inverse problem requires N 2 ones (standard situation).  This gives the following estimation: 
Step l(a)  requires ~ N  operations;  this is a forward model  computation. No inverse problem is solved at this step. 
Step l(b),  as was already mentioned above, also reqdires ~ N operations. 
Step l(c) requires -,, M 2 operations; it is necessary to solve the Fokker-Planck equation for each pair of measure- 
ments. The expenses for realization of this equation can be neglected as compared to other computations. The  linear 
interpolation with respect to (3.9) also requires ~ N  operations. 
Step 2. Requires ,,~ M 2 operations.  We need to invert an M x M matrix. 

Thus, the total number  of operations has an order ~ M 2. 

4. T h e  N u m e r i c a l  E x p e r i m e n t s  and  R e s u l t s  

The assimilation me thod  is now applied to processes in the North Atlantic subpolar frontal zone. The  research 
area is limited by 37.25N, 47.75N and 37.25W, 50.75W. The spatial resolution in the model is 0.25 ~ • 0.25 ~ and the 
t ime step equals 2 h. In this region, observations have been carried out by the State Oceanography Insti tute (Moscow, 
Russia) for more than 10 yr, and about 7000 hydrological stations have been recorded. A lot of papers deal with 
the hydrological description and seasonal and annual  cycles of the processes in this area(e.g., [3, 5]). This  region 
plays an important role in the  air-sea interaction processes in the North Atlantic and influences short-period cl imate  
oscillations (see [17]). The  typical  hydrological s t ruc ture  of this area is known, and it is possible to compare the results 
of our data-assimilation technique to observations. 

For our purposes, we chose one hydrological survey (March-Apri l ,  1985). This survey contains 105 tempera ture  and 
salinity profiles to a depth of 2000 m. It was carried out  from North to South on the transects with a distance between 
stations of 50 km. 

The model experiments are carried out as follows: the STD (salinity, temperature, depth) data  are assimilated 
according to their temporal  and spatial location. If the distance between the data  and grid point exceeds some value 
(re), the correlation is assumed to be equal to 0. In our experiments,  the cutoff radius equals 6 grid points (approximately 
150 km). This value is not  critical to the model result. 

The time behavior of the kinetic energy in the model  without  data  assimilation has been studied. The min imum of 
this value reflects an equi l ibr ium state that is chosen as the s tar t  t ime of the assimilation. This moment (approximately 
10 days) depends on the viscosity coefficients. In the model,  

# = 10 6 cm2/sec,  v = 10 6 cm2/sec, 

PT,las = 2.5- 106 cm2/sec, b,r, vs = 2.5.106 cm2/sec 

is used. 
The assimilated da ta  are a source of perturbat ions in the model, and we examine the perturbed fields and the 

propagation of these perturbat ions.  Consider in detail  the behavior of the difference between the fields before and 
after the assimilation. We will call these differences "anomalies" or "perturbations." These anomalies occur near  the 
measurements but then begin  to move and influence the model dynamics. Outside the North Atlantic current  the 
.~nomalies are almost stat ionary,  and further assimilation of observations in this area reduces the forecasting error. The  
errors may be reduced fur ther  by allowing the "noise" to be a function of location. 

The spatial distr ibution of perturbations is not uniform and the form of the anomalies is very complicated. In the 
beginning the perturbat ions appear  to follow the direction of the cruise vessel but then forcing by advection, diffusion, 
and boundaries make their  motions more complex. The  anomalies influence one another, causing them to deform 
and even vanish. Eddy generat ion takes place in the model  due to both the natural current instability and notabi l i ty  
tl:iggered by new per turbat ions  advected by the flow. The anomalies propagates through two kinds of motions - -  wave 
motion, mostly westward, and advection. It is possible to show that  the linearized equations of motion of the model  
contain damped barotropic and baroclinic Rossby waves as well as baroclinic gravity waves. Barotropic gravity waves 
are repressed because of our  use of the cutoff radius re. Our experiments show that  the decay time of these waves is 
short (two or three days) and the advective mechanism dominates. Through nonlinear interaction and diffusion, the 
perturbations are deformed and destroyed. 

Throughout the exper iment ,  the main oceanographic structures in this region are found in the model result: the 
frontal zone, the anticyclonic quasistationary eddy in the middle of domain, and the meanders of the North Atlant ic  
current. Data assimilation alters the structure of the region. There is no quasistationary eddy in the middle of the 
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region and the frontal zone is shifted northward and strengthened. The result of our assimilation fits the observation 
of Clarke well (see [5]). The model with assimilation is able to recover the typical hydrological structures of the region. 

Note the effects of the assimilation near the lateral boundaries. Up to the end of the time of integration (100 days) 
near the western boundary without assimilation a large temperature anomaly occurred (this is an example of the model 
deficiencies). These anomalies occurred due to the discrepancy between the boundary conditions (climatology) and the 
dynamics inside the domain. After the assimilation, near the lateral boundaries the anomaly almost disappears. 

We now discuss the quality of our method. The usual concept is to estimate the variance of the forecasting 
error (difference between the model prediction and observed values) at each time step. This is not ideal because 
the number of observations is not uniform in time and their spatial location seriously influences the error. However, 
some interesting properties arise. Near t = 0, when the initial fields are far from the observations, the variance of 
the error is large. Then, after the first or second assimilation the variance decreases and then o~cillates around some 
positive value. This may be explained by the fact that after some assimilation the new fields are "turning on" the 
measurements and afterwards it is impossible to substantially decrease the error without additional improvement of 
the model and/or  data-assimilation technique. 

�9 A p p e n d i x  

In (2.1), for the adynamic sea level ~' the function f has the following form (see [18]): 

2 " H H H 

o 0 0 

H z z H 

0 0 0 0 

1t H H 

poll cOx 
0 0 o 

where p is the atmospheric pressure. 
In practice, we neglect the terms with second-order Laplacian and atmospheric pressure derivatives. 
In the Rossby number decomposition, in (2.4)-(2.5) there is the following representation of the functions in the 

series: 

& = - g ( U L )  - 1  - g(ULpo)-' ~ dz, 
0 

cOuo cOuo'~ COuo 
F1 = - f  UOTx + VOTy ) + fWOTz + I~f(LU)-lAuo, 

[( ~ o~o, f co~,, .._~)] ( co,-,o cO,,,, 
F~ = - :  ~,o +,,,-~--)+t, Vo-~-+,,, + :  ,,,,-8-; + ,,,o-8-;~ ) + , : ( L u ) - '  ,x,,,, 

where U and L are the characteristic scales of velocities and space, and ui and vi, i = 0, 1 , 2 ,  are tlle terms of 
decomposition, 

= ( c O " + N  a~. wi \ cOz 
0 

For the function Gi we have 

G -- -g(UL)-10---~ - g(ULpo) -1. ~y dz, 
0 

. (  OVo Ovo "~ OVo a, = -:(,~; + vo-~-y ) +/wo-:-; + .:(LU)-':,Vo, 
+ +,,:(u:)-,:,.,,. 
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