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O N  Q U A S I E L L I P T I C  O P E R A T O R S  IN Ra t) 
G. V.  D e m i d e n k o  UDC 517.953+517.983 

In the present article, we consider one class of matrix quasielliptic operators 

s = (lk,i(Dx)) (o.1) 

on the whole Rn. For these operators we establish some isomorphism properties and prove unique 
solvability of the systems 

s  = F(x) ,  x C Rn, (0.2) 

in the special weighted Sobolev spaces W[,,r(Rn). We exemplify the application of the obtained results 
to the theory of equations that are not solved with respect to the higher order derivative. 

{} 1. S t a t e m e n t  of  t h e  M a i n  R e s u l t s  

We indicate the conditions to be imposed on the operator (0.1). Denote by lk,y(i~) the entries of 
the symbol / : ( i~)  of the operator. 

CONDITION 1. Let m be the order of the mat r ix / : ( i~ ) .  Suppose that  there is a vector a = 
( a l , . . . ,  an),  where 1/ai are natural numbers, such that  

lk,j(cai~) = clk,j(i~), c > O. 

CONDITION 2. The equality det s = 0, ~ E Rn, holds if and only if ~ = 0. 
Conditions 1 and 2 are enjoyed, for instance, by PetrovskiY elliptic and parabolic operators, 

parabolic operators with "opposite times directions," etc. (see [1]). 
Studying quasielliptic equations, the author [2, 3] introduced the weighted Sobolev spaces 

," = 1 < p < c R 1 ,  

with the norm 

= 

n 

O<#a~l i = 1  

o 

and the space W~,a(Rn ) that  is the completion of C ~ ( R n )  with respect to this norm. In particular, 
it was proven in [3] that  these spaces coincide for a <_ 1. Henceforth we suppose that  0 _< (r < 1. 
Observe that  in the isotropic case it was L. D. Kudryavtsev [4] who introduced such spaces with a = 1 
(see also the survey [5]). 

Denote by Lp,.r(Rn ) the space of summable functions with the norm 

Ilu(x), Lp,~(R.)ll  -- I1(1 + (x) ) - 'ru(x) ,  Lp( Rn)]l �9 

We have the following results: 
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T h e o r e m  1. Suppose that 

I~1 > 1, ~1,~ > ~ > ~1~-  (I,~1- 1). (1.1) 
p p 

Then for every vector-function F(x) E Lp,a-l(Rn) the system (0.2) has a unique solution U(x) E 
H/~,a (Rn); moreover, 

lie(x), cllF(x), Lp,~-l(Rn)ll (1.2) 

with some constant c > 0 independent of F(x). 

T h e o r e m  2. Suppose that the conditions (1.1) are satisfied. Then the following estimate holds 
for every vector-function U(z) E C~(R~): 

II(x)-~(1-a'~)D~U(x), Lp(Rn)[I 
<_ cll(x)(1-a)(1-f3a)~.(Dz)U(x), Lp(R,)II, 0 < f~a < 1, (1.3) 

with some constant c > 0 independent of U(z). 

T h e o r e m  3. Suppose that I~l/p > 1. Then the operator s : W~,I(R,,) ---, Lp(R,,) is an iso- 
morphism. 

REMARK 1. Theorem 1 improves the corresponding results of [2] on unconditional solvability of 
quasielliptic equations (m = 1). 

REMARK 2. In the isotropic case the inequality (1.3) was obtained for a = 1 in [6]. 

REMARK 3. Theorem 3 is also new for scalar operators. Some analogs of this theorem have been 
known only for elliptic operators (see, for instance, [7-9]). 

REMARK 4. The results of the present article were announced in [10]. 
Theorem 2 in particular yields the following estimate for the Laplace operator 

IIIxl-2%(x), Lp(R.)II <_ clllxl20-~)/Xu(x), Lp(R.)II, 

n n 
n > 3 ,  

- n - 2 ( 1 - a )  < p < 2a '  

and the heat operator 

II(Izll + Iz'12)-%(z), Lp(R.)II < cll(Ixxl + Iz'I2)(I-~)(D.1 - A')u(z), Lp(R.)II, 

X/ = ( X 2 , . . . , X n ) ,  A' = D2~2 + . . .  + D 2 
xrt ' 

n + l  n + l  
< p <  

n -  1 + 2o" 2o" 

Theorem 3 implies in particular that the Laplace operator A is an isomorphism of W~2,1(Rn) 
onto Lp(R,~) for n > 3 and p E (1,n/2), and the heat operator D~ 1 - A' is an isomorphism of 

r R = (1 ,2 , . . . ,2) ,  onto Lp(Rn) for p E (1,(n + 1)/2). In w we exemplify the the space W~,�92 v 
application of this theorem to the theory of Sobolev-type operator equations. 

w 2. A p p r o x i m a t e  Solut ions to Quasiel l ipt ic  S y s t e m s  

To prove solvability of the system (0.2), we use the idea of construction of approximate solutions 
to quasielliptic equations L(Dx)u = f (x)  on the whole space Rn which was proposed by S. V. Uspen- 
skii [11, 12] and the technique of Lp-estimates for solutions which was developed by the author (see, 
for instance, [2]). 
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Consider the family of the integral operators Pj.h. J = 1 . . . . .  m, 0 < h < 1: 

h-I 

) d d,d., (2.1) 
h Rr~ Rn 

where lJ'k(i~) are the entries of the inverse matrix (L(i~)) -1, 

n 
E2/ai G(~) = 2g(~) 2'~ exp(-({)2*:), (~)2 = E - i  , (2.2) 

i=1 

and x is a natural  number. 
It follows from the definition and Conditions 1 and 2 that the functions P.i,hF(x) are infinitely 

differentiable and 
rn 

Z lk,j(D~)PJ, hF(x) = Fk,h(x), 
j= l  

h-1 

Fk,h(x) = (27r)-" / v - l ~ ' l - '  i Sexp (i (" v ~ > ~ )  G(,)F,(y)d~dydv; 
h Rn Rn 

moreover, by [11] 
IIFk,h(x) - Fk(z), Lp(R,) I I  --, 0, n --, 0. 

Consequently, we can consider the vector-function Uh(z) with components Pj,hF(x), j = 1 , . . . ,  m, as 
an approximate solution to the system (0.2). 

While considering quasielliptic equations (m = 1), the author [2] proved some properties of the 
integral operators Pl,h which helped him to establish conditions for solvability of these equations in  
the spaces W~r,a(Ra) and distinguish the cases of correct solvability. In Lemmas 1 and 3, we present 
analogs of these properties for m > 1. In particular, Lemma 1 is a generalization of Lemma 1 of [2] 
and Lemma 3 improves Lemma 2 of [2]. 

L e m m a  1. If a vector-function F(x) belongs to Lp(R~) then the following estimate holds: 

IID~P,,hF(x), L,(R=)II _< cllF(z), Zp(R,~)[I, /3a = 1, j = 1 , . . . , m ,  (2.3)  

with some constant c > 0 independent of F(z) and h. 

P R O O F .  Obv ious ly ,  i t  suffices to prove (2.3) for vector-functions F(x) E C~(Rn). For /3a  = 1 we 
have 

h-1 

, 
h Rn Rn 

Executing the change of variables sk = ~kV -a.k, k = 1 . . . .  , n, and using the properties of the Fourier 
transform, we can rewrite this equality as 

h-1 

O~fj,hF(x)-- (27r)-3n/2 / t , - 1 / ( / e x p ( i ( x - y ) s ) G ( s l ) a ) d s )  
h Rn Rn 

x ( f exp(iy,)(i,)J ( ~_l lJ'k(i,)~'k(,))d,) dydv. (2.4) 
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Denote 

f3(Y) = (2~)-"/=' f exp(iv~)(i~) a tJ'k(i~)Pk(~) d~. 
Rn 

(2.5) 

Using Conditions 1 and 2 and Lizorkin's theorem on multipliers [13], we arrive at the inequality 

Ilfa(x),Lp(R..)ll <_ callF(x),LdR.)ll (2.6) 

with some constant c a independent of F(x).  Repeating similar arguments of the proof of Lemma 1 
in [2], we come to (2.3). The lemma is proven. 

To obtain estimates for the derivatives D~PAhF(z ) for 0 < fla < I, consider the functions 

h - t  

~,htZ) = 

h Rn 

(2.7) 

L e m m a  2. Suppose that In[ > 1 - f l a .  
tion (2.2), the following estimate is valid: 

Then there is xo such that, for x >__ no in the defini- 

(z>l~l+~o-'l~:~,~(z) I < c, z ~ R . ,  (2.s) 

with some constant c > 0 independent of h. 
PROOF. Observe that  from the definition (2.7) we obtain 

,,.~,Aht,~ Z), (2.9) 

Demonstrate that  there exists x0 such that, for ~ > n0, the following est imate holds: 

maxlX:~'~(z) I _ c (2.10) 
( ~ ) = 1  " '  

with some constant c > 0 independent of h. 
It follows from the definition of the function G(~) and Condition 2 that  the integral 

KJz'k(z) = f exp(iz~)G(~)(i~)alJ'k(i~)d~ 

Rn 

(2.11) 

is infinitely differentiable and for every m > 0 there obviously exists tc0 such that  the uniform est imate 

I q % ) l  <- co(1 + (z>) -m, z ~ n . ,  

is valid for x > x0. Consequently, for 0 < h < 1 and (z) = 1 we obtain 

h -1 1 h -1  

<- _< 

h h 1 

Therefore. using the condition [al > 1 - fla and choosing the corresponding, x0 for m > lal, we arrive 
at the inequMity (2.10) for x > ~:0. 

In view of (2.9), from (2.10) we obtain (2.8). The lemma is proven. 
Henceforth we assume that x _> :̂0 in (2.2). 
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L e m m a  3. Suppose that/3 - (,J1 . . . .  , ~dn), 0 _< 3c~ < 1, and 

/I,o....~, > o'(1 - 3 e )  > 1 - ,8o, - 

P 

[a[ l 1 
1. 

Then the following estimate holds for evely vector-fun ction F(x) E Lp,a- 1 ( Rn) :  

II (x)a(/~a-1)D~ Pj,h F(x ), Lv( R,, )II 

<_ c][(x)(~-x)(~a-1)F(x),Lp(R~)[I, j = 1,... ,rn, (2.12) 

with some constant c > 0 independent of F(x) and h. 

P a o o v .  Since the set of compactly-supported functions is dense in Lp,.r(Rn), it suffices to establish 
(2.12) for compactly-supported F(x). Recalling the definitions (2.1), (2.2), and (2.7), we can represent 
the function D~ Pj,hF(x) as 

m 

= ~,h(x-y)Fk(y)dy. 

By Lemma 2, we have the inequality 

I (z)~(~"-I)D~Pj,hF(x),Lp(R.).[[ 

< c (x )  ~ (z  - y)-I"l-Z~ dy, 
k=l Rn L, IR.'II 

and, recalling that f~a - 1 < 0, - ] a  I - ]~a + 1 < 0, and a < 1, we obtain 

< c '  - 

x(y)(~-x)('~-')lFk(y)ldy, L,(R.)l [. 

Using the conditions of the lemma and the Hardy-Litt lewood inequality [14], we obtain (2.12). The 
lemma is proven. 

w 3. So lvab i l i t y  of  Quas i e l l i p t i c  S y s t e m s  

Grounding on the above-obtained estimates (or approximate solutions, we prove Theorems 1-3. 
To this end, we need the following lemma: 

L e m m a  4. Suppose that the conditions of Theorem 1 are satisfied. Then the following conver- 
gence holds for every compactly-supported vector-function F(x) E Lp( R,~): 

[[Pi,h,F(x)-Pj,h~.F(x),W;,AR,)I!--,O, hl,h.~-~O, j--1,...,m. (3.1) 

PROOF. Consider (2.4) for 3c~ = 1. In view of (2.5) and (2.6). from [11] we obtain 

][D~Pi,~F(x)- f:~(x),ip(R.)[I --, o, h -., O. 
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Hence, 
D~3 P I x j .hlF(x) - D , : P j . h ~ . F ( x ) , L p ( R , , )  H O, 

Establish the convergence 

hi, h2 --~ O, j =  l , . . . ,m.  (3.2) 

(1 + ( x ) ) a ( # a - 1 ) ( D ~ P : , h ~ F ( x )  - D~Pj,h,F(x)),Lv(R.)i { -~ O, 
hl,h2--*O, j = l , . . . , m ,  (3.3) 

for /3a < 1. 
From (2.1), (2.11), and Minkowski's inequality we obtain 

I1(~ § (x))"(a~-l)(D~P.i,h~F(x) - D~PLh2F(x)),Lp(Rn)II 
h., 

m 

x - - y  

-< + i ,<J ' 
k----1/~1 " Rn  

h - 1  
m 2 

dv 

x - y  

m m 

= Z ri,klL h2)+  Z IJ'kl" l f l , l t U l ,  f l , 2 t h l ,  ]~2) - 

k = l  k = l  

j,k Consider the summands I~,l(hx , h2). Since a(fla - i) _< O, applying Minkowski's inequality and 
Young's inequality, we find that 

h2 

,1,,,,, ~,>-< Ill'; '~ (~),~,I~-)ll ~,~(~>~,(~->, 
hl 

ha 

= f v-a'd~llKJ"(x),L'(R,)ll IIFk(ylLv(Rn)ll. 
hi 

Since fla < 1, we conclude that  

j,k I~,l(hl, h2) ~ 0, hi, h2 ---* 0. 

rj,ktL h2). Si.nce o'(Bo 1) < 0; applying Minkowski's inequality, Now, consider the summands a s,21nl, - -  _ 

Young's inequality, and the estimate 

(x - y)(1 + (x)) -1 ~ a( i  + (y)), 

we obtain 

hT I 

~k f ,,-1 ( Io'2(hl, h2) = I + (z)) "(.s~'-~l 
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• f f exp(i(z- U) )G( vo)(i )31J'k(i )Fk(y)d dy, Lp(R.)]l dv 
Rn Rn 

< c / v-l[ / ( x  - y)"(~"-l)[f exp(i(x- y)~)G(~v~')(i~)~lJ'k(i~)d~l 
h I 1 Rn Rn 

• + (y))-r , Lp(Rn )11 dv 

< c / v - I  I (z) ~176 f exp(ix,)G(,v~')(i,)~lLk(i,)d~,Lp(Rn)ll dv 
hTa R. 

xll(1 + (y))-'(a=-X)gk(y),La(Rn)ll. 

Executing the change of variables s = ~v a, z = xv -c', we arrive at 

j,k f v -lal/p'-#a+a(za-1) dv I~,2(h1,h2 ) <_ c 
J 

](z) ~ L,( Rn)ll,,(l + (y) )-~'(#~ Ll ( Rn),,. 
Rn 

Recalling the conditions of the lemma and the definition of the function G(s), we obtain 

j,k I~,2(hl, h2) ~ O, hl, h2 ~ 0. 

The above arguments immediately yield (3.3) for 0a < 1. 
From (3.2) and (3.3) we derive the convergence (3.1). The lemma is proven. 
PROOF OF THEOREM 1. From Lemmas 1 and 3 for F(x) E Lp,a-l(Rn) we obtain the inequality 

IIPLhF(z),Wf,,a(R,)II <_ clIF(z),Lp,,,_I(R,)It, 0 < h < 1, j = 1,. . . ,m, (3.4) 

with some constant c > 0 independent of F(z) and h. By Lemma 4, we have the convergence (3.1) 
for every compactly-supported F(:r) E Lp(Rn). Then, by completeness of the space Wf~,a(Rn), there 
exist continuous linear operators 

Pj : Wj,.(R.) 
defined for compactly-supported vector-functions; moreover, 

][PjF(x), < cHF(x),Lp(Rn)l[, 

HpjF(z)_ P ", LhF(x),VCp,~r(Rn) ] ~ O, h ~ O. 

By denseness of the set of compactly-supported functions in Lp,a-l(Rn) and the classical theorem of 
"extension by continuity," we can uniquely extend the operators Pj to the whole space Lp,~,-1 (R,~) so 
as to preserve the norm. We use the same notations Pj for the extensions. 
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It follows from (3.4) that the linear operator 

Pj,h : Lp,a-,(Rn)---* vvpr,(Rn) 

is continuous and [[Pj.hH <- c. Consequently, by the Banach-Steinhaus theorem, the convergence 

Ilp~-F(x)- Pi,hF(x),~g~(a.)ll 40 ,  h-~O, 

holds for every vector-function F(x) E Lp,~-l(Rn). 
The above arguments imply existence of a solution U(x) E W~r,a(Rn) to (0.2) for every F(x) E 

Lp,,,-I(R,); moreover, Uj(x) = PiE(x) and the solution satisfies (1.2). 
Prove uniqueness of a solution to (0.2) in the space W;,a(R,,). First observe that,  by Condition 2, 

for every vector-function U(x) E C~(Rn) we have 

(i~)ZU(() = (i()B(s163 ~ E R,\{0} .  

Then, for/3a = l, from Condition 1 and the theorem on multipliers [13] we obtain the estimate 

HD~U(x),Ln(R.)[I < cllZ.(O.)U(x),Lp(R.)ll 
0 

with some constant c > 0 independent of U(x). Since W[~,a(Rn ) = Wrp,a(Rn) for a < 1, this est imate 
is valid for every U(x) r W[~,a(Rn ). Hence, the kernel of the operator L(Dz) may contain only 
polynomials. Consequently, for ]al/p > a a solution to (0.2) in W.;,a(Rn ) is determined uniquely. The 
theorem is proven. 

PROOF OF THEOREM 2. The estimate (1.3) for/3a = 1 has been already proven. Consider the 
case of/3a < 1. Introduce the notation 

= {x e R . :  (x) < 

Prove that  the following estimate holds for every e > 0: 

[[ (x) -'('-~'~) D~U(x), Lp(R,,\,,,~)l[ 
< cll(x)(1-")(~-~)s 0 _</3a < 1, (3.5) 

with some constant c > 0 independent of U(x) and r 
Using Minkowski's inequality and Lemma 3, we obtain 

I(x) - ' (1-"~ t . (  )ll 

< II(x)-~'('-~)DCPj,hs 
+ll(x)-'(x-~'~)(D~pj,hs O~Vj(x)),Lp(R.\w~)[ I 

< ][(x)-a(1-~a)D~Pj,hf-.(Dz)U(x),np(R,O]l 

+c(~)[l(1 + (x))-a(a-~a)(D~Pj,hf-.(D,)U(x)- D~Uj(x)),Lp(R,\we)l I 
<_ c[](x)(1-a)(1-[3a)s 

+c(e-)[l(1 + (x))-a(1-'~'~)(O~Pj,hs D~U.i(x)),L~,(R,)H , 

where the constant c > 0 is independent of U(x), h, and ~ and the constant c(r > 0 depends only 
on r The proof of the preceding theorem implies that 

II(1 + (x))~'(,'3'~-I)(D~PLhs ~ - D~bj(x)),Lp(Rn) ~ 0, h - - .  0. 

Passing to the limit as h --~ 0, we now obtain (3.5). In view of the arbitrariness of ~, we arrive at (1.3). 
The theorem is proven. 
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PROOF OF THEOREM 3. Obviously, for [al/p > 1 and cr = 1 the conditions of Theorem 1 are 
satisfied. Thereby the system (0.2) is uniquely soh:able in W;,I(Rn ) for every F(x)E Lp(Rn) and 

~[#(x) = PjF(x),  [[U(x), ~r (Rn) H < cIIF(x),Lp(R,)II. rp,1 

It follows from Condition 1 that 

s : W;,,(R,) ~ Lp(R,) (3.6) 

is a continuous linear operator. From the above we infer that the range R(~.(Dz)) coincides with the 
whole s p ace Lp (R,,); moreover, 

HU(x), W;,I(R~)II < cHs [. 

Then there is an inverse operator 

(/Z(Oz))-I : Lp(R, )~  Wj,,(Rn) 

which is a continuous linear operator. Consequently, the quasielliptic operator (3.6) is an isomorphism. 
The theorem is proven. 

{} 4. Sobo lev-Type  Equa t ions  

In conclusion, we exemplify the application of Theorem 3. Consider the following Cauchy problem 
for the system that is not solved with respect to the higher order time derivative 

l-1 
f-.o(D~)D~U + Es = Eft, x), t > O, x e Rn, 

k=O 
Dk, Ult=o = 0, k = 0 , . . . , l -  1, (4.1) 

where s iz a quasielliptic operator satisfying Conditions 1 and 2. We suppose that the matrix 
differential operators s satisfy Condition 1. 

The conditions on the operator s imply that for so.lvability of the problem (4.1) in the 
Sobolev spaces, we have to impose some additional constraints on the right-hand side F(t, x) like 

/ x~F(t,z) dx = 0; 

moreover, the number of orthogonality conditions depends on the order of the differential opera- 
tors f-.k(D~), the dimension n, and the exponent p (see [15,161). Using the spaces like W~,a(R,,) 
and Theorem 3, we can extend the class of Sobolev-type equations for which the Cauchy problem is 
unconditionally solvable. 

T h e o r e m  4. Suppose that ]a]/p > 1. Then for every vector-function 

F(t,x) E C([0,T]; Lp(Rn)) 

the problem (4.1) has a unique solution 

u(t,x) e c ' ( [ 0 ,  r ] ;  W;.,(R,)). 

PROOF. By Theorem 3. the linear operators 

(s163 [4p, l(R~) --+ W~,I(Rn), k = 0 , . . . , l -  1, 
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are bounded and. since 
(s  E C([0, T]; W~.I(R,,)), 

correct solvability of the Cauchy problem (4.1) follows if we rewrite the problem in the equivalent 
form 

l--1 

D[U + Z(s163 = (s t > O, 
k=O 

D UI,=o = 0, k -  o , . . . , l -  1. 

The theorem is proven. 
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