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Engine appl icat ions  of the shape m e m o r y  ( " M a r m e m " )  effect assoc ia ted  with t h e r m o e l a s -  
tic t r a n s f o r m a t i o n s  a re  d i scussed .  Such devices  potent ia l ly  enable  the d i rec t  conver s ion  
of heat (i.e., so la r  energy  or waste heat) into mechanica l  work. It is shown that ef f ic ien-  
c ies  on the o rde r  of 20 pct may be expected and can be improved with al loys having c e r -  
ta in  t r a n s f o r m a t i o n  h y s t e r e s i s  loop c h a r a c t e r i s t i c s .  

IT is well known f rom the law of degradat ion  that en -  
erg2r can be taken f rom na ture  and put into useful  
fo rms .  E l ec t r i c a l  energy,  for example,  can be g e n e r -  
ated by changes in water  level ,  nuc lea r  reac t ions ,  and 
so on. Mechanica l  energy  can be genera ted  f rom phase 
t r an s i t i ons  (physical  o r  chemical )  through c o n v e r t e r s  
such as s t eam or  i n t e rna l  combus t ion  engines .  More 
recen t ly ,  it  has become apparent  that al loys showing 
the wel l -known shape m e m o r y  ( " m a r m e m " )  1 effect 
genera te  subs tan t ia l  s t r e s s e s  upon heating,  thus con-  
ve r t i ng  heat  d i r ec t ly  into mechan ica l  work. Indeed a 
va r i e t y  of " e n g i n e "  appl icat ions  a re  envis ioned.  ~ While 
no a t tempt  at chronology is  intended here ,  it can be 
noted that  as e a r l y  as 1957, the late P ro fe s so r  T. A. 
Read and col leagues  at the Univers i ty  of I l l inois  con-  
s t ruc ted  a cycl ic  weight l i f t ing device (operat ing b e -  
tween two t e m p e r a t u r e s  and employing a Au-47.5 pct 
Cd alloy) for exhibi t ion at the 1958 Wor ld ' s  Fa i r  in 
B r u s s e l s .  Within the past  year ,  an e n g i n e e r i n g - w i s e  
more  sophis t ica ted  v e r s i o n  of such an engine appara tus  
has also been  desc r ibed  by  workers  at the Univers i ty  
of Cal i fornia .  2 

Notwithstanding prev ious  efforts ,  it r e m a i n s  that de-  
ta i led  and quant i ta t ive  ana lys i s  of the engine c h a r a c -  
t e r i s t i c s  of shape m e m o r y  m a t e r i a l s  in both fundamen-  
ta l  t he rmodynamic  and me ta l l u rg i ca l  t e r m s  has not 
been p resen ted .  This  is the purpose  of the p r e se n t  
paper .  After d i s cus s ing  pe r t inen t  background l i t e r a -  
t u r e  on t he rmoe l a s t i c  m a r t e n s i t i c  t r a n s f o r m a t i o n s ,  ~'s-5 
the magnitude of the mechan ica l  ene rgy  gain f rom this  
type of solid s tate  t r a n s f o r m a t i o n  wil l  be d i scussed  and 
the eff ic iency of the conve r s ion  p r o c e s s  is analyzed.  
In addit ion to the ana lys i s  of a sol id s tate  engine,  the 
eff iciency of a Carnot  engine working within the same  
t e m p e r a t u r e  l im i t s  is used for compar i son .  

THERMOELASTIC BEHAVIOR AND THE 
SHAPE MEMORY E F F E C T  

Well af ter  the f ami l i a r  m a r t e n s i t i c  t r a n s f o r m a t i o n  
in s t ee l s  become commonly  known 6 Kurdjumov and co-  
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workers  v in 1938 observed  a revers ib le  m a r t e n s i t i c  
t r a n s f o r m a t i o n  upon cooling and heat ing ce r t a in  Cu~ 
and Cu-A1 al loys.  It was also suggested 5 that a " t h e r -  
m o e l a s t i c "  equ i l ib r ium exis ts  for such r e v e r s i b l e  a l -  
loys which is cha rac t e r i zed  by the fact that these  al loys 
can t r a n s f o r m  into m a r t e n s i t e  e i ther  by  dec rea s ing  the 
t e m p e r a t u r e  or  by applying a s t r e s s  at t e m p e r a t u r e s  
above the Ms t e m p e r a t u r e .  Correspondingly ,  the r e -  
v e r s e  t r a n s f o r m a t i o n  could be induced by e i ther  r a i s -  
ing the t e m p e r a t u r e  or  by removing  an applied s t r e s s .  

In 1951, Chang and Read a observed  that Au-Cd al loys 
also showed t he r moe l a s t i c  behavior .  In addition, they 
found that a ~u-47 .5  at. pct Cd alloy was v e r y  soft in 
the mar tens i~ic  s tate  and could be deformed r a the r  
eas i ly ,  the deformed shape being r ecove red  dur ing  the 
r e v e r s e  t r a n s f o r m a t i o n  to the paren t  phase.  There  was 
no p e r m a n e n t  se t  r e m a i n i n g  af ter  the shape was r e c o v -  
e red  dur ing  the r e v e r s e  t r a n s f o r m a t i o n  p rocess .  This  
behavior  is now known to typify the shape m e m o r y  ef-  
fect.  

Since the work of Chang and Read, a number  of a l loys 
exhibi t ing the shape m e m o r y  behavior  have been  r e -  
ported,  among which a re  the sy s t e ms  Ti -Ni ,  4 In-T1, s 
Cu-A1-Ni, 7 Cu-Zn ,  1~ F e - P t ,  1~ and Ag-Cd. 11 All of these 
al loys exhibit  a t he rmoe la s t i c  m a r t e n s i t i c  t r a n s f o r m a -  
tion, and with the exception of the In-T1 sys tem,  all  i n -  
volve a m a r t e n s i t i c  t r a n s f o r m a t i o n  f rom an o rde red  
pa ren t  phase.  Fu r the r ,  these  m a t e r i a l s  exhibit  a r a t h e r  
sma l l  t r a n s f o r m a t i o n  h y s t e r e s i s  loop, as de t e rmined  
by e l ec t r i ca l  r e s i s t a n c e  m e a s u r e m e n t s ,  for example.  
A genera l  review of shape m e m o r y  ( " M a r m e m " )  a l -  
loys has been  p re sen t ed  by Wayman and Shimizu.  1 Re-  
cently,  it has been ver i f i ed  ~1'~2 that al loys deformed 
below the Mf t e m p e r a t u r e  begin  the shape r e c o v e r y  
p rocess  at the As t e m p e r a t u r e  on heat ing;  the deformed 
shape is comple te ly  r e e ove r e d  at the Af t e m p e r a t u r e .  
The s t r e s s  dependence of the Ms, Mr, As, and A f t e m -  
p e r a t u r e s  has also been  d i scussed  recen t ly .  

Latt ice sof tening p r io r  to t he r moe l a s t i c  m a r t e n s i t i c  
t r a n s f o r m a t i o n s  appears  to be another  common cha r -  
ac te r i s t i c .  14 The shea r  cons tant  (Cll - C~) /2  de-  
c r e a s e s  when an al loy approaches  the Ms t e m p e r a t u r e .  
As a consequence,  t r a n s f o r m a t i o n s  can be induced by 
a sma l l  shea r  s t r e s s  component  exer ted  nea r  M s. C e r -  
ta in  al loys a re  a lso phys ica l ly  soft below the Mf t e m -  
pe ra tu re ,  in which case  a sma l l  s t r e s s  r e s u l t s  in a 
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Fig. 1--Demonstration of 
model thermal ~ mechan- 
ical energy conversion ap- 
paratus (Small plunger 

20 g; larger plunger 
~ 180 g). Upper, NiTi Coil: 
(a) 20~ (b) 0~ (c) 0~ 
(d) 70~ Lower, AgCd 
Coil: (e) 20~ ( f )~- IO0~ 
(g) ~ -  100~ (h) 20~ 

subs tan t ia l  pseudoplas t ic*  s t r a i n  15 which is en t i r e ly  

*The term pseudo-plastic is used because the apparent plastic deformation 
below Mf is recovered during the reverse transformation. 

r e cove red  on heating.  
The shape r e c o v e r y  p roces s  begins  at A s(a) and is 

completed when Af(a) is reached.  This notat ion is fol-  
lowed s ince  the As, Af, Ms, and Mf t e m p e r a t u r e s  a re  
s t r e s s -dependen t .  The higher  the applied s t r e s s ,  a, 
exer ted  in the m a r t e n s i t i c  s ta te ,  the higher  will  be the 
As(a ) and Af(a) t e m p e r a t u r e s .  Thus, a load applied on 
a spec imen  in the m a r t e n s i t i c  condit ion will  r e su l t  in 
a back s t r e s s  in opposi t ion to the load when the spec i -  
men is  heated to r ega in  i ts  o r ig ina l  shape.  Work is  
the re fo re  pe r fo rmed  agains t  the load. The m i n i m u m  
s t r e s s ,  al, to pseudoplas t ica l ly  deform the spec imen  
in the m a r t e n s i t i c  s ta te  is much s m a l l e r  than the max-  
imum s t r e s s  am, which if exceeded would not p e r m i t  
per fec t  shape r e c o v e r y  dur ing  heat ing  through the r e -  
v e r s e  t r a n s f o r m a t i o n  (under s t r e s s ) .  The p r e se n t  work 
indicates  that a m can be as la rge  as ten t imes  a~. If 
the pseudoplas t ic  m a r t e n s i t e  deformat ion  and s u b s e -  
quent shape r e c o v e r y  on heat ing under  s t r e s s  involve 
a compara t ive ly  la rge  d i sp lacement ,  •l, r e l a t ive  to 
the o r ig ina l  spec imen  length, the net  work done, 
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Al 
fo (a m -- a , )d l ,  becomes  s ignif icant ,  and the t he rma l  

energy  can be t r a n s f o r m e d  into mechanica l  energy.  
This c h a r a c t e r i s t i c  suggests  that a sol id s ta te  engine 
is feas ib le .  

AN EXAMPLE 

Two dif ferent  al loys were  used to demons t r a t e  the 
above-ment ioned  feas ib i l i ty :  Ti -55 .6  wt pct Ni and Ag- 
46 at. pct Cd. Specimens were  p r epa red  in the form 
of sp r ings  while in the paren t  phase condit ion.  At t e m -  
p e r a t u r e s  above the As(a) t e m p e r a t u r e  (i.e.,  room t e m -  
pe ra tu re ) ,  both spec imens  could suppor t  the weight of 
a 20 g s tee l  p lunger ,  as shown in Figs.  l(a) and l(e).  
When the spec imens  were cooled to the i r  Mf t e m p e r a -  
t u r e s ,  both coi ls  col lapsed pseudoplas t i ca l ly  under the 
weight of the 20 g p lunger ,  Figs .  l(b) and l ( f ) .  After 
the pseudoplas t ic  deformat ion  at Mr, a 180 g s tee l  rod 
was used to rep lace  the 20 g rod, Figs.  l (c)  and l (g) .  
In both cases ,  when the coils  were  heated to a t e m p e r -  
tu re  (room t e m p e r a t u r e  for Ag-Cd; 70~ for Ti-Ni)  
above Af(a) they were  obse rved  to l i f t  the 180 g weight, 
and only e las t ic  deformat ion  of the pa ren t  phase r e -  
mained  (Figs.  l(d) and l(h)). 
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Fig. 2--Schematic Temperature (T) vs. Entropy (S) diagram 
for thermal ~ mechanical energy conversion cycle. (See 
text for discussion). 

EFFICIENCY 

As noted above, t h e r m a l  energy  can be conver ted  in -  
to mechan ica l  energy  by means  of the shape m e m o r y  
effect. The work done /cyc le  and the eff ic iency of the 
convers ion  p rocess  can be analyzed.  Accordingly,  we 
cons ider  a rod - shaped  cy l indr i ca l  spec imen  of unit 
mas s ,  length l o and c ros s  sec t ion  A o. In genera l ,  the 
Ms, Mr, As, and Af t e m p e r a t u r e s  in t he rmoe la s t i c  
m a r t e n s i t i c  t r a n s f o r m a t i o n s  a re  s t r e s s - d e p e n d e n t  and 
will be des ignated  Ms(a) , Mr(a), As(e) , and Af(a), and 
for the zero  s t r e s s  case a re  denoted Ms(0) , Mf(0), 
As(0), and Af(0). The M s and Mf t e m p e r a t u r e s  c o r r e -  
spond to the s t a r t  and f in ish  t e m p e r a t u r e s  for the p a r -  
ent to m a r t e n s i t e  (P ~ M) t r a n s f o r m a t i o n  while A s 
and Af a re  the s t a r t  and f inish t e m p e r a t u r e s  for the 
r e v e r s e  m a r t e n s i t e  to pa ren t  (M - -  P) t r an s fo r ma t i on .  

For  purposes  of ana lys i s ,  the t e m p e r a t u r e - e n t r o p y  
d iag ram shown in Fig.  2 is used. The spec imen  is 
f i r s t  cooled f rom T a to Mf(0) under  no s t r e s s .  A s t r e s s  
a 1 is then applied which s t r a i n s  the spec imen  pseudo-  
p la s t i ca l ly  to a value �9 = h l / l  o. T h e  s t r e s s  at is sma l l  
in r e l a t ion  to a m,  the s t r e s s  above which perfect  s t r a i n  
r e c o v e r y  upon heat ing through the r e v e r s e  t r a n s f o r m a -  
t ion would not occur .  Next a s t r e s s  a s (~m > ~s >> at) is 
applied at Mr(0)* and the spec imen  is heated unti l  corn-  

Since o~ ~ o2, it is a reasonable approximation in the temperature-entropy 
cycle to take Mr(el) = Mr(0). 

plete r e v e r s a l  of the m a r t e n s i t e  occurs .  This  is a c -  
compl i shed  at T a = Af((rz). Note that because  of the 
r e l a t ive  magni tude of Crz, the As and Af t e m p e r a t u r e s  
under  s t r e s s  (~2) a re  d isp laced  to higher  levels .  Dur -  
ing the r e v e r s e  t r an s fo rma t ion ,  work is done agains t  
the s t r e s s  az, the magni tude of the load is crsA o. The 
second cycle is then s t a r t ed  at T a under  zero  s t r e s s .  
Since, by defini t ion,  the spec imen  ex is t s  in the pa ren t  
phase at Af(a2) , no change ( i . e . ,  t r ans fo rma t ion )  oc-  
cu r s  when a~ is r emoved  before  the n o - s t r e s s  port ion 
of the t r a n s f o r m a t i o n  cycle is s ta r ted .  If the volume 
change due to the phase t r a n s f o r m a t i o n  is smal l ,*  the 

*In known thermoelastic martensitic transformations the volume change is 
less than one percent. 

work done by  the spec imen  is  

l0 

w = - f A ( r  2 dZ : %Vo In (1 + �9 [1] 
l 

where �9 = ( l  - l o ) / l  o and V o = Aol o. The net work done 
by the spec imen  is then 

Wnet =(e  s -  (r 1) V o l n ( l +  e) [2] 

The equ i l ib r ium t e m p e r a t u r e  To(0 ) at the zero  s t r e s s  
level  can be shifted by an ex te rna l ly  applied s t ress �9  
This r e la t ionsh ip  has p rev ious ly  been shown is to be 

To(a ) : To(0) + C(r [3] 

where C is a constant .  Eq. [3] can be d i rec t ly  re la ted  
�9 . 1 4  �9 . 

to the C l a u s m s - C l a p e y r o n  equahon following whmh 

To(0) V o � 9  
C -  &Q 

and 

AT o = T o ( a ) -  To(0 ) = 
To(0) Voe(r 

~ Q  [4] 

where AQ is the t r a n s f o r m a t i o n  la tent  heat.  Eq. [2] can 
be fu r the r  s impl i f ied  to 

Wnet ~ ffsV 0 ln(1  + ~) if a 1<< a s 

tn (1 + ~) 
= aseV 0 E 

= A q  T o ( O ) ]  �9 
[5] 

Since the work done on the spec imen  by the s t r e s s  
a 1 is negl igible  in r e l a t ion  to the work done by it aga ins t  
the s t r e s s  a2, the work input will  be neglected�9 The ap-  
p ropr ia t e  t h e r m a l  cycle as shown by the t e m p e r a t u r e -  
ent ropy d i ag ram of Fig. 2 cons is t s  of a: Af(cr 2) ~ b: 
Ms(0) ~ c: Mf(0) ~ d: As(or2) ~ a: Af(az). For  the 
same  t e m p e r a t u r e  l imi t s  the Carnot  engine cycle is 
a: Af((rs) ~ b '  ~ c: Mf(0) ~ d'  ~ a: Ai(as). P roces s  
a ~ b indica tes  that  the pa ren t  phase is be ing  cooled 
f rom Af(as) to Ms(0); p rocess  b ~ c co r re sponds  to 
the fo rma t ion  of m a r t e n s i t e  between Ms(0) and Mf(0), 
dur ing  which the la tent  heat AQ is r e l e a s e d ;  p roces s  
c ~ d indicates  heat ing the m a r t e n s i t i c  phase f rom 
MI(0) t o A s ( ~ ) ;  and the final step d ~ a r e p r e s e n t s  the 
r e v e r s e  m a r t e n s i t e  t r a n s f o r m a t i o n  f rom As((r 2) to 
Af(a2) dur ing  which the la tent  heat AQ is absorbed.  

F r o m  the t h e r m a l  cycle desc r ibed  above the heat ab -  
sorbed  dur ing  p r oc e s se s  c ~ d and d ~ a is r e s p e c -  
t ive ly  

/ As(a~) c M d T  and 
M r ( 0 )  

f Af(o:) r eM~P~P (1 M~ P  M 
As(a~) t~p t~p+  - - f p  ) C p ] d T + A Q  [6] 

I? M 
where Cp and Cp a re  the specif ic  heats  of the pa ren t  
and ma r t e ns i t i c  phases  and fM~P  is the volume f r a c -  
t ion of the pa ren t  phase p r e s e n t  dur ing  the r e v e r s e  
t r a n s f o r ma t i on ,  which is  t e m p e r a t u r e  dependent.  The 
eff ic iency for the t h e r m a l  cycle is then 
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AQ + 

F o r  s i m p l i c i t y  the mean  C p  va lues  ~M and C ;  a r e  
t aken  ove r  the t e m p e r a t u r e  r ange  Mr(0) to Af(a2), and 
i t  is  f u r t h e r  a s s u m e d  that  f M--P  is  p r o p o r t i o n a l  to the 

( ATo "~(ln + 
AQ kTo(0 ) ] \  (1  e))  

[7] 
Mf(0) Cp dT if pM--P Cp (I - 

JAs(O2)  

t e m p e r a t u r e  d i f f e rence  iT - As(az) ]. Eq. [7] then b e -  
c o m e s  

( ATo .~ ( l n  (1 + E) ) 
AQ + C~(As(a2)  - Mf(0)) + 1/2 { 0 ~  [Af((; 2) - As((;~)] + 0M[Af(r -- As(az)]} 

[8] 

DISCUSSION AND CONCLUSIONS 

F r o m  Fig .  2, a Carnot  cyc le  work ing  under  the s a m e  
t e m p e r a t u r e  l i m i t s  as  the model  engine has  an e f f i c i ency  

~7c = 1 Mf(0) [9] 
and as obv ious f r o m  the T-S d i a g r a m ,  the Carno t  cyc le  
is  the m o r e  e f f i c i en t  of the two .  Since Af(o2) can be 
wri t t en  as 

Af (ca) = Af(0) + Af((r2) - Af(0) 

/ AT o \ 
= Af(0) + [T----~)To(O) [10] 

(using the  a p p r o x i m a t i o n  [Af(a~) - Af(0)] ~ [To(~2) 
- To(0) ] = ZXTo the Ca rno t  cyc le  e f f i c i ency  can  be r e -  
wr i t t en  as  

Mf(0) 
~?c = 1 - ( AT ~ -~ [111 

AgO) + \ T---~-] T~ 

Considering the same stresses as before, the pres-  
ent thermal cycle can be simplified by taking 

ATo >> [As(0) - Mf(0)]* 

AT o >> [Af(0) - As(0)]* 

For example, usmg experimental data (electrical resistivity vs. temperature 
plots) from a Ag47.8at pct Cd alloy, [As(0 ) Mf(0)] ~ 7K, [Af(0) - As(0)] 
IOK and ZXT0(max) ~ 80K) 1 

and by  a s s u m i n g  tha t  s u p e r c o o l i n g  and supe rh e a t i ng  
a r e  independent  of s t r e s s .  Eq. [8] can thus be  s i m p l i -  
f ied to 

( ATo .~(ln (1 + e )~  
AQ \ T - - - ~ ]  \ e / 

y -  
AQ + ~ p & T  o [12] 

Let t ing  �9 = 0.10, C P  = 4 c a l / m o l e  K (18.55 J / k g  K), AQ 
= 100 c a l / m o l e  (464 J /kg) ,  T o = 100K, AT 0 = 100K, Af 
= 110K, and M r =  7OK. Eqs.  [11] and [12] r e s p e c t i v e l y  
give ~c  = 0.67 and 77 =0.20,  which shows again  that  ~?c 
> 77. It should be e m p h a s i z e d  tha t  Eq. [12] is  only  a 
rough app rox ima t ion .  

The p r e v i o u s  a n a l y s i s  and a p p r o x i m a t e  e f f i c i ency  of 
20 pc t  ind ica te  that  it  m a y  be f e a s i b l e  to app ly  the t h e r -  
mal  to m e c h a n i c a l  c o n v e r s i o n  p r o p e r t i e s  of t h e r m o -  
e l a s t i c  m a r t e n s i t i c  m a t e r i a l s  to conve r t  s o l a r  e n e r g y  
and o the r  was t ed  hea t  into m e c h a n i c a l  ene rgy .  Thus 
the  notion of a so l id  s t a t e  engine work ing  on s o l a r  en -  
e r g y  is  s u g g e s t e d  for  fu tu re  deve lopment .  It fol lows 
that  op t imum se l ec t ion  of m a t e r i a l s  m a y  l ead  to h igher  
e f f i c i enc i e s .  Although Eq. [12] i s  on ly  an a p p r o x i m a -  

t ion,  i t  n e v e r t h e l e s s  s e r v e s  as  a guide for  s e l ec t i ng  
m a t e r i a l s  with d e s i r a b l e  c h a r a c t e r i s t i c s .  The fo l low-  
ing i t e m s  a r e  thus c o n s i d e r e d  e s s e n t i a l  for  the e n e r g y  
c o n v e r t e r .  

1. The m a t e r i a l  mus t  exhib i t  a t h e r m o e l a s t i c  m a r -  
t e n s i t i c  t r a n s f o r m a t i o n  so that  the shape  m e m o r y  b e -  
hav io r  is  p r e s e r v e d  ove r  many  c yc l e s .  

2. Fo l lowing  the p r ev ious ,  a long fa t igue  l i fe  under  
r e a s o n a b l y  high s t r e s s  l e v e l s  i s  r e q u i r e d .  

3. The p a r e n t  phase  y ie ld  s t r e s s  should be  as  high 
as  p o s s i b l e  in o r d e r  to m a x i m i z e  AT o. 

4. T o(0) should be r e a s o n a b l y  low. 
5. The r e c o v e r a b l e  s t r a i n ,  e, should be l a r g e .  
6. A l a r g e  la ten t  heat ,  AQ, f a v o r s  a h igher  e f f ic iency.  
In gene ra l ,  r e c o v e r a b l e  s t r a i n s  on the o r d e r  of 8 to 

10 pct  have been  d e t e r m i n e d  for  Cu-Zn,  16 Ag-Cd,  17 and 
T i - N i  TM a l loys ,  and in the  l a t t e r  c a s e  an excep t iona l ly  
high fa t igue l i fe  is  found. ,a It is  a l so  known that  T O (0) 
can be r e g u l a t e d  by  a l loying.  However ,  many  of the  
above f e a t u r e s  r e m a i n  to be s tud ied  in de ta i l .  Although 
t h e r m o e l a s t i c  m a r t e n s i t i c  t r a n s f o r m a t i o n s  have been  
a p p r e c i a t e d  for  some  t ime ,  it  is  only  r e c e n t l y  that  they  
have a t t r a c t e d  a t tent ion,  p a r t i c u l a r l y  b e c a u s e  of the 
shape  m e m o r y  effect  and c e r t a i n  ind ica ted  app l i ca t ions .  
It i s  e m p h a s i z e d  he re  that  t h e r m a l - m e c h a n i c a l  e n e r g y  
c onve r s ion  is  only  one of many  l ike ly  fu ture  a p p l i c a -  
t ions .  The need  is  a l r e a d y  c l e a r  for  s y s t e m a t i c  a l loy  
deve lopment ,  p r o p e r t y  m e a s u r e m e n t s ,  and innovat ions  
of d e v i c e s .  

This  work  was p a r t i a l l y  suppo r t ed  by  the Atomic  
E n e r g y  C o m m i s s i o n  and the Nat ional  Science  Founda -  
t ion.  

R E F E R E N C E S  
1. C. M. Wayman and K. Shimizu: Metal Sci. J., 1972, vol. 6, p. 175. 
2. P. Hernandez, Lawrence Radiation Laboratory, University of California at 

Berkeley, private communication, 1974. 
3. L. C- Chang and T. A. Read: Tran~ AfME, 195 t, vol. 189, p. 47. 
4. F. E. Wang, W.J.Buehler, and S.J.Pickart, J. AppL Phy~,1965, vol. 36,p. 3232. 
5. G. V. Kurdjumov and L. G. Khandros: Doklady Akad. Nauk S. S. S. R., 1949, 

vol. 66, p. 221. 
6. F. Osmond: Bulletin, Society de Encourgement pour 1' Industrie Nationale, 

vol. t0, p. 480 (1895). 
7. G. Kurdjumov, I. lsaitschew, and E. Kaminsky: Trans. AIME, 1938, vol. 128, 

p. 361. 
8. Z. S. Basinski and J. W. Christian: Act~ Met., 1954, vol. 2, p. 161. 
9. K. Otsuka and K. Shimizu, Scripta Met., 1970, vol. 4, p. 469. 

10. C. M. Wayman: ScriptaMet., 1971, vol. 5, p. 489. 
11. H. C. Tong and C. M. Wayman: Scripta Met., 1973, vol. 7, p. 215. 
12. K. Otsuka, K. Shimizu, I. Cornelis, and C. M. Wayman: ScriptaMet., 1972, 

vol. 5, p. 377. 
13. H. C, Tong and C. M. Wayman: ScriptaMet., 1974, vol. 8, p. 93. 
14. N. Nakanishi, T. Mori, S. Miura, Y. Murakani, and S. Kachi: Phil Mag., 1973, 

vol. 28, p. 277. 
15. R. V. Krishnan and L. C. Brown: Met. Trans., 1973, vol. 4, p. 423. 
16. T. A. Schroeder, M. S. Thesis, University of Illinois, May 1974. 
17. H. C. Tong and C. M. Wayman, unpublished work. 
18. W. J. Buehler and F. E. Wang: Ocean Eng., 1968, vol. 1, p. 105. 

3 2 - V O L U M E  6A, J A N U A R Y  1975 M E T A L L U R G I C A L  TRANSACTIONS A 


