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ON A M U L T I D I M E N S I O N A L  S Y S T E M  
OF H Y P E R G E O M E T R I C  D I F F E R E N T I A L  E Q U A T I O N S  

T. M. Sadykov  UDC 517.55+517.95 

In t roduc t i on  

Interest has recently been aroused in studying hypergeometric functions of many variables. In 
the one-dimensional case the generalized hypergeometric differential equation has the following form 
[1, p. 77]: 

x P  x - Q = 0, 

where P and Q are polynomials: 
P q 

P ( z ) = a H ( z - a k )  , Q ( z ) = H ( z - ~ k ) .  
k=l  k=l  

In the multidimensional case there are s~veral approaches to the notion of hypergeometric function: 
such functions can be defined to be the sums of power series of a certain form (the so-called F-series) 
[2-4], solutions to systems of differential equations [1, 5, 6], the. Euler-type integrals [7, 8], and the 
Mellin-Barnes integrals [6]. 

Multidimensional systems of differential equations of hypergeometric type appear in some prob- 
lems of mathematical physics. In particular, such equations arise in superstring theory while studying 
the Ukawa connection constants [7]. 

In the present article, as a multidimensional analog of the generalized hypergeometric differential 
equation we consider the Horn hypergeometric system [4]: ( )  ( 0 )  

0 x..[ly(x b xn) Pi -~x y(xl,  ,xn), i =  1, ,n. (1) Qi . . . . . .  

O Here x ~  = ( X l & ,  . . . .  x n ~ ) ,  and Pi and Qi are polynomials. Henceforth we assume that Pi 
and Qi are representable as the products of linear factors and that Pi has no common divisors with 
Qi, i = 1, . . .  ,n. 

In w 1, we exhibit an integral representation for solutions to (1) and write down some system of 
difference equations whose fulfillment is a sufficient condition for the integral in question to satisfy the 
Horn system of equations. In w 2, we expose the main result of the article (Theorem 1) which contains 
a criterion for solvability of the corresponding system (6) of difference equations. The necessary and 
sufficient conditions of this criterion are the agreement conditions (8) on the polynomials Pi and 
Qi. Moreover, if a solution to (6) exists then it is determined uniquely up to a factor satisfying the 
periodicity condition r + el) =- r for a/l i E 1, . . .  , n. In w 3, we state conditions under which the 
involved integral transformation exists. In w 4, we exhibit a method for representing a solution to (1) 
in the form of a multiple series in the case of simple singularities. In the theory of Gel~fand and his 
coauthors [3-5], simple singularities correspond to the so-called nonresonance case. The solutions to 
(1) that can be found by means of the integral representation are expressed by Horn series in the case 
of simple singularities (Theorem 3). Here by a Horn series we mean a power series whose coefficients 
are the ratios of products of F-functions whose arguments depend linearly on the summation variables 
m l , . . .  ~mn.  
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w 1. In tegra l  Rep re sen t a t i on  for Solut ions 

to the  Sys t em of Different ial  Equa t ions  

We seek a solution to (1) in the form 

u(x) =f ( )xSds, 
c 

(2) 

where s = (sl , .  �9 . , sn) ,  x s = XlSl . . .  Xns,, ds = dsx � 9  dsn,  and C is some n-dimensional contour that 
is specified in the process of solving (1) and satisfies the following conditions: 

A. For every i = 1, . . .  ,n the contour Ci resulting from translating C by the basis vector - e i  
( -1  at the ith position) is equivalent (homologous) to C. 

B. The integrand in (2) decreases rapidly enough on C: the product of the integrand and an ar- 
kl ..S~" is bounded. bitrary monomial s I . 

It follows from A and B that 

( ~  k f k s' S" 
x~b7 ~(x)=  ~ i ~ ( ~ ) ~ , - . . ~ .  -- �9 

c 

(3) 

The condition A also guarantees the equality 

x ' i l y ( x )  = f ~ (S  + e i ) z  s ds. 

C 

(4) 

From (3) and (4) we obtain 

(Qi ( x o )  x71- Pi (x O) )y(x) = f (r + ei)Qi(s) - cp(s)Pi(s))xS ds. 
c 

(5) 

It follows from (5) that the function y ( z )  in (2) meets (1) if ~(s) satisfies the system of the difference 
equations 

~(~ + ei) Pi(~) ~(~) Qi(s), i =  1 , . . . , n .  (6) 

Thus, solutions to (1) in the class of functions admitting the integral representation (2) can be obtained 
by solving (6). 

w 2. Solut ion of the  Sys t em of Difference Equa t ions  

Let us clarify the properties of (6). In the one-dimensional case, (6) transforms into the single 
equation 

~(s + 1) _ P ( s )  (7) 
~(s) Q(s) 

in one variable s. Given expansions of the polynomials P and Q, 

P q 

P(s) = .  I I ( s -  II(* - 
k = l  k= l  
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the general solution to (7) has the form 

p 

1-I r(s - a i )  
~ ( S )  = a s i= l  q ~(s), 

H r ( s -  j~) 
j = l  

where r is an arbitrary function with period 1 [1, p. 77]. The condition that the polynomials Pi 
and Qi are representable as the products of linear factors enables us to use the information on the 
general form of a solution to (7) effectively for solving the multidimensional system (6). 

Observe that not every system of the form (6) has a solution. For instance, the system 

~(3 + el) ~(s + e2) 
~(S) --82, V(S) = 1  

is unsolvable, since the second equation implies that r is periodic in s2 and hence ~ as well 
is a periodic function in 82; however, the right-hand side of the first equation is not periodic in 82. 

A criterion for solvability of (6) is given in the following theorem: 

T h e o r e m  1. For solvability of (6), it is necessary and sufficient that the following agreement 
conditions be satisfied: 

p~(s + ej)Q,(s) 
Qi(s + ~i)Pi(s) 

Pj(s+e~)Qi(s) 
Qj(s + e~)pj(s)' 

i , j = l , . . . , n ,  i # j .  (8) 

Moreover, if  a solution to (6) exists then it is unique up to an arbitrary factor r which meets the 
periodicity conditions r + ei) = d(s) for all i = 1 , . . . ,  n. 

PROOF. Necessity: Suppose that ~p(s) satisfies (6). Increasing the argument s in the ith equation 
of (6) by the increment e i, we obtain 

~(s + e/+ ej) P~(s + ej) 
~(s + ej) Qi(s + ej)" 

(9) 

Multiplying (9) by the j th  equation of (6), we find that 

~(s + ei + ei) Pi(s + ei)Pi(s) 
Qi(s+ej)Qj(s)"  v(s) (10) 

Similarly, increasing the argument s in the j th equation of (6) by the increment ei and multiplying 
the resultant equality by the ith equation of (6), we arrive at the equality 

~(s + e, + el) p~(s + ei)Pi(s) 
v(s) Qi(s + ei)Qi(s) (11) 

The left-hand sides of (10) and (11) coincide. Equating the right-hand sides, we obtain (8). By 
the arbitrariness of i and j (i # j) ,  we have proven the necessity of the agreement conditions for 
solvability of (6). 

Sufficiency: To prove sufficiency, we need the following lemma: 

L e m m a  1. Suppose that the system (6) satisfies the agreement conditions. Then every" linear 
factor on the right-hand side of the ith equation of (6) depends on si, i = 1 , . . .  , n. 
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PROOF OF LEMMA 1. Since all equations (and variables) in (6) have the same shape, it suffices 
to demonstrate that each linear factor on the right-hand side of the first equation depends on 81. 
Suppose to the contrary that 

P1 = K1L:, Q1 = M1N1, (12) 

where h'1, L1, M1, and N1 are polynomials such that every linear factor of Kt and M1 depends on sa 
and every linear factor of L1 and N1 is independent of sl. For the fixed value j = 1, the agreement 
conditions (8)involve the equations 

Pl(s + ei)Ql(s) 
Ql(s + ei)Pl(s) 

Pi(8 + el)Qi(s) 
=Qi(s+el)Pi(s)' i = 2 , . . . , n .  (13) 

Using (12), we can rewrite (13) as 

KI(S + ei)Ll(8 + ei)Ml(S)Nl(8) 
Ml(8 + ei)Nl(8 + ei)Kl(8)Ll(s) 

_-- Pi(8+el)Qi(s) ,  i=_9 , . . . , n .  (14) 
Qi(8 + el)Pi(s) 

After all cancellations in (14), every linear factor on the right-hand side of (14) must depend on Sl 
or the right-hand side must be constant. By assumption, every linear factor of K1 and Ma depends 

Kl(s+ ,)Ml(s) 
on Sl; therefore, the same is true for the fraction Ml(s+el)Kl(s)" Consequently (by the uniqueness the- 
orem for the expansion of a polynomial into the product of linear factors and in view of independence 
of L1 and N1 of 81), we have 

Ll(s+ei)Nl(8)  
= const. (15) 

Nl(8 + ei)Ll(s) 

Since P1 and Q1 have no common divisors, so are L1 and N1 as well. Therefore, (15) implies that 

L1(8 + ei) _ const, N1(8) = const. 
L1(8) N l ( s+e i )  

Hence, L1 and N1 are independent of 8i. Indeed, from these equalities we infer that  L1 and N1 are 
periodic in 8i; however, a polynomial is periodic in one of its arguments if and only if it is indepcndent 
of this argument. Since i is an arbitrary index in the set {2, . . .  ,n}, L1 and N1 depend on none of the 
variables 8i, i = 1 , . . .  , n (they are independent of Sl by assumption); i.e., L1 = const and _N1 = const. 
This is exactly the condition that every linear factor of P1 and Q1 depends on 81. 

Similar arguments lead to the fact that every linear factor of Pi and Qi depends on 8i. Lemma 1 
is proven. 

We now describe the process of constructing a function qo(8) which is a solution to (6), provided 
that the agreement conditions (8) are satisfied. Suppose that 

P(8) 
Q(8) 

p 
l-I (ail81 + . . .  "4- ainSn + Ci) 
i=1 

q 

H (bjls1 -~-�9 + bjnsn + dj) 
j=l 

is a rational function; moreover, P and Q have no common divisors. Denote the fraction 

p 
1-I F(a,lsl  + . . .  + ai,.s, + ci) 
i----1 

q 

1-[ r (b j l s l  + . . .  "4- bj,~%~ -4- dj) 
j=l 
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by F(~) and call it the F-fraction. The rational function P(s) written down in the form O(s) 
P 

I-I ( ~ s l  + + ~-~-,-o +~,~) 
a i  k . . �9 a i  k , - ' n  

i = l  
a 

. + 

where a = ~ is the normalization constant, is said to be normalized with respect to sic. 
O l k * * . O q k  

Thus, the scheme of constructing a function ~(s) which satisfies (6) is as follows: 

STEP 1. Let a- ~1(8) be the right-hand side of the first equation in (6) normalized with respect 1 Q1(8) 
to sl. Put 

~ I ( S )  ---- a~l I  ~ (~1 " (16) 

By the remark on the general form of a solution to the difference equation (7), the function ~l(S) 
satisfies the first equation in (6). 

STEP 2. Let a2P2~ (~ be the right-hand side of the second equation in (6); moreover, P2(s) = Q2(~) 
P21 (s)P22(s) and ~)2(s) -~ Q21(s)~)22(s), where P21(s) and (~21(s) comprise only those linear factors of 
P2(s) and Q2(s) that depend on sl (by Lemma 1, this implies that P22(s) and ~)22(s) are the products 
of only those linear factors of P2(s) and ~)2(s) that are independent of sl but depend on s2, since every 
linear factor on the right-hand side of the second equation in (6) depends on s2). Moreover, P22(s) 
and Q22(s) are normalized with respect to s2 and a2 is the corresponding normalization constant. Put 

v2(s) =  ,(s)a2 r(, 22) : a, a2 r( ,o,  ) 

STEP i. Suppose that 
P i  P i l  P a  . . . P i i  

Q i  - a i  Q i x Q i 2  . . . Q i i  (17) 

where Pij(s) and Qij(s) comprise only those linear factors of Pi and Qi that depend on sj but are 
independent of s l , . . . s i - 1 ,  j = 1, . . .  ,i. Moreover, Pij(s) and ~)ij(s) are normalized with respect 
to sj and aj is the corresponding normalization constant. By Lemma 1, we can represent i~. in the 
form (17) for every i = 1 , . . .  ,n, since every linear factor on the right-hand side of the ith equation 
of (6) depends on si. Put 

= ~ i _ x ( s ) a  i r 

Prove that the function ~n(s) satisfies (6). From the recurrent representation for this function we 
can easily conclude that 

O1 tQ22)r ,(233) ' ' r  ' (is) 

where Pii and Qii are independent of Sl, . . . .  s,-l. In particular, Pii and Qii are independent of Sl; 
therefore, 

~ n ( s + e l )  QI( 1) 

~ n ( s )  = al  ~l(s) 
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Recalling that  P~ and ~)1 are normalized and using the identity r(z + 1) = zr(z), we obtain 

~.(a + e~) 
- alF\~)l(s + el)Pl(s)J -- al Q l ( s ) '  

i.e., ~n(S) satisfies the first equation of (6). 
Prove that ~n(s) satisfies the i th equation of (6), i = 2 , . . .  , n. In accord with the above notations 

and in view of the fact that Pii and ~)ii are normalized with respect to si, we have 

. Q . ( ~ + ~ , ) ,  _ -Pii(s) 
r(~.(s)) 

(19) 

Let j E {1, . . .  , n} be an arbitrary index. Since 

Q---~=ai~,il...~,ij...Qii, Q---~=ajQj, Q, JJ 

in accord with the above notations, the agreement condition in (8) corresponding to the indices i and 
j takes the form 

J~jl (S § e i ) . . ,  Pjj(8 § ei)Qji(s). . .Qjj(s) 

_- P~/l(S § ej) . . .Pij(s  + ej). . .Pii(s -I" ej)Qil(~).. .Qij(8). . .Qii(s) 
Q~I(~ + ~;).. .  Q~i(s + ~ ) . . .  Q,(~ + ~J)P~,(~).-. P~i(~)..- P,(~)" 

(20) 

Now, (20) is an equality between two rational functions; moreover, the numerator and the denominator 
of each of them is representable as the product of linear factors. Hence, the rational function composed 
of only those linear factors on the right-hand side of (20) which are independent of S l , . . .  , s i - i  but 
depend on s i must equal the rational function that  is composed of only those linear factors on the 
left-hand side which are independent of s l , . . .  , s j -1  but depend on s i. However, in (20), it is only 
the polynomials "PiJ, ~)JJ, Pij, and ~)ii (and only they) that consist of such factors; therefore, 

(21) 

Since the polynomials Pij and Qii are normalized with respect to sj, (21) implies that  

~Qji(s) j 

r(~,,c~+~)) P~i(~) 
= r(~ , i (  ~ + cj)~,j(~)~ = e,,c,+~) 

\~),j(.s + ej)Po(s )] r(s = Q=~j(~) 
~qq (s)" 

(22) 
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Since Pkk and ~)kk are independent of s, for k > i, using (19) and applying (22) i - 1 times, we obtain 

~P(S q- e l )  - ' O 1 ( s + e i ) "  " O 2 ~ ( s + e i ) ' " "  F ( Q n n ( s + e i ) )  

r(~.s) ) r (~:_+))... r (~.(~)) 

QI( i) Q22( i) . . . .  xQi i ( s+e i ) /  

- ~ '  r ( ~ , ( , l ~ r ( ~ : : ( , ) i  -.~,,(,I. 
- ~ q t ( s ) ' -  ~q22(s) /  " " l ' ( Q u ( s ) )  

?.(s) 
_,q, (,~, r (~.~,(,))... r (s)) 
.~,,(S)s ...~,,_~(S).~,,(S) P,(s) . 

Qn(s)Qi2(s)...Qii-l(s)Qii(s) qi(s) ' 

i.e., we have obtained the right-hand side of the i th equation of (6). This means that  ~a(s)  satisfies 
the i th of the equation of the system. In view of the arbitrariness of i = 2 , . . .  , n and the fact that  
~aa(s) satisfies the first equation of (6), the function ~n(s) is a solution to the system. We have thus 
proven sufficiency of the agreement conditions for existence of a solution to (6). 

Uniqueness: Suppose that ~p(s) and ~(s) are solutions to (~). Then ~(s)  = ~(s} satisfies the ~,(~) 
system 

~(s +ei) 
=1 ,  i = l , . . . , n ;  

~(s) 
i.e., ~(s)  is a periodic function in S l , . . .  ,an. Theorem 1 is proven. 

Theorem 1 enables us to find a solution to an arbitrary system of the form (6) in the class of mero- 
morphic functions in many complex variables sx , . . .  , s,, or establish insolvability of the system (6). 
The concrete construction (18) for a solution to (6) allows us to state the following result: 

T h e o r e m  2. ff the system (6) is solvable then its general solution has the form 

~(s) = ~'r \qCs))  r 

where P and Q are polynomials representable as products of  linear factors and r is an arbitrary 
function with the property  r + ei) -- r i = 1 , . . .  , n. 

The integral (2) in which ~(s) is a solution to (6) is a formal solution to the system of hyperge- 
ometric differential equations under consideration. For this solution to meet (1), it is necessary that  
the integration contour C satisfy the conditions A and B. The choice of the contour is one of the steps 
on construction of a solution to (1). 

w 3. Conditions for  E x i s t e n c e  of the I n t e g r a l  T r a n s f o r m a t i o n  

Suppose that  the system (1) satisfies the agreement condition (8). By Theorem 2, the general 
solution to the auxiliary system (6) of difference equations has the form 

= . s, .  p and Q are some polynomials that expand into linear factors, and r is Here a s a; 1 . . a  n 

an arbitrary function with the periodicity properties o(s + ei) = r i = 1 , . . .  , n. 
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Suppose that P and Q have the following expansions into linear factors: 
p q 

P ( s l  . . . . .  s . )  = H ( ( A i ,  s ) - c i ) ,  Q(s l  . . . . .  s,,) = 1 - I ( ( B j , s ) - d j ) ,  
i = l  j = l .  

where Ai ,  B j  E C n, i E 1 , . . .  ,p,  j E 1 , . . .  ,q,  and ( , )  stands for the inner product. 
The only singularities of the expression F(ff2) in (23) are the poles on the complex hyperplanes 

(Aj,s) - c j  = - m ,  where j E {1,. . .  ,p} and m E No = {0,1,2, . . .  }. Denote the whole collection of 
these hyperplanes by m. Our goal is to find n-dimensional contours in C n \ m that do not change in 
the homology group H,,(C n \ m) under translation by an arbitrary vector - e l ,  i.e., to find n-cycles 
homologous to their translations. 

If we cannot choose n linearly independent vectors from the collection of the vectors A 1 , . . .  , Ap 
then every n-dimensional contour in C n \ m is homologous to zero; i.e., the n-dimensional homology 
group of C '~ \ m is trivial. This assertion is a consequence of Serre's theorem, de Rham's theorem, 
and the singularity separation theorem and is well known in multidimensional complex analysis [9, 
Proposition 19.7]. 

It follows from the above that the integral (2) with the function ~p(s) defined by (23) yields only 
the trivial (identically zero) solution if the periodic function r is entire and m includes less than n 
linearly independent hyperplanes. First we settle the case in which r = 1 and m includes at least 
one collection of linearly independent hyperplanes. Next, in w 4, we show by using an example how 
the function r with poles can be choseh for finding some solutions in other cases. 

The whole homology group Ha(C" \ m) is implemented by cycles localized in neighborhoods of 
the intersection points of at least n linearly independent hyperpl.anes in m. If exactly n hyperplanes 
with linearly independent normals A i l , . . .  , Ai,, pass through some point then these cycles are given 
as follows [9, w 19]: 

I(Ail,s) - c i ,  + mll = e , . . . ,  I(Ai,,s) - c i ,  + m,l  = e. (24) 

Suppose that 2"= ( i l , . . .  ,in) is a collection of the numbers 1, . . .  ,p such that the corresponding 
collection A i l , . . .  , Ai,, of vectors is linearly independent. Consider the system of the equations 

(A i z , s )  - cq = - m l ,  
. . . . . . . . . . . . . . . . . . . . .  (25) 
( a i , ,  s) - ci ,  = --ran, 

where rux,.. .  , m ,  vary independently in No. Denote the set of solutions to (25) by X. The elements 
of X are the points of C n in whose neighborhoods the nontrivial n-dimensional contours in C n \ mz 
are localized, where mz is the polar set of the function F((ait ,  s) - t i t ) . . .  F((Ai,~, s) - c i , ) .  

Suppose that the contour C is given in the form 

C -  E r(m), 

where the contours r ( m )  are defined by (24). 
Suppose that all entries of the vectors A i r , . . .  , A i ,  are integers. In this case the translation of 

the contour C by the vector - e l  is localized in a'neighborhood of some solutions to the system 

( Ail  , s) -- ciz = --rn l , 

. . . . . . . . . . . . . . . . . . . .  (26) 

(Ain,  S) -- tin = --rnn, 

where ml , . . -  , ffzn vary independently in Z. 
The condition that the contour C is homologous to its translation by the vector - e l  amounts to 

the fact that the hyperplane (Ak, s) - cA- = - ink  contains no points which are solutions to (26) for 
every k E {1,. . .  ,p} \ {il. . . . .  in}. 

We have thus obtained the following proposition: 
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P r o p o s i t i o n  1. If  the vectors Air, . . . .  Ain are linearly independent for some collection Z = 
(il . . . .  , i , )  of indices and, for all k q[ Z, the svst.em 

(Ai,,.s) - cit = - m l ,  
. . . . . . . . . . . . . . . .  * * , . .  

(Ai , ,  s) - ci, = -ran,  
(Ak, s) - ck = - m k  

is inconsistent for my E Z, j = 1 , . . .  , n, and mk E N0 then the contour 

C =  Z 7-(m) 
rneN'~ 

does not change in the homology group Hn(C n \ m) under the translation by the vector - e i  for a11 
i E 1 , . . . , n .  

Uniform convergence of the integral (2) is examined by analogy with [10, w 3]. A sufficient condition 
for uniform convergence of the integral is the condition 

Re((A,s~ < O, 

where A P = Y'~i=l Ai - ~q=l  Bj and s o is an arbitrary vector decomposable with positive coefficients 
in the basis of the octant including the set of solutions to (25). 

Of course, this condition can be satisfied only in the case of A ~ 0. A sufficient condition for 
uniform convergence of the integral for A = 0 is given in [10]. 

Thus, under the conditions of Proposition 1 and the condition Re((A, s~ < 0, the conditions A 
and B are satisfied and the collection Air , . . .  , Ai,, of linearly independent vectors determines a nontriv- 
ial solution to (1). Moreover, the function ~(s) is determined from the system of difference equations 
which has a solution, provided that the conditions of Theorem 1 are satisfied. 

w 4. R e p r e s e n t a t i o n  of a Solut ion to the  Sys t em (1) as a M u l t i p l e  

Series ( the  Case of Simple  Singular i t ies)  

Suppose that the conditions A and B on the integration contour C are satisfied and the func- 
tion ~(s) is defined by (23) with r - 1. Then the function y(x)  defined by (2) satisfies the 
system (1). Suppose that at most n hyperplanes in m pass through each point of C n (in this case we 
say that ~ has simple singularities). 

Consider the contour C given as the sum of elements of the basis for the n-dimensional homologies 
of the set C n \ mz (where mz is the polar set of the function r ( (a+, ,  s) - r ( (A+, ,  s) - c+,)) with 
unit coefficients. 

Taking the elements of the basis to be the n-multiple intersections of cylindrical hypersurfaces 
surrounding the polar planes, we can write 

c= E 

where r (m)  is the contour determined by (24). Therefore, 

f 
y(x)  = Z ] (alxl)sl  "' '(anxn)Sn 

rnEH~r(m) J 

P 

[I r((A. s)-c+) 
i=1 
q 

H 
j=l 

. ~ p - v  ds. (.1) 

Applying the multidimensional Cauchy integral formula [11. w in (27), we obtain the following 
theorem: 
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T h e o r e m  3. / f a  collection Ail , . . .  , Ai, satisfies the conditions of Proposition 1 (i.e., the contour 
is invariant under the translations by the vectors -ei, i E 1,... n) and the octant of solutions to (25) 
lies in the half-space defined by the condition Re((A:s~ < 0 i.e., the condition B is satisfied) then 
the series 

( -  1)rail +'"+rain 

y ( x ) =  ~ m 1 ! . . . m J d e t ( A i l , . . . , A i ~ )  

I-I F( (Ak ,s (A,m)) -ck)  
• m) (anxn)s~(a,m) k~z 

. . . q 

I-I F ( (B j , s (A ,m) ) -d j )  
j=l 

(2s)  

detAU) A(J) denotes the matrix that results from satisfies the system (I); here si(A ,m) = d e t ( A i  1 . . . .  ,Ain) 
replacing the j th column of the matrix A with rows Ai~,... , Ai, by the column 

I cit -- ml  ) 
�9 . .  , 

tin -- ~Z n 

The series (28), characterized by the fact that its coefficients represent the ratio of products of 
F-functions whose arguments depend linearly on the summation variables m l , . . .  ,m,~, is referred 
to as a Horn series. Thus, Theorem 3 claims that in the case'of simple singularities the integral 
representation (2) yields a solution which is a Horn series. 

We give some simple examples. 
1. Consider the system of differential equations 

x'[XY = lXl O~l + l )  Y, x-~ly = (x2 0~2 + l )  Y. 

To this system there corresponds the system of the difference equations 

+ e i )  + e2) 
- s x  + 1, = + 1. 

The general solution to the system of difference equations is the function 

~(s)  = r(Sl + 1)r(s2 + 1)r 

where r is the periodic part; we set it equal to 1. 
Take the integration contour C to be the sum of double intersections of cylindrical hypersurfaces 

localized in a neighborhood of solutions to the system 

sx + 1 = - m l ,  ~2 + 1 -- - m 2 ,  

where ml, m2 E No. The translation invariance conditions of C are satisfied, since in our case we 
have a unique collection of linearly independent hyperplanes. The condition B of convergence of the 
integral is satisfied, for in  this case /~ = (1, 1) and the integration contour C lies in the negative 
octant. By Theorem 3, we conclude that the function 

( -1)  ml+m2 _ml_lx_m2_ l 1 ~ 1 
y ( x ) =  m l ! m , !  x l  _ = ~ e  .1 ,2 _ XlX2 ml,m2~O 
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must be a solution to the system under consideration. We immediately verify that this function is 
indeed a solution to the system. 

2. C, onsider the system of the differential equations 

~Xl - 0 -1 Xl Xl ly  = y, X2.~x.2X 2 y = y. 

To this system there corresponds the system of the difference equations 

~(S -{- el) 1 ~(s -4- e2) 1 
~(s) sl '  ~(s) s2" 

The general solution to this system of difference equations is the function 

1 
= 

r(sl)r(s2) 

where r is the periodic part. The function 1 is entire and if r is also an entire function rtsl)r(~=) 
then the integral representation (2) enables us to obtain only the trivial solution to the system. To 
find a nontrivial solution to the system, we take r in the form 

/r 2 
= ( - 1 7  '+s2 

sin(rsl  ) sin(rs?)" 

From the reflection formula F(z)F(1 - z) = sin 7rz we obtain 

~ ( s )  = ( - 1 ) s l + s 2 r ( 1  - s l ) F ( 1  - s 2 ) .  

Take the integration contour C to be the sum of double intersections of cylindrical hypersurfaces 
localized in a neighborhood of solutions to the system 

1 - -  31 -'- --ml, 1 -- S2 -" --m2, 

where ml,  m2 E No. As in the preceding case the contour C is invariant under the translations by the 
vectors -e i ,  i E 1, . . .  , n. The condition B of convergence of the integral is satisfied, since in this case 
A = ( -1 ,  - 1 )  and the integration contour C lies in the positive octant. From Theorem 3 we conclude 
that the function 

y(X)--  y ~  ~ Xlrnl-[-lX') m2+l -- XlX2 ezl+z2 
rnl!m2! rnl,m2~0 

must be a solution of the system under consideration. We can immediately verify that this function 
is indeed a solution to the system. 
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