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SOBOLEV SPACES AND (P,Q)-QUASICONFORMAL 
MAPPINGS OF CARNOT GROUPS t)$) 

S. K. Vodop'yanov and A. D. Ukhlov UDC 517.54+517.813.52 

In 1968 at the first Donetsk colloquium on mapping theory Yu. G. Reshetnyak stated the problem 
of describing all isomorphisms 4 '  between the homogeneous Sobolev spaces Lln which are generated 
by quasiconformal mappings qa of the Euclidean space R '~ by the rule ~*(u) = u o ~p. It was shown 
in [1] that these isomorphisms are exactly the latticial isomorphisms of the spaces L~. The approach 
in [1] to Reshetnyak's problem is natural to consider in the context of the preceding results (see, for 
instance, [2, pp. 419-420]). The theorems by Banach, Stone, Eilenberg, Arens and Kelley, Hewitt, and 
Gel'land and Kolmogorov provide conditions on various structures of the space C(S) of continuous 
functions whose isomorphisms determine the topological space S up to homeomorphism. We recall 
Stone's result according to which C(S),  regarded as a lattice ordered group, determines S. On the 
other hand, M. Nakai [3] and L. Lewis [4] established that  the isomorphism between two Royden 
algebras is equivalent to the quasiconformal equivalence of the domains of definition. Distinguishing 
in the homogeneous Sobolev space Lln two structures, the structure of a vector lattice and the structure 
of a seminormed space, we now obtain a situation close to Stone's article in an algebraic sense and to 
Nakai's article in a metric sense. This view of the problem is most natural as allowing us to reconstruct 
a mapping despite keeping at a minimum "information" for finding the mapping,  as well as to prove 
its continuity, and to discover its metric properties. 

The following problem arises in the framework of the approach of [1] to Reshetnyak's problem: 
what are the metric and analytical properties of a measurable mapping ~p inducing the isomorphism 4" 
by the rule ~*(f)  = f o 4, f E Lln. Taking various function spaces Lln, we arrive at different problems: 
the Sobolev spaces W~, p > n, were considered in [5]; the homogeneous Besov spaces btp(Rn), n > 1 .  
lp = n, for p = n + 1 in [6] and for p > n + 1 in [7]; the Sobolev spaces I,V~, n - 1 < p < n, in [8]; 
the Sobolev spaces W~, 1 < p < n, (and the spaces of potentials) in [9, 10]; and the three-index 
scales of Nikol'skiY-Besov spaces and Lizorkin-Triebel spaces (and their anisotropic analogs) in [11]. 
In [12], the theory of multipliers was applied to the change-of-variable problem in Sobolev spaces. The 
results of [5-11] factually assert that,  depending on the relation between the order of smoothness, the 
summabili ty exponent,  and the dimension, the fact that the operator 4" in an isomorphism implies 
quasiconformality or quasi-isometry of the mapping in a metric on the domain which is adequate to 
the geometry of the function space in question. 

Qualitatively new effects appear in this problem when we study the analytical and metric prop- 
erties of homeomorphisms inducing bounded operators between Sobolev spaces. We recall the main 
result of [13, 14]: 

T h e o r e m  1. Suppose that ~o : f~ --~ f~' is a homeomorphism between spatial domains fL f~l C R r~. 
n > 2. Then the following assertions are equivalent: 

(1) the mapping ~o induces the bounded operator 4" : L~(f~') ~ Ll(f~), p E [1, c~), by the rule 

~*(f) = f o 4; 
(2) the mapping ~ belongs to L~,lo r and [V~o(z)[P < Ix'n[ det V~p(z)[ almost everywhere in 9.. 

p E  [1, ~ ) .  
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/%rp E (1.oc), claims (1) and (2) a r e  equivalent to the assertion: 
(3) the inequality 

Capp(~ -1 (F), ~- I (G))  _< 6'9 capp(F, G) 

holds for every ring (F,G) with F a continuum and G C ill. 

(Here V~(x) is the formal Jacobian matrix (defined almost everywhere) and [V~(x)[ is the norm of 
the linear operator corresponding to this matrix. See w 4 for the definition of a ring and the p-capacity 
of a ring.) 

Observe that for p = n the claims of Theorem 1 transform into well-known definitions of a quasi- 
conformal mapping (see, for instance, [1, 15]). As is well known, a quasiconformal mapping can also 
be defined in purely metric terms as a mapping with bounded distortion (see [15-17]). An analog 
of the metric definition for p ~ n is known only for homeomorphisms inducing the bounded opera- 
tor q~* : L~(f~ I) --+ L~(f~) for n -  1 < p < cx~ [18]. Theorem 1 was generalized in [19] to the class 
of homeomorphisms inducing the bounded operator r : Ll_(fl ~) --, L~(f~) for 1 < q < p < oo. For 
n -  1 < q < p = n, this class of homeomorphisms coincides with the class of mean quasiconformal map- 
pings which were studied by many authors under certain analytical constraints (see, for instance, [20]). 
Some applications of mean quasiconformal mappings to embedding theorems for Sobolev classes are 
exposed in [21]. 

Quasiconformal mappings in non-Riemannian metrics were first considered by G. D. Mostow [22] 
in 1972. Quasiconformal mappings on Carnot groups appear naturally in connection with the rigidity 
problem in rank 1 symmetric spaces [22, 23] and the change-of-variable problem in Sobolev spaces for 
a nonholonomic metric [11, 24]. We refer to [25] ([11,23, 24, 26-29]) for various aspects of the theory 
of quasiconformal mappings on the Heisenberg (Carnot) groups and relevant questions of analysis. 

A stratified homogeneous group [30], alternatively a Carnot group [23], is a connected simply 
connected nilpotent Lie group G whose Lie algebra G splits into the direct sum V1 q~ " "  �9 $'m of 
vector spaces such that [V1, Vk] = rv~+l for 1 < k < m - 1, [V1, l';n] = {0}, and dim rv] >_ 2. Such 
an algebra is endowed with the natural family of the dilations ~t = exp(A log t), where A is the linear 
operator defined as Az  = kz  for z E i,~. Let X H , . . . , X l m  be vector fields constituting a basis 
for the space V1. Since these fields generate V1; for each i, 1 < i _< m, we can choose a basis Xij ,  
1 < j < ni = dim rye, for ~ which is formed by commutators of the fields Xlk C V1 of order j .  
Since the algebra ~ is nilpotent, the exponential mapping exp : ~ ~ G is a diffeomorphism and the 
mappings exp o~ht o exp -1, denoted henceforth by the same symbol ~t, are group automorphisms of G. 
This implies in particular that every element x E G can be written as exp(~'~ x i iX i i ) ,  1 < i < m, 
1 <_ j <_ nj. The numbers {xii} are called the coordinates of x E G. 

Fix a bi-invariant Hoar measure on G (it is generated by the Lebesgue measure on G by means of 
the exponential mapping). We normalize the Lebesgue measure so that the ball B(0, 1) has measure 1. 
Then IB(0,r)l = r ~'. The number v = traceA is called the homogeneous dimension of G. Clearly, 
[~tE[ = P'IE[. 

The Euclidean space R n with its standard structure is an example of an abelian group: the 
vector fields 0 5-~/, i = 1 , . . . ,  n, have no nontrivial commutation relations and consti tute a basis for the 
corresponding Lie algebra. The Heisenberg group H n is an example of a nonabelian Carnot group. 
Its Lie algebra has dimension 2n + 1 and its center is one-dimensional. If X 1 , . . . ,  Xn, Y1, . . . ,  Y n , T  
is a basis for the Heisenberg algebra then the only nontrivial commutation relations are [Xi, I~] = T, 
i = 1 . . . . .  n. whereas all other brackets are zero. 

A homogeneous norm on a group G is a continuous function p : G --* [0, ~ )  of class C ~176 on G\{0} ,  
where 0 is the identity of G, possessing the following properties: 

(a) p(x) = p(x -1) and p(~t(x)) = tp(x): 
(b) p(x) = 0 if and only if z = 0; 
(c) there exists a constant c > 0 such that p(xlX2) < c(p(zl) + p(z2)) for all Xl,X2 E G. 
A homogeneous norm is defined in a nonunique fashion; however, arbitrary two homogeneous norm 

are equivalent. A homogeneous norm determines some homogeneous metric p (denoted by the same 
letter) as follows: given two points x , y  E G. put p(x.y) = p(x- ly ) .  Given the metric, we routinely 
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define the spheres S(.r, t). the balls B(x. t), and the topology which turns out to be equivalent to the 
Euclidean topology. 

The Carnot-Carath~odorv distance d(x, y) between two points x, y E Ca is defined to be the greatest 
lower bound of the lengths of all horizontal curves with endpoints x and y, where the length is measured 
in the Riemannian metric with respect to which the vector fields X l i , . . . ,  XI,~, are orthonormal and 
a horizontal curve is et piecewise smooth path whose tangent vector belongs to V1. The distance 
d(x, y) is always a finite left-invariant metric with respect to which the group of the automorphisms 
~St is a group of dilations with coefficient t: d(atx, aty) = td(x, y). We put d(x) -- d(0, x) by definition. 
It is easy to demonstrate that the distances d(z, y) and p(x, y) are equivalent. 

Further, we consider a family F of curves constituting a smooth fibration of an open set A C G. 
Usually, the fibers 7 E F are the integral curves of some smooth vector field V whose values at all 
points belong to Va. If we denote the flow corresponding to this field by the symbol qos, then each fiber 
has the form 7(s) = ~ ( p ) ,  where p belongs to some surface S transversal to V and the parameter s 
varies in some interval I C R. We suppose that the fibration F of A is furnished with a measure d7 
satisfying the inequality 

c01Bl 7 <_ / <_ c lBl 7 
, I  

-tEr,'toB(z,r)~ 

for sufficiently small balls B = B(x, r) C G with constants co and cl independent of B(x, r). For 
the fibration determined by a vector field V E Va, the measure d7 can be obtained as the interior 
multiplication i(V) of V with the bi-in~;ariant volume form dx. 

Let D be a domain in Ca. A locally-summable function f : D ---, R belongs to L~(D) if the weak 
derivatives X o f  , j = 1, . . . ,  nl, along the vector fields X 0 belong to Lp(D). On using the averaging 
method well-known in Euclidean space, it can be demonstrated that every function f in L~(D) can 
be approximated by functions fk E C~176 so that ftc ~ f in LI(U) for every domain U ~ D 
(the notation U ~ D means that U is compactly embedded in D) and X u f k  ~ Xlj. f  in Lp(D), 
j = 1 , . . . ,  nl. The space L~ is furnished with the seminorm 

(y [if i s _ -  I V , . f l p ( z ) d x  , 

D 

where V c f  = ( X l l f  . . . .  , X ln l f )  is called the subgradient of f .  
A mapping ~o : D --+ G is called absolutely continuous on lines (r E ACL(D)) if for every domain 

U, U C D, and the fibration F determined by a left-invariant vector field XIj ,  j = 1 , . . .  ,n l ,  the 
mapping ~ is absolutely continuous on 3' Iq U with respect to the one-dimensional Hausdorff measure 
H 1 for d'r-almost all curves 7 E F. Such a mapping So has the derivatives Xl1r E V1 along the vector 
field XIi ,  j = 1 , . . .  ,n l ,  almost everywhere in D [23]. A mapping So : D --+ Ca belongs to the Sobolev 
class ~q, loc(D) if p(~(x)) E Lv,loc(D ), q~ E ACL(D), and XIj~ E Zp,loc(D), j = 1, . . . .  nl. Given 

a domain U C D, 0 C D, we consider the norm 

(/ ll t  v (u)ll : [[p(~(.))ILp(U)II + IVc~ lP(z )dz  , 

u 

where the matrix Vz:~o(x) = (Xli~lj(X)), i , j  = 1, . . .  ,nl ,  called the (formal) horizontal differential 
of q; at x. determines the linear operator V,'~2 : V1 "-'+ I/] of the horizontal space V1 [23] for almost 
all x and I~Ycq~[ is the norm of this operator. 

In [24. Proposition 5], it was demonstrated that mappings of the Sobolev class on a Carnot group 
can be characterized in terms of the properties of the coordinate functions: a continuous mapping 
; : 9. --+ G belongs to l.l,~.toc(fi) if and only if r E Hl&q.toc(fl ). Here a continuous mapping ~0 : fl --+ Ca 

beloogs to the. class Hl l.q, loc(f~) if 
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(1) the coordinate functions ~gij belong to ACL(fi) for all i and j:  
(2) : u  E l l '~ jo r  j = 1 . . . .  , n , ;  

(3) the vector A'~}~ = (X~}~ii) belongs to V~ for almost all x E ~, k = 1, . . . .  nl (the weak 
contactness condition). 

In the present article., generalizing the results of [13, 14.19, 24, 26] in particular, we present equiv- 
alent geometric and analytical properties of homeomorphisms inducing bounded operators between 
Sobolev spaces on Carnot groups. The main results of the article for p = q were announced in [26]. 

w 1. Sobolev  Spaces and Re levan t  Classes of M a p p i n g s  

We say that a mapping ~2 : D --+ D' generates the bounded embedding operator ~* : L~(D') ---+ 
L~(D), 1 <_ q <_ p <_ oo, by the rule ~*f  = f o ~ ?  if there is a constant K < oo such that 
[[~*f [ L~(D)[[ <_ K[[f [ LI(D')[[ for every function f E L~(Dt). 

Propos i t i on  1. Suppose that ~ : D -~ D' generates the bounded embedding operator ~* : 
L~(D') ~ L~(D), 1 <_ q < p < oo. Then ~ E ACL(D). 

To prove this proposition, we need the following two lemmas: 
A nonnegative function ~ defined on open sets of D and taking finite values is called quasiadditive 

(additive) if the inequality Zi~176 4)(Ai) <_ r (the equality ~"]~=1 ~)(Ai) = ~)(Ui~176 1 Ai)) holds for 
every collection of pairwise disjoint open sets {Ai}, Ai C A C D, i E N, 

L e m m a  1. Suppose that q~ : D ~ D' generates the bounded embedding operator ~p* : LI(D ') --+ 
L~(D), 1 < q < p <_ oc. Then 

(I)(A') = sup ~* f- ] A'))_ , where x = ~ for p < cr 
\ [[f lL$(A')II ] q for p = oct, 

is a bounded additive function defined on open sets of D'. 
PROOF. It is obvious that (I)(A't) < (I)(A.~) if A~ C A~. 

= U/=l Ai and Ai = Suppose that A~, i E N, are pairwise disjoint open sets in D' and let A~) oo , 
o o 

1 t ~2-1(A~), i = 0,1, . . . .  Consider a function fi E Lp(Ai) such that the conditions Ilcf,  I L (A,)II > 
1 ~ i 0 1 i ~ ~ t 

((I)(A~)(1 ~))'~[[filLp(Ai)[[ and [[fi[ I[p ~(A~)(1-  p - Le(Ai) = fo r  < o o  (llf, lL , , ( z , ) l l  = 
for p = ~ ) ,  ~ E (0, 1), are satisfied simultaneously. Putting fN = ~--~N=~ fi and applying HSlder's 
inequality for 1 < q < p _< or (the case of equality), we obtain 

[[~*fN I ~1 (i--~ ai)I1_~ ( = ~  ( ( I ) ( A ~ ) ( 1 - ~ ) ) ~  Ilf~v , ~(a~)[[  q) ~' '  

Hence. 

1 

= ~(Ai)  1 - ~7 Lv l i p  Ai 

I 

N ~" Ol 

, L 
(I)(A0)~ >_ sup 

IL ~ )1 ~*fN I Lq -~ 
~,=1 > ~ ( A } )  - ~ ( a ' o )  

s.,- t ,y, 
668 



o N 
where. . the least, upper bound is calculated over all. functions fN E Ll(v [.J,=,", A]), of the above form..Since 
A and s are arbitrary, we have proven that r is quasiadditive. The reverse inequality is immediate. 

A regularized distance from a point z E G is a function d. : Ca ~ [01 ~ )  possessing the following 
properties: (1. E C~(Ca), Clp(X,Z) <_ dz(x) < c2p(x,z), and ]X-7s ) _< c3, where x E Ca and 
the constants cl, c2, and c3 are independent of z. A regularized distance is defined as in Euclidean 
space [31] by means of the Whitney partition [30] of the domain Ca \ {z}. 

L e m m a  2. Suppose that ~ : D ~ D' is a homeomorphism possessing the following property: 
there is a function g E Lq,loc(D), q >_ 1, such that, for some countable everywhere dense set of points 
z E G, the function [~]Ax) = ~lz(~(x)) belongs to L~(D) and 

IVc[~]~l(~) _< Kg(x) almost everywhere in D, 

with some constant K independent of z. Then ~o E ACL(D) and [Vt:~[(x) _< K' g(x), with some 
constant K ~ independent o['r and g. 

PROOF. Consider the fibration F i of D generated by some vector field X U. The function [~]~[~ 
is absolutely continuous on dT-almost all lines "r of Fj whose choice is independent of z, g['r E Lq. and 
[Xo[~]z[v[(x ) < Kg[-t(x ) almost everywhere. Hence, for every segment [x, y] of 7 we have 

<- K f 9dt. 
[~,y] 

Thus, the increment of the function [~]*[v along 7 is controlled by the integral of g independently of 
the choice of z. Consequently, we can pass to the limit in z and, since the set of the points z is dense 
in Ca, the last inequality is valid for every point z E G. Putting z = ~(x), we obtain 

< c7aK f gdt. 
[:~,y] 

This implies absolute continuity of r on almost all lines of the horizontal fibration as well as the 
estimate ]Xu'~] < K~g in D. Lemma 2 is proven. 

We say that a mapping ~ : D --* D I satisfies Luzids condition (Af) if the image of each set of 
measure zero is a set of measure zero. Given r : D ---* D', denote by ,.7~(x) the volume derivative 

,7~(x) = lim I~(B(x,r))l  
r--~O T u 

It is well known [32] that there is a Borel set S of measure zero outside which r : D ~ D' satisfies 
Luzin's condition (j%~) and the change-of-variable formula is valid: 

f f o : (x )J~(x)  "dx = / f(Y)X(Y) dy, 
D D' 

where k(y) is the characteristic function of the set D' \ T(S). 

PROOF OF PROPOSITION" 1. By Lemma 2, it suffices to veri~" existence of a flmction g E Lq,loc(D) 
such that [V~z(u o ~)[(x) <_ Kg(x) almost everywhere in D for all functions u E CZC(D) such that 
[[u [ L~(D')[[ _< 1. Fix a point y0 E D' and take the function rl(y ) - ~(6r(Yoly)), with B(yo,2r) C G. 
where ( E ( ' ~ (G)  is a truncator such that ~[Ot0.1) -- 1 and ~[,'~\O(0.2) = 0. 
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l ' s ing  L e m m a  1. for q < p < oc we then obta in  (B  = B(yo. r)) 

1 1 

( /  '~l~(tt~ <- r (/l~7s F 
~-t(B) 2B 

1 l 
+ IVcel~(. - .(y0) ~ dy)  

2B 2B 
1 1 1 1 

< r  + (or-lc2r[2S[~)) = Ccb(2B)Z[BIF. 

9 1 ( I f p = q  then we put r  = [l~*ll for all balls B.) This implies in particular that [Vs o ~)lq(x) =0  
for almost all z E ZUS, with Z = {z E D : J~,(z) = 0}, since I~(zxs) l  = 0 by the change-of-variable 
formula. To verify this, fix e > 0. There is a collection {Bi = B(zi,ri)} of balls covering the set 
~ (Z  \ S) and possessing the following property: the balls 2B~ = B(zi, 2ri) constitute a covering of 
finite multiplicity and the multiplicity of the covering depends only on the algebraic and geometric 
properties of the group G and ~ r~' < e. From the last inequalities for q < p we obtain 

IVc(uo~)lq(x)dx < ~ " Wc(uo~)lq(x)dx 
Z i=l~-l(Bi) 

- )o 
< C~_'~(2Bd~'lBil~ < C ~(2Bi) IBil 

i=1 i=1  i=1  

Since ~-']~i~162 ~(2Bi) < C'~(D') and e > 0 is an arbitrary number, the sought equality is proven. (For 
q = p, the estimate is even simpler.) 

Thus, we arrive at the relations 

~,-I(B) ~-I(B)\(ZuS) 
I V E ( U  0 ~ ) [ q  ( ~ - - l ( y ) )  

= d y < C r  ~1  I p < ~ .  

B\~(ZuS) 

From the Lebesgue theorem on differentiation of integrals we obtain 

IVc(u o 
J r  99)[q(9~-1(Y)) <~ C~'(Y)~ for almost all y E D' \ 9~(Z U S) 

1 1 1 1 1 
or IVc(u o ~)l(x) < C ~ ' ( ~ ( x ) ) ~ & ( = ) ~  for q < p (IVcCu o ~)1(=) < Cr  • & ( = ) ~  for q = p) for 
almost all x 6 D. since [S[ = 0. Putting 

1 I 1 1 

g(x) = C7~) (~(x))-i ff~(x)7 for q < p, 
I 1 

C~ff,,~(x)~ for q = p, 

we find that g E Lq.lor Consequently. the conditions or Lemma 2 are satisfied and therefore 
E ACL(D). 
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If ; E ,4('L([)-) then the formal horizontal differential V~:4(x) generates the homomorphism D~, 
called the formal differential, of the Lie algebra V [28, Theorem 4]. The quantity f f (x ,~ )  = det D~ 
is called the Jacobia, of 4 at .r. 

lnt roduce t he characteristic 

Kp(x) = inf{K(x) :  IVs _< K(z)lff(x,!;)[ }. 
T h e o r e m  2 . . 4  homeomorpfiism ~ : D --* D ~ generates the bounded embedding operator c?* : 

L}(D') --+ L~(D) if and only i['~ E ACt(D)and the quantities 
1 

h'p,p = II/,'p(') I Loo(D)II~ t'or 1 < q = p < er 
1 

K,,, = II K,(-)I  L p_--~- 7 It r for 1 < q < p < oo 

are finite. The  norm or" the operator ~*: LI(D ') ~ L~(D) is equivalent to Kp,q. 
PROOF. The membership ~2 E ACt(D) is proven in Proposition i. We turn to proving the other 

assertions of the theorem. O 
Necessity: THE CASE OF 1 <_ q < p < oo. By Lemma l, the inequality I _ 

o O 
 (A) / llfl I holds for every function f e L~(A) with q < p, where A C D' is an open subset 

(for q = p we put (I)(A)~ = I1 *11). Fix a truncator r / e  Cg(G)  which equals I on B(0, l) and 0 outside 
B(0, 2). Insert the functions hlj(y) = ('yoly)lj~l(~; 1 (ygly)), j = 1 , . . . ,  nl, in the above inequality. 

Here the symbol (yo~y)~j stands for the l j th  coordinate function of the mapping yoly. Then we 

arrive at the inequality 

( f [Vs < C,(B(yo, 2r))l/'(rU) '/,, (1.) 

~,-~(e(~o,O) 

where C, is some constant depending only on v and p. 
If ~; does not satisfy condition (N') then, by the change-of-variable theorem of [28], there is a Borel 

set E' of measure zero such that the formula 

/ (go~) , f f (x ,~) ,dx  = f g(y)x(y)dy (2) 

D D' 

is valid with X:(') the characteristic function of the set D' \ c2(E). 
Put Z = {x E n \ E I J (z ,9)  = 0}. Show that 

f lVc ol p,/x o. (3) 
z 

By (2), we have Ir \ E)l -- 0. Fix e > 0 and fix an open set U D ~ (Z  \ E),  IUI < There is 
a covering {B(xi, ri)} of finite multiplicity of U" by the balls such that B(xi, 2ri) as well constitute 
a covering of finite multiplicity of U and ~ r[  < Ne (the multiplicity N of the covering is independent 
of U). Then from (I) we obtain 

< 

/ 1~'7E~lq(x) dx / 
i=1 1 Z Z\E ~- (B(yi,ri)) 

cPll 'i? E 
i=1 

IX," ) 
Cq i=IZ (~(B(yi,2Fi))~(F~) ~ <- cq~(DI))P~P (i~lr~ ~p 

OC 

for q = p, 

for q < p. 
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Since ~(D')  < 3c and s > 0 is arbitrary, (3) is proven and consequently IVc~[ = 0 almost everywhere 
on Z.  

For q = p we apply (2) to the left-hand side of (1). Then the Lebesgue theorem on differentiation 
of integrals implies that 

IV~::l,C:-~,(y)) 
IY(:-~(y),~)l < C ' l l : * l l  p almost everywhere in D' \ ~ (E  U Z). 

Let S C D ' \  ~2(E U Z) be the set of measure zero on which the last inequality is not valid and let X s be 
the characteristic function of 5'. Then I,.7"(x,~v)l = 0 almost everywhere on ~ - I ( S )  by (2). Therefore, 
T-l(5') C Z and I~'s < C'll~*[['lff(z,~)[ almost everywhere in O. 

In the case of q < p we rewrite (1) as 

f iVc:lqdz < ~q(~(B(yo,2r))'~ 
k, IB(y0,2r)l ] r" 

~-qB@o,r)) 

and apply (2) to the left-hand side of this relation: 

IV,-~lg(~) dz = f IVc~:lq(z) dx 
~-*(B(yo:)) ~,-~(B(yo,~))\Z 

= f IVc:Iq(:-*(Y))xrY) < 6q(~(B(y6'2r))'~ ~ " \ : 

B@o,r) 

The Lebesgue theorem on differentiation of integrals and the properties of the derivative of a count- 
ably-additive set function [32] imply that 

IV ~,,..~ ]q (~ -  1 (y)) ~ p/(p-q) 
ly(~_l(y),~) I ) ,~(y) _4 c~(I)'(y) almost everywhere in D'. 

Integrating the inequality over D', we obtain 

KL~' = 
D\Z 

l,.7(x,w)IJ k W(v-%),v)l ) 
D' 

< C=/~'(y)dy < C,'~(D') < O'll~*ll ~ .  
D' 

• ay 

Sufficiency: Show that the inequality ll:*f l L~(D)ll < K,,qllf l L~(D')[I, q < p, holds for every 
function f 6 L~(D') 13 C~(D'). Since f o ~ belorigs to the class ACL(D), we have 

D 

= ( /  ,vcf[q[,l(x,~)l q/p [~rs dx)l/q 
IJ(x.  ,~)l q/p D\Z 
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Using HSlder's inequality for q _< p. we derive the estimate 

I I :*f I L (D)It 

<-( / 
D\Z D\Z 

(for q = p the left factor equals I'[p,p). Applying (2) to the right factor, we obtain the following 
estimate for the norm: II~*H -< l'[p,q. 

To extend the so-obtained estimate to all functions f E L~(D'), 1 < q _< p < ~ ,  we approximate 

f by a sequence of smooth functions fn E L~(D I ) so as to have IIf - fn I L~(D')]] --~ 0 and f - f ,  -., 0 
quasi-everywhere in D' as n --* c~ [33]. Since the inverse image ~2-1(E) of a set E C D' of zero 
capacity has zero capacity, we have ~*(fn) "-* ~2*(f) quasi-everywhere in D. Hence, we conclude that 
the extension of the operator r from the subspace f E L~(D')n C ~ ( D  ') to f E L~(D') by continuity 
coincides with the substitution operator ~*: r = f o r (since from each sequence converging 
in L~(D), 1 < p, we can extract a subsequence which converges quasi-everywhere). 

If t = q < p then, using the method described in the preceding case, we can extend this operator 
to all functions of the Sobolev class under consideration: the only difference is that from a sequence 
r (f,~), with fn converging quasi-everywhere in L~(D'), we can extract a subsequence which converges 
almost everywhere in D. 

If q = p = 1 then we should replace the capacitary characteristic of convergence with a coarser 
one: i fa  sequence fn E L](D') converges to f E L~(D')in i ] ( n ' )  then some its subsequence converges 
almost everywhere. To complete the proof, it suffices to use the following property [34]: the inverse 
image of a set of measure zero under the mapping ~ : D ~ D' inducing the bounded operator 
~*:  L](D') ---* L](D) is a set of measure zero. 

Coro l l a ry  1. An additive set function U ~-~ ~(U), with U C D ~ an open set, considered in 
Lemma 1 is absolutely continuous. Moreover, the set function V ~ (I)(~o(V)), with V C D an open 
set, is absolutely continuous too. 

PROOF. It is obvious that the estimate (4) is valid not only for D but also for an arbitrary open 
set ~ - I (U) .  where U C D j is an open set. Consequently, 

II:': t 

_( / flv ,: ,/(,-,) o, 
< lls I L,(u)ll. 

v-qU)\(ZuE) 

A L ~ 

Hence, ~(U) < III,',(.) I L _ L ( ~ - I ( U  \ ~(Z O S)))lI "i- .  Since the set function D' \ r O E) D 
F ~ 

A l ~-~ I~-I(AI)I is absolutely continuous, the function defined on open sets U C D I by the rule 

U ~ llI(p(.) I L--L(V-I (  U \ v (Z  U E)))II a~/ is absolutely continuous. Since it dominates (I)(U). the 
l a - - q  

latter is absolutely continuous too. 

Similarly, we verify that the estimate ~(~2(V)) < ftKp(-) I L_I_(V \ (Z  U E))It a~'/ is valid for 

every open set V, whence we conclude that the set function V ~-~ ~(~(V))  is absolutely continuous. 

w 2. C a p a c i t y  and  M a p p i n g s  G e n e r a t i n g  E m b e d d i n g s  o f  t h e  

Sobolev  Spaces  

Recall the concept of capacity [33]. A condenses" in a domain D C G is a pair (F0, F1) of disjoint 
connected closed sets F0. F1 C D. A continuous function u E LI(D) is called admissible for a condenser 
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(F0. F1) if lhe set Fi r3 D is contained in some connectedness component of the set Int{x I it(x) = it ,  
i = 0.1. The p-capacity of a condenser (F0, F1) in the space LI(D) is the number  

capp(Fo, F1; D)= infllu I LJ,(D)II p, 

where the infimum is calculated over all functions admissible for the condenser (F0, F1). A function 
v E L i (D) i s  called an extremalfunction for a condenser (F0, F1) i f  

f IVcvl p = capp(V0,  D) dz F1; 
D\(FouFI) 

0 

and v - w E L~(D \ (F0 U F1)) for every function w admissible for the pair (F0, F1). 
Denote by Ep(D) the set of extremal functions for the p-capacity of all pairs of connected compact 

sets F0, F1 C D with nonempty interior whose boundary points are regular with respect to the open set 
D \ (F0 tO F1 ) (see the definition in [35, 36]) (by Wiener's test [35], the regularity condit ion guarantees 
continuity of a solution to the corresponding Dirichlet problem at the boundary points of F0 and F1 
and consequently the possibility of continuous extension by zero (unity) to the set F0 (F1)). Thus. the 
functions of the class Ep(D) are also admissible for the corresponding condensers. As in the Euclidean 
case [37] the following theorem is valid: 

T h e o r e m  3 [33]. Assume that 1 < p < oo. There is a countable collection of functions t,i 
Ep(D), i E N, such that, for every function u E Lip(D) and every ~ > 0, u is representable as 

u = ~o + ET=, ~,v, and Ilu I LVD)II  -_- E,~,  I1~,~, i L;(O)II ___ I1~ I LVD)II  + , .  

T h e o r e m  4. A homeomorphism ~ : D -+ D t generates the bounded embedding operator ~ : 
Llp(D ') --+ L~(D), 1 < q < p < o o ,  if and only if the inequalities capp(tp- l(Fo),~-l(F1);D) < 

K p capp(F0, F1; D') for 1 < q = p < cr and cap~/q(~-l(Fo), ~p-l(F1); D) < (I)(D' \ (F0 U F1) )e~  cap 1/p 
(Fo, F1; D') for 1 < q < p < o o  are valid for every condenser (Fo, F1) C D, where q) is a bounded 
quasiadditive function. 

PROOF. Necessity: Suppose that  u is an admissible flmction for a condenser (F0, F1). Then the 

composition uok; is admissible for the condenser (~- I (F0) ,~- I (F1)) .  Hence, capl/P(~-l(Fo),qa-l(F1); 

D) <_ s,'ll,, I Lp'(D')ll for q = p and cap~lq(~-l(Fo),cp-i(F,); D) <_ I1= o v I L~(D)II 5 r  \ (F0 u 
F1))(P-qilPqll u I Li(o')ll for q < p. Since the admissible function u is arbitrary, we can take the 
greatest lower bound on the right-hand sides of these inequalities and thereby prove the necessity 
part. 

Sufficiency: Suppose that  ui is an extremal function for a condenser (F~, F~) C D' and w/ is 
an extremal function for (~- I (F~) ,~o- ' (F~))  C D. Then 

{ ~,11r I L~(AI)II 
II~i,~ ', I L~(A,)II ___ <~(Ai)(,,-q)/,,.llc,,, , I LJ(AI)II 

for q = p, 

for q < p, 

where A} -- D'\(Fio U F~). Ai = ~-l(A}), and ci is some constant. Take the qth power of the inequality 
and sum the resulting terms: 

~11~,,,', I LD(A,)II q < 
i = l  E ~(A})"-q'/ 'ql lc~u,I ' ' G(A,)I I"  

i--1 

for q = p, 

for q < p. 
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Applying HSlder's inequality, for q < p we obtain 

ciu'i l L (Ai) q <_ ~b A ciui l Lp(Ai 

Using Theorem 3. we can now validate the inequality [l~*f I L](D)[[ < Kllf I L~(D')[[, q < p, for 
every function f E LXp(D ') as in [37]. 

w 3. Def in i t ion  of  (p, q ) -Quas i confo rma l  H o m e o m o r p h i s m s  and  

Their Properties 
Given ~ : D ---* i f ,  introduce the characteristic L~(x,r)  = maxp(z.y)= r p(~(x), ~(y)), provided 

that r is sufficiently small. Fix a constant )~ > 1. A homeomorphism ~2 : D ~ D ~ is called (p, q)- 
quasiconformal, 1 < q _< p < oo, if there exist a constant K < ~ and (for q < p) a bounded additive 
absolutely continuous function r defined on open subsets of D and such that 

_ / 
lim < K 
, - o  l (B(x, \ ) - 

for all points x E D (for p = q, the function in the denominator is assumed to be equal to unit)" [26. 
27]; see [18] for the case of G = R"). 

Let 7 be some curve in G joining points xl and x2. Accor4ing to [27], a mapping ~o is called 
a-absolutely continuous (a > 1) on 7 if for every e > 0 there is (5 > 0 such that the inequal- 
ity Y'~i>_l p(~o(ai),~(bi))" < ~ is valid for an arbitrary collection of segments (ai, bi) of ~t such that 
Y']~i>I p(ai, bi) ~ < (5. The concept of a-absolute continuity is connected with the concept of the c~- 
dimensional Hausdorff measure H a defined for an arbitrary set A C G as 

Ha(A) = lim H ~ ( A ) =  l i m i n f ~ - " ( d i a m B j ) a  : A C U B j ,  d iamBj  < ~}. 
r r k .~.-./ 

J i 

Observe the following fact: 

L e m m a  3 [27]. Suppose that v EVa ,  a = 1,. . .  ,m, is a le[t-invariant vector field and "~(s) is 
some integral line of this field. Then "7(s) has finite a-dimensional Hausdorff measure. 

An important property of (p, q)-quasiconformal mappings is a-absolute continuity along the lines 
of the fibration P generated by a left-invariant vector field XaT EVa. 

T h e o r e m  5 (the ACL-property). Suppose that ~ : D ~ D ~ is a (p, q)-quasiconformal home- 
omorphism, 1 < q < p < cr Then, for an arbitrary natural l <_ a < q, the mapping ~ is a- 
absolutely continuous on almost a11 lines of the fibration F generated by the left-invariant vector field 
X(~ E ~ (1 < r <_ na). Moreover, every (p,q)-quasiconformal mapping is "P-differentiable a/most 
everywhere in D. 

PROOF. Fix some field Xar and let F be the fibration generated by this field. Take the cube 
Q = YT0, where 70 = exp~ XaT. IsI _< M, and Y-is the hyperplane transversal to Xa~: 

Y=(a;0;b) Ixor=0, ]a]<M, [bi<_M 

(with these notations, a = ( x i j ) ,  1 < i < ct. 1 <_ j <_ ni. j # r for i = a and b = (Xij), a < i ~ m, 
I _< j < n i l  

Given a point y E Y, denote by q.~ the element yT0 of the fibration which starts at y. Thus. Q is 
the union of all such segments of integral lines. Consider the tubular surface of the fiber ~tv of radius r: 
E(y.  r) = vyB(e, r) 71Q. 

The following lemma is valid: 
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L e m m a  4 [27]. Let ~ be a quasiadditive fimction on G. Then rlmr_o ~(E(y,r)) < oc ford^i-almost 
all !! E V. ~-~  

PROOF OF TIlEOREM 5. The case 1 < p = q < ~ was considered in [27] under more general 
assumptions on the topological properties of mappings. The method of [27] for proving absolute 
contimfity applies also to the case of 1 < q < p. 

Assume that 1 < q < p < ~ .  Take a point y E Y so that the assertion of Lemma 4 hold for the 
element 7g of the fibra,tion. Fix a compact set F C 3'y and a number C > K. Observe that F is the 
union of the following increasing sequence of closed sets: 

F~ = x E F \ l ~ ( B ( x ,  Ar))[ < Cq for a l l r <  ~-, I E N  , 

(the proof of closure of Fl bases on absolute continuity of the set function q)). Fix l, e > 0, and 
t > 0. There is 6 > 0 such that for each 0 < r < min(5,1/l) there exists a numeric sequence 
s t E Fb j = 1 , . . . ,  N,  such that the balls B 5 = B(xt ,  r), where x t = 7~(st) , cover Ft (moreover, the 
sequence {st} is chosen so that each point of FI be contained in at most two balls), N r  a <_ Ha(Fi)+~. 
and p(~(xt) ,~(y))  < t, y E B(x t ,  r ). Then 

- \ J \ J ' 

where the additive function k~ is defined on Borel sets by the relation ~/(A) = I~p(A)l and ,\Bj = 
Bt 

The balls B(~(x j )  , L~(xj,  r)) obviously cover the image ~(F/).-Therefore, 

/ < <_ 
\ j = 1  ] t = l  

-- j--1 5 =-1 rt, a ] 

<_ cons t (na(Fl )+  e) o ~ ~ )  \ ~ /  . 

Passing to the limit as r --~ 0 and afterwards letting e and t tend to zero, we obtain 

H"(~(F t ) )~  <_ c o n s t ( S " ( F ~ ) ) ~ ( r 1 6 2  

for an arbitrary I. Since ~ (F )  is the limit of the increasing sequence ~(Fl), the  last inequality holds 
for F.  Consequently, ~p E ACL(D) .  

We are left with demonstrating that ~ is 5O-differentiable almost everywhere in D. From the 
condition of (p, q)-quasiconformality we obtain the inequality 

- \ 7;  ] \ 7; ] 

Passing to the limit as r --~ 0, we arrive at the relation 

< const  ffPt(x)P-qffJt(x)q 

for ahnost all points of D; so ~ is 7~-differentiable almost everywhere in D [23, 28]. 
The following theorem establishes a connection between the (p, q)-quasiconformal mappings and 

the mappings generating embedding of the Sobolev spaces. 
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T h e o r e m  6. Sul)pose that ,: : D ~ D ~ is a (p. q)-quasiconformal homeomorphism. 1 < q < p. 
Then : oenerates the bounded embedding operator 

: * : L ~ ( D  ') --, L~( D), 1 < q < p < ~ .  

PROOF. Since : is P-differentiable, we have 

p 
lim L~(z ,r)  _ iv,.~(~)lp ' lim I~(B(x,,Xd)l = ~ l : ( x , : ) l .  
r ~ O  r P  r - - O  r u 

If 1 < q = p < c~ then [Vs p < KA"Iff(x,~)[ almost everywhere in D. In the case of 1 < q < p < 
t p - q  1 

oo we have IVc : (x ) I  p _< I r 1 6 2  , (~) in D. Hence, IXp,q = Ilu,( ) I < ~ Since : 
belongs to the class ACL by Theorem 5, the conditions of Theorem 2 are satisfied and consequently 

generates the bounded embedding operator ~*:  L~(D') ~ L~(D), 1 < q < p < ~ .  
The converse assertion is valid under some additional constraints on the exponents p and q. 

T h e o r e m  7. Suppose that qo : D ~ D ~ generates the bounded embedding operator ~* : L~( D') 
L](D), v - 1 < q < p < o~. Then ~ is (p,q)-quasiconformal. 

PrtooF.  Consider a ball B(x0, Ar), "A > 1, in D. Suppose that a point yx ~ ~(S(xo, r)) is such 
that L~(x0, r) = p(~(xo), y~). Denote by y2 a point in v(S(z0, At)) that is most distant from yl and 
denote by y3 a point in ~(S(xo, r)) that is most distant from y2. In D', consider the continua 

F~ = {y c D' [ p(y, y2) < p(y2,y3)} n ~:(B(zo,,~r)), 
1:o = {y ~ D' I p(y,y2) > ?(y2,y~)} n ~(B(zo,,~r)). 

Under the above conditions, the function r/(x) = (cL~(xo, r))- l (min(d(x,  F0)), cL~(xo, r)) (c is some 
constant) is admissible for the capacity of the pair of these continua in the Sobolev space L~(:(B(x0.  

Ar))). Since the operator ~p* : L~(T(B(xo, At))) --* L~(B(xo, At)) is bounded by Theorem "2 and its 

norm II:*[[ is bounded by cI(p, v for q = p and q~(~(B(xo ,  Ar)) )~:  for q < p (Cl is some constant), 
from the estimate for the Teichm~ller capacity [24] we obtain 

v - q  1 

cr q <_ capgq(:-l(Fo),~y-l(F1);B(xo, Ar)) 
1 

< II:*llcap[(Fo,&;~(B(~o,~d))< I1~*11\ L~(xo, r) 

Consequently, 

L~(xo,r)rV-p { clKp,p for q = p, 

I~(B(xo, A))l -- cx(~(<B(*~ v-~ for q < p. 
" T y / 

Passing to the limit as r ~ 0, we obtain (p, p)-quasiconformality of ~ for q = p and the inequality 

r -O[ : (B(x .  A r ) ) [ / \  ]B(z,~-~ J <<_c2 e v e r y w h e r e i n t h e d o m a i n D  

for q < p. where the set function @, defined for open subsets U o f / )  by the relation ~ ( U )  = ~(~([~)). 
is bounded. ~ additive, and. by C.orollary 1. absolutely continuous. Hence, V is (p. q)-qnasiconformal. 
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w 4. F u r t h e r  P r o p e r t i e s  of (p~ q ) -Quas iconformal  H o m e o m o r p h i s m s  

In this section, we need an estimate from below for the capacity of a ring. By a ring in Cr we mean 
a pair R = (E.G) of sets. where the set G C G is open and E C G is compact. The quantity 

capp( E, G) = inf f lv cutP dx, 1 <_ p < oo, 
G 

o 
1 , where the greatest lower bound is calculated over all continuous functions u E Lp(G), UlF > 1, is 

called the p-capacity of the ring R = (E, G). 

L e m m a  5. ff the set E is connected and G C {x : p(x, E) <_ co diam E}, where co is a sufficiently 
small number depending only on the constant in the generalized triangle inequality; then 

c (diam E) p 
cap~- l (E,G)  > iGlP_(,~_' 0 

/'or ~, - 1 < p < oo, where the constant c depends only on v and p. 
PROOF. Since the left- and right-hand sides of the inequality under proof are invariant under left 

translations and have the same degree of homogeneity under dilations, it suffices to prove the lemma 
in the case of d i a m E  = p(0, a) = 1 for some points 0, a E E. Take a point ~-1 E S(0,1). Then 
1 = d i amE <: cl(r2 - 1) and S ( a - l , r )  f3"(G \ G) # ~ for 1 < r < r2, where r2 = p(o ' - l ,c  r) = p(o'2). 
Fix an arbitrary point z~ E E N S(a -1, r) and denote by P(r)  the set 

{( e S (c r - l , r ) :  p(~,x,) < p(Xr,(G \ G)f']" S(r))}. 
o 

Every function u E L~(G) f'l C(g)) such that u >_ 1 on E takes the value 0 on the sphere S(~r - l ,  r), 
I _< r _< r.z, (the choice of co in the conditions of the lemma is determined by this requirement). 
Therefore, the following inequality is valid for almost all r E (1,r2) [24, Theorem 1]: 

f M.rr(iVcul)P(~)da,(~ ) > c2wr( P(r) ) ~ ,  

S ( r ) N G  

where-~r is the measure on S ( ~ - I , r )  associated with the "spherical" coordinate system [24]. (Here 
3' > 1 is some constant and M~ 9 denotes the maximal function defined for every locally summable 
function 9 as 

Msg(z) =su p{ lB ( z , r )V l  f Ig[dx : r g ~5}, 
B(*,~) 

where B(x , r )  = {y E G : p(x-ly) < r} is the ball of radius r centered at x E G.) Consequently, 

r2 
f ~-1-p 

M.r,(lVcul)Pdz > c2]w~(P(r)) ~-t dr. 

G r l  

Furthermol:e, 

(diam E) p < Cl 

(r,P(r/ )pl(  ) 
dr <_ Cl ~.,,(P(r))dr ~ r ( P ( r ) ) ~ d r  

\ r t  / \ r  I 

, . 

G 
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Applying the maximal function theorem, we obtain 

G 

c (diam E)v 
> iGiP_(~_x) 

o 
for every function u E L~(G) M C(G) such that u = 1 on E. 

T h e o r e m  8. Suppose that ~ : D ~ D ~ generates the bounded embedding operator 4" : L~( D') - .  
L~(D). v - 1 < q <_ p < oo. Then the inverse mapping ~ -1 : D ~ -.-, D is an ACL-mapping .  

PFtOOF. Fix some field XaT, and let F be the fibration generated by this field. Take the cube 
Q = Y-I0, where /̂0 = exps Xar,  [S[ _< M, and Y is the transversal hyperplane to Xar:  

Y = {(a; O; b): x,,~ = 0, Jal < M, Ibl <_ M }  

(with the above notations a = ( x ~ ) ,  1 < i < a, 1 <_ j <_ ni, j ~ r for i -- ot and b = (x/j), a < i < m, 
1 _<j<_ n.i). 

Given a point y E Y, denote by ~/y the element y't0 of the fibration which starts at y. Thus, Q is 
the union of all such intervals of integral lines. Consider the following tubular surface of the fiber ~ty 
of radius r: 

E(y ,  r) = %B(e,  r) N Q. 

Take a point y E Y so that the assertion of Lemma 4 hold for 7y. On 7y, take arbitrary pairwise 
disjoint closed segments A 1 , . . . ,  A k of lengths bl , . . . , bk .  Denoting by Ri the open set of points at 
a distance less than a given r > 0 from Ai, consider the condenser (Ai, Ri). Suppose that r > 0 is 
so small that the sets R1 . . . .  , Rk are pairwise disjoint, the condenser (qz-l(Ai), ~ - I (R i ) )  satisfies the 
conditions of Lemma 5, and r < cbi, i = 1 , . . . ,  k, where c is a suitable constant. Then 

capv( Ai,  Ri; D ~) < ]Ri[ < clbirV_l_p, 
r P  - -  

(diam ~-1 ( Ai  ) )q/(~-D 
c a p q ( ~ - l ( A i ) , ~ - l ( R i ) ;  O) > c2 ]~-1 (Ri)[(1-v+q)/(v-1) " 

By Theorem 4, from the last two inequalities we derive 

(.v- 1-p)~v-  1) ( ,p-q)(u- 1,) I--v4-q . Vpl  
d i a m ~ - l ( A , )  < car v '~(Ri) vq ko- l (R i )  ~ b i . 

Summing over i = 1 , . . . ,  k, applying HSlder's inequality, and using the definition of a quasiadditive 
function, we obtain 

Letting r tend to zero, we find that 

k 
E diam ~- I (Ai )  
i = l  

v -_._!l 

whence ~-1 E ACL(D') .  

Z d i a m ~ - l ( A i )  < c5 bi 
i=1 

(v-1)/p 
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T h e o r e m  9. Suppose that ,: : D ~ D' generates the bounded embedd ing  operator ,:* : L~( D') 

L~(D),  v - 1 < q < p < oc. Then the inverse mapping 4 -1 : D ~ ---, D generates the bounded 

embedding" operator 4 -I* : L}(D' )  ---+ L](D),  where r ---- .-----q------q_v+l and s - p-,,+l; 'p moreover, ~ - I  is 
an ( r. s )-quasiconformal homeomorphism.  

PROOF. Theorems 2, 7, and 5 imply that 4 is an A C L - h o m e o m o r p h i s m  differentiable almost 
everywhere. By Theorem 8, 4 -1 belongs to ACL(DI) .  Given 4, put s = l~(x, t), where l~ ( z , t )  = 
minp(z ,u )=tp(4(z ) ,4 (y ) ) .  Then t = L ~ - l ( y , s ) .  We have 

L ~ - , ( y , s )  t t L ~ - l ( x , t )  

s t~(~,t) l~(=,t)L~,-l(=,t)  
t L ~ - l ( x , t )  L ~ - l ( x , t )  t ~ 

< 

- 14(B(x,t)l t v - 1  14(B(x,t)l" 

Therefore, the inequality ] v c : - l ( y ) l  < ~ is valid for almost all z e D \ (E U Z) and y 
- tJ(=,~)l = 

4(z) E D ~ \ 4 ( E  U Z), with E and Z defined in the proof of Theorem 2. This inequality leads to the 
relation 

S (IVc4--1(y)lr.~ "1('-') IVC:I p "~qlO'-q) 
\ ~ 7 ' 3 ] " )  d, _< f (IJ(--7777),~)1) d~. 

D'\,a( E) D \  Z 

(To prove it, we have to apply the change-of-variable formula (2) and the equalities r__L _ pq r-s  - (p-q)(~'l) 
and 13"(4(z),4-1)1 - '  = I : ( z , 4 ) l  for almost all z e D k ( E u Z )  and y = 4(z)  E D ' k c 2 ( E U Z ) . )  Using 
Theorem 2, we conclude that ~2 - i  generates the bounded embedding operator 4 *-t : Lit(D) ---, Lls(D'). 
By Theorem 7, ~ - I  is an (r, s)-quasiconformal homeomorphism. 

Observe some geometric properties of (p,q)-quasiconformal homeomorphisms. The results of 
[11,24, 34] yield the following theorem: 

T h e o r e m  10. Suppose that 4 : G --* G generates the bounded embedd ing  operator  4 '  : L~(G) 

L~(G), v < q < p < oo (v - 1 < q < p < v). Then the inequality p ( ~ ( a ) , : ( b ) ) ~  < c p ( a , b ) ~  

(p(~p-l(a), ~2-1(b)) r~- < cp(a, b ) ~  e" with r = q/(q - v + 1) and s = p / (p  - v + 1)) holds for arbitrary 
two points a, b E G, where c is some constant depending on II~*[I, v, p, and q. 

T h e o r e m  11. Suppose that ~ : D --* D' generates the bounded e m b e d d i n g  operator 4" : 
L~(D')  ~ L~(D) ,  1 < q < p < cr Then,  for each measurable set E C D' ,  we have  the inequalities 

. . E : _ ~  , ~ , v__7.s . . a .7 .~  , _ 1 .  ~ , , q - u  
14-x(E)I .'-~ < c~x , ,  IL. I ,p if1 < q < p < v and IE la : :  < eJx , ,  Iq "tX~)l "~ i f v  < q < p < r 

PROOF. The case of p = q was settled in [34]. Fix a truncator 7/ E C ~ ( G )  equal to 1 on 
B(0, 1) and 0 outside B(0,2). Inserting the function f ( y )  = rl(SZt(yoiy))  in the  inequality II:*f I 
O O 

L~(:'(V))II _< ~ (u )~ l l f  I Z.'(u)ll, with U C D' an open set, we obtain 

~ 1 ~ t}4*f I Lq(4-1(B(yo, 2r)))ll _< er 2r)) ,q IB(yo, r)l ",. 

On the other hand, the function 4* f  equals 1 on 4-1(B(y0,r)) .  The embedding theorem in La, 
a = ~ [38], implies that u - - q  

I~-l( B(yo. "))l '--~ -< cr 2r))e-~ IB(yo. r)l "-'~: 
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for each ball B(yo .r )  C D' such that B(yo.2r) C D' (here 1 < q < p < u). Applying H61der's 
inequality, we derive the inequality 

[~- l (Bi (g i ,  ri)) [ < c~ 8i(y i ,2r i )  [Bi(gi, ri)[ 
i = i  i = I  i=1 

for each collection {Bi(yi ,  ri)} of balls covering E and such that the multiplicity of the covering 

{Bi(y i ,2r i )}  is finite. Hence, [~;-I(E)I v~-~ <_ cI{e~7~ [El vp. Now, the case of u < q < p < ec ensues 
from Theorem 9. 

Corollary 2. Suppose that ~ : D --, D' generates the bounded embedding  operator ,,?* : 
L~(D') ~ L~(D), 1 <_ q < p < oc. Then i: satisfies Luzin's  condition (H -x) for 1 <_ q <_ p < u. in 
particular, # o, and satisfies Luzin's condition (H)  for u < q <_ p < oe. 

Some applications of (p,p)-quasiconformal homeomorphisms to the classification of Riemannian 
manifolds can be found in [39]. 
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