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FACTORIZED SPARSE APPROXIMATE INVERSE
PRECONDITIONINGS.IIL. ITERATIVE CONSTRUCTION OF
PRECONDITIONERS

A. Yu. Yeremin, L. Yu. Kolotilina, and A. A. Nikishin UDC 519.612.2

This paper presents new results of the theoretical study of factorized sparse approrimate inverse (FSAI) precon-
ditionings. In particular, the effect of the a posteriori Jacobi scaling and the possibility of constructing FSAI
preconditioners iteratively are analyzed. A simple stopping criterion for the termination of local iterations in
constructing approzimate FSAI preconditioners using the PCG method is proposed. The results of numerical
ezxperiments with 3D finite-element problems from linear elasticity are presented. Bibliography 21 titles.

1. INTRODUCTION

This paper considers the so-called factorized sparse approximate inverse (FSAI) preconditionings for
linear algebraic systems with symmetric positive-definite (SPD) coefficient matrices. FSAI preconditi-
onings were introduced and theoretically studied in [19]. The application of FSAI preconditionings to the
solution of 3-dimensional finite-element problems on massively parallel computers was considered in [20].
An alternative approach to the construction of sparse approximate inverses in factored form, based on an
algorithm for constructing two sets of A-biconjugate vectors, was suggested in [2, 3]. In comparison with the
nonfactorized sparse approximate inverse (SAI) preconditionings, introduced much earlier [1] and studied
rather intensivity in the last decade (see, e.g., (18, 9, 13, 4, 5, 8]), the FSAI preconditionings have the
obvious advantage of preserving the symmetry and positive definiteness of the original matrix.

In this paper, the lower triangular sparsity pattern S of an FSAI preconditioner for an SPD matrix A
is asswumed to have been fixed beforehand, aud the problem of the optimal selection of S is not considered.
This is in contrast with the approaches used in {2, 3] and in [13, 4, 5, 8], where the sparsity pattern is
selected during the computation of the preconditioner. The present paper mainly addresses the following
two issues. First, in Sec. 2, we give additional evidence to support the necessity of incorporating the
Jacobi scaling in constructing FSAI preconditioners. To this end, we theoretically compare two types
of FSAI preconditioners (that differ by a diagonal scaling matrix), the first of which corresponds to the
unconstrained minimization of the Frobenius norm of the corresponding residual matrix over all lower
triangular preconditioning matrices of a fixed sparsity pattern S, whereas the second one corresponds to
the minimization of the same functional but under the additional constraint that the preconditioned matrix
has all of its diagonal entries equal to 1.

The results of this comparison show that the unconstrained minimization of the Frobenius norm yields
preconditioned matrices with smaller eigenvalues, which frequently leads to spectral condition numbers
significantly larger than when the a posteriori Jacobi scaling is used. This exhibits the potential danger of
basing the construction of sparse approximate inverse preconditioners on the unconstrained minimization
of the Frobenius norm.

The second issue addressed in this paper is the possibility of constructing FSAI preconditioners iter-
atively. The necessity of the iterative construction is due to two main reasons. First, this provides the
possibility of reducing the costs of constructing FSAT preconditioner, which can be quite large, especially
on a sequential computer. Second, in sowme cases (e.g., when factorized sparse approximate inverses are
used to approximate the inverses to Schur complements during the construction of an incomplete block fac-
torization precouditioner), it is unreasonable to form the matrix for which we need an approximate inverse
explicitly, for instance, because of the memory considerations. In such situations, dircct solution methods
simply cannot be applied.
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Concerning the iterative construction of FSAI preconditioners, considered theoretically in Sec. 3 and
numerically in Sec. 4, our main conclusion is that FSAI preconditioners do not need to be computed with
high accuracy, and a simple stopping criterion based on the relative variation of the diagonal entries of the
preconditioner under construction can be used.

2. OPTIMAL AND QUASIOPTIMAL FSAI PRECONDITIONINGS

In this section, we recall (see [19, 20]) and compare two types of FSAI preconditionings for an SPD
matrix A. Preconditionings of the first type are introduced for purely theoretical reasons. They are
referred to as optimal because, by definition, they are required to minimize the Frobenius norm of the
corresponding residual matrix over the set of all lower triangular matrices of a prescribed sparsity pattern.
We also consider another type of FSAI preconditionings, which actually possess the same minimization
property but under the additional constraint that the resulting preconditioned matrix has unit diagonal
entries. Thus, preconditionings of the second type are quasioptimal from the standpoint of minimizing the
corresponding Frobenius norm. On the other hand, it turns out that from the viewpoint of optimizing
the spectrum distribution of preconditioned matrices, the quasioptimal preconditioners are superior to the
optimal ones.

Let A be an nxn SPD matrix and let S,

{(i.): i<j}CSC{(,5): i#5}, (2.1)
be a fixed lower triangular sparsity pattern. Furtler, let A = L LT be the Cholesky decomposition of A.
The lower triangular matrix G(© = (g,§9))§fj=1 is defined as the minimizer of the functional ||[[ — HL4||% =

tr[(I — HLA)(I — HL4)T] over all matrices H = (hij)? ;=1 such that h;; = O whenever (4,j) € S, ie,
over all matrices H of sparsity pattern S. Thus, the matrix G(¥) can be regarded as the optimal sparse
approximate inverse of sparsity pattern S to the Cholesky factor L4, and it is natural to use G as a

" . s .. T
preconditioner for A, where the preconditioned matrix is of the form GOAGO" .
As is not difficult to sce [19], the matrix G is determined by the equations

g =0, (i,5) € S;
(G A)i; =0, i # 5 & (i,§) ¢ S; (2.2)
(G(O)A)ii = g,‘_i, 1= 1, ., N,

where Ly = ((,'ij),g’;j=1. Since all of the principal submatrices of the SPD matrix A are nonsingular, system
(2.2) is uniquely solvable, and thus G () is uniquely determined. However, G(® cannot be computed unless
the diagonal entries of L4 are available.

We also cousider another lower triangular preconditioning matrix G = (g;;)7;—; of sparsity pattern S,
which is defined below. First one constructs the auxiliary matrix G = (9i5)% ;=1 defined by the following
relations:

Gij =7
gi; =0 (i,j) € S (2.3)
(GA)i; =0.  (ij) ¢ S&i#.

Then one computes the diagonal matrix D = diag(d,.... ,d,) defined by the equality
D? = diag (é AGT ) (2.4)

and, finally, one sets N
G=D"'G. (2.5)
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As is trivial to see, the corresponding preconditioned matrix GAGT has unit diagonal entries:
(GAGT); =1, i=1,...,n, (2.6)

i.e., GAGT is Jacobi scaled.

As far as we know, the matrices defined by (2.3)-(2.5) first appeared in [8], where they were introduced in
a different (recursive) way in the context of approximating banded SPD matrices. In [14] (see also [15-17]),
these matrices (described slightly differently) arose as the minimizers of Kaporin’s functional

t1 HAHT

~1/n

B(HAHT )= ———— (det HAHT) (2.7)

over the set of all lower triangular matrices of a fixed sparsity pattern. Finally, in [19] the same matrices
were suggested as a practically computable replacement for the optimal sparse approximate inverses (2.2).

Our first result shows that the preconditioner G defined by (2.3)—-(2.5), which is optimal w.r.t. minimizing
Kaporin’s g3, actually possesses a more general optimality property, which can be formulated in terms of
the diagonal entries of G.

Lemma 2.1. Let A be an SPD matrix and let S be a fixed lower triangular sparsity pattern. If the matrix
G is defined by (2.3)—(2.5) and the matrix H = (h;;);-, satisfies the conditions

and
(HAHT)“ S 17 [/: 17-.. ,'n, (29)

then
Gii = hy, t=1,...,n. (2.10)

Proof. Let i, 1 <14 < n, be fixed. By (2.6) and (2.9), we have
0<[(G-H)AG-H)],<2[1-(GAH")4],

whence

(GAHT), <1 (2.11)

Taking into account that, by (2.3)—(2.5) and (2.3)

(GAHT)., Z GA)ij hij = (GA)ii hii,

and. similarly,

1= (GAG"), = (GA)i g, (2.12)

from (2.11) we obtain that
(GA)i; hii < (GA)ii gis-

which implies (2.10). O

Using this simple result, one can easily derive some important implications and, in particular, the qua-
sioptimality of matrices (2.3)—(2.5) regarded as sparse approximate inverses to the Cholesky factor L ..
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Theorem 2.1. Let, for an nxn SPD matrix A and a fixed lower triangular sparsity pattern S, the matrix
G = (gij)!';=1 be defined by (2.3)-(2.5) and let the matrix H = (h;;)};_, of sparsity pattern S be such
that
(HAHT) =1, i=1,...,n. (2.13)
Then
I = GLallg I —HLyallF.

Proof. Obviously, it is sufficient to show that

[(I=GLA)I -GLA)T ), < [U-HLA)I —HLA)T],,, i=1,...,n. (2.14)

Since, in view of (2.6) and (2.13), we have
[(I-GLAI-GLA)T],=2(1—gils), i=1,...,n, (2.15)
[(I—HLA)I—HLA)"|,=2(1-hsty), i=1,...,n, (2.16)

relations (2.14) trivially follow from inequalities (2.10), established in Lemma 2.1. O

Theorem 2.1 states that the matrix G defined by (2.3)—(2.5) is the minimizer of || — HL4||r over all
matrices H of the same sparsity pattern S that satisfy the addition constraint diag(HAHT) = I,,. Thus,
G proves to be a quasioptimal sparse approximate inverse to L 4.

Based on Lemima 2.1, it is also possible to reestablish the above-mentioned minimization property of the
matrix G defined by (2.3)—(2.5) w.r.t. the functional (2.7) in a very simple way.

Theorem 2.2. For anv nxn SPD matrix A and a fixed lower triangular sparsity pattern S, the matrix G
defined by (2.3)-(2.5) minimizes the functional (2.7) over all nonsingular matrices H of the same sparsity
pattern S.
Proof. Let

2

I =diag(71.--- »7¥n), where v = [(HAHT).”]I/“. i=1,...,n.
Then

~-1/n 1/n

B(HAHT) = E—Z— (det HAHT) ™™ > (Ty2) 1/ (det HAHT) ™" = det (HART) ™/,
where we set H = I'~! H. Since (HAHT);; = 1,i=1,...,n, and H = (h;;)?

;=1 has the same sparsity
pattern S. Lenuna 2.1 ensures that

71:“=h“/’y, ng‘i, L=1, ,n,

whence | |
det (HAET) ™" > (det GAGT)™'/"

=/ (GAGT) .
O.

Now we will establish the explicit relation between G and G,
Lemma 2.2. Let. for an nxn SPD matrix A = Ly L7" where Ly = (¢;;)} =1 18 the Cholesky factor of A.
and a fixed lower triangular sparsity pattern S, the matrices G\ and G be defined by (2.2) and (2.3)-(2.5).
respectively. Then

G = AG, (2.17)

where
A= diag(dl,.. . ,5n), (Sz = &ig,zi S 1, 1= 1,.. . n. (2.18)
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Proof. First we note that, in view of (2.3),
0< (GaG ) Z GA) 5= (CGA), i=1,...,n, (2.19)

and thus, by (2.3)-(2.5), the matrix G satisfies the following relations:

(GA)y =d;' (GA)y >0,  i=1,...,n
(GA)i; =d;' (GA)yj =0, i#j&(4,5)¢S;
gi; =d; ' Gij =0, (i,j) € S.

Comparing these relations with (2.2) and making use of the unique solvability of (2.2), we arrive at the
conclusion that there exists a diagonal matrix A = diag(d;,... ,d,) with positive diagonal entries such that

(2.17) holds true. Obviously, J; = gg))/gii, i=1,...,n, and thus, by (2.17) and (2.6),

(G<°>AG<°>T) (g”)/qu) (GAGT);; = (g“)/g“> Ci=1.....n. (2.20)

2

On the other hand, in view of (2.2) we have

n

=Y (GOA); 9 =g, i=1.....n. (2.21)
j=1

(G(O)Ag(O)T) A

i

Comparing (2.20) with (2.21), we see that

0 .
90 = g2 i=1,... n, (2.22)
which implies that
0 , .
0; :gz(z)/g” =g by, 1=1,...,n.
Thus, to complete the proof of Lemma 2.2, it remains to ascertain that g;; €; < 1,4=1,... .n. Indeed, for

any i, 1 <i <n, we have

1=(GAG )i = [GLa(GLA)T],, = (GLa)} + D (GLA); = (9:i ir)*.
Jj#t

Based on Lemma 2.2, we will first show that, independently of A and S,

Il -~ GLA|r
1< ———1 <2
S—coL.y; < V2

and, furthermore, ||[I ~ GL || r approaches |I — GO La|lr as G approaches L7'. Thus, though the
matrix G defined by (2.3)—(2.5) is worse as an approximate inverse to L4 than G defined by (2.2), the
values of ||I — GL4||F and ||[I — G Lallr cannot differ by a factor larger than /2, and the difference
between the two norms decreases as the optimal approximate inverse G'9) approaches L;l. Note also that,

by (2.22), ¢V ¢;; = 1 if and only if g;; £:; = 1.
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Theorem 2.3. Let, for an nxn SPD matrix A and a fixed lower triangular sparsity pattern S, the sparse
approximate inverses G'9 and G to La be defined by (2.2) and (2.3)—(2.5), respectively. Then

2
: (0)
1+ lrgniléln{gii £ }1/2

1/2
Il = GOLallr < |1 =G Lallr < [ ] I - GO Ll (2.23)

Proof. The left-hand-side inequality in (2.23) follows from the optimality of the matrix G(°) with respect
to ||[I — G'9 L4||r. The right-hand-side inequality in (2.23) is a consequence of the following relations:

(X3

(=GO Ly - La)T|

(%

=1-2g5 & + (G(O)AG“”T)

(2.21) 2.22) .
=1~ gE?) i @22 4 — 020 = (1 — gi b)) (L + gii ig) = (1 + min {gii fii}) (1 = g4 €s;)

0) gii}uz) (- GLa)(I ~ GLA)T]ii

1=1,...,n.

(2.22),(2.15) . (
= (1 + min {g; 5 ;

O

. T .
The result below, concerning the eigenvalues of GAGT and G'9 AG®)" | is also a consequence of Lem-
ma 2.2.

Theorem 2.4. Under the hypotheses of Theorem 2.3,
-1
2 (6@ 46O < M(GAGT) < | min (4@ M (G@AGOTY, i=1,....n, (2.24)
1<i<n 7

where the eigenvalues of both matrices are numbered in the same monotone order, say, nonincreasingly.

Proof. Using (2.17) and (2.18) we derive
M(GAGTY = X, (A“ G AT AT 2 (G<°> AG<°>T) Amin(A72)

T o T

=i (G0 AGOT) min (577} 2 A (610 4G ), i=lom,
1<i<n

which proves the left-hand-side inequalities in (2.24). The remaining inequalities can be established in a

similar way:

M(GAGT) < (GO AGOT) Aas(872) = X (G0 4G max (672

1<i<n

=\ (G(O) AG(O)T) lxx;fwz*il{(gii &i)*?} =X (G(O)AG(O)T) max {(gf?) f.,-,i)_l}, i=1,...,n.

< 1<i<n

O

As Theorem 2.4 shows, no eigenvalue of the matrix GAG”T can be smaller than the corresponding
eigenvalue of the matrix GO ac®T I particular, we may expect that Apin(GAGT) > /\,,,;,,(G(O)AG(O)T).
which demonstrates the advantage of using G as a preconditioner for A if one knows that /\nmx(GAGT) is
bounded from above by a reasonable constant. For instance, if A is an H-matrix, then /\nmx(GAGT) < 2
[19, Theorem 4.2]. On the other hand, from Theorem 2.4 it follows that the corresponding eigenvalues
of the matrices GAGT and G(O)AG(O)F approach each other as the diagonal entries gg,?) (or, equivalently,

gii) approach ¢;; ' i =1,...,n. Thus, the closer to I, any of the preconditioned matrices GAGT and

G'(O)AG(O)T7 the less the difference between themn.
Theorem 2.4 implies the following relations for the smallest eigenvalues of G (O)AG(O)T and GAGT.
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Corollary 2.1. Under the hypotheses of Theorem 2.3,

mi

Anin (GOAGOT) < Anin(GAGT) < M1 (64607 . (2.25)

Proof. In view of the left-hand-side inequality in (2.24), it is sufficient to establish the relation

Amin (G(O)AG(O)T> > A2, (GAGT).

min
which stems from the right-hand-side inequality in (2.24), equality (2.22), and the relation

. T i 2 g2
Anin(GAGT) < min {g €3}

The latter relation immediately follows from the well-known inequality (see, e.g., [12, p. 191])

Omin(B) £ min | A(B) |, (2.26)

1<ign
where omin(B) is the smallest singular value of B, applied to the matrix B=GL4. U

Two-sided bounds for the smallest eigenvalues of GOAGOT and GAGT i terms of g( )Eu
= (G(O)AG(O)T),;,: are provided in the next theorem.

Theorem 2.5. Under the previous notation,

n—1 n o
-1 T -
min {(j“ ) Cu} (I} ) H (]fl ) Yy < Amin (G(O)AG’(O) ) < [ min {qf?) é’i,,-}} ,
1<i<n n - 1<i<n )
i=1 (227)
n—1\""" & 0
( - ) HJ“ ;< )\mm(GAGT) < 11<1111é1” {.(],Ei) &1} . (2.28)

Proof. The upper bounds in (2.27) and (2.28) follow from the genecral inequality (2.26) and the relation
gh by = gg)) (see (2.22)). Both lower bounds in (2.27) and (2.28) readily follow from the bound [11,
Theorem 1]

Tamin(A) > ("‘;1) | det A | ﬁ——(—A—)) (2.29)
' ’I‘,‘(A

=1

n
where A € C™" r;(A) = (3. lai;|2)Y?, and ron(A4) = nnn r;(A), if one applies it to the matrices GO L 4

j=1 1<ikn
and GL , and uses the relations
RGO L) = (G0 AGO"T) P2V g0 0, r2(GLy)=(GAGT) B
Tt
n 1/2
det (GO L ) Hg(o’ lii, det(GL) Hq,, i 2D |:H(]”)£)“} _
i=1 i=1

O

Remark 2.1. As has been shown in [11], the lower bound (2.29) in its general form can be easily deduced
(by applying an appropriate matrix scaling) from the bound

n—1
2z

n—1\"% , ,
ron(4) 2 (B52) T Ja Al (z e aena ), (2:30)




which is valid for any matrix A € C™" such that (AA*); = r?(A) = 1,i = 1,... ,n. We note that the
proof of (2.30) presented in [11] is unnecessarily complicated, and this bound is actually almost trivial.
Indeed, for any A € C™", we have

* 2
det AA > | det A |

T n(A4r) [E;”(AA‘)]H
7=1 - n=1

il A) = Ma(4A") =

min

n—1
. n—1
2| dev A [ (trAA*) ’

n—1

whence (2.30) immediately follows, provided that tr A4A* < n.

Note that the interval (2.27) for Amin(G® AG(O)T) is obtained by multiplying the interval (2.28) for
Amin(GAGT) by the quantity 132} g,f? ) ¢;;, which is strictly less than 1 unless G = G(© = Lyl

We conclude our comparison of the two preconditioners G(® and G by considering a simple example,
which shows that the relation

Amin(GAGT) = 0 (/\1/2 (G(o) AG(O)T))

min

may actually occur in the case where the Cholesky factor L4 of A has a large off-diagonal entry. In view
. . T\ .
of (2.25), the latter relation corresponds to the case where the ratio Amin(GAGT) / Amin (G(O) AGO ) is

of the greatest possible order. Note that since G and G(© differ by only a diagonal scaling matrix, it is
sufficient to consider the case of the diagonal preconditioning matrices G = D and G(© = DO,

Example 2.1. Consider the 2 x 2 parametric matrix

1 « |11 0|11 «
A_[cy 1+(¥2]_[(1 l] [O 1]’ > 0.

Applying the symumnetric Jacobi scaling to A, we arrive at the matrix

with the eigenvalues

o a
AM(B) =1+ . M(B)=1— :
B =1+ mes B =1- T
Since, obviously,
o
o <1,
1+a ™ V14a?
we see that .
1+«
whence
A(B)=0(1), as o« — +o0.
Therefore,,
let B 1 .
AB) = «© = =0(a™?), as a — +oc.

N(B)  (1+a2)A(B)

On the other hand, by minimizing || DL 4 — I||r we obtain the matrix

1 =
BO — p® 4 pO) — [ o Lte ] .
1+a* 1+a=
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Clearly,
1

1+a?

1§/\1(B(0)) <trB® =1+ =0(1), a— +oc.

Hence,

det B(® _ 1

(0)
(B = 3EO) T T+ a2n (BO)

=0(a™), a— +ox.

Thus, we see that as a — +ox,
/\2 (B)//\min(B(O)) i 1,

min

whereas
Amax(B) = O(1),  Amax(B?) = O(1).

Therefore, for this example, in which the presence in L A of the large off-diagonal entry « is responsible for
the occurrence of the small diagonal entry (B(9))y, = . +a. = O(a~?), from the standpoint of minimizing the
spectral condition number the Jacobi scaling indeed proves to be superior to that minimizing ||[DL 4 — I||r
and, moreover,

(cond B)* fcond B — 1,  a — +o0.

3. APPROXIMATE FSAI PRECONDITIONERS

In order to construct an FSAI preconditioner (2.3)-(2.5) for an SPD matrix A, one needs to solve linear
equations (2.3), which, as is easy to realize, decouple into n independent linear systems (referred to as local),
cach of which determines the nonzero entries of the corresponding row of the matrix G. As was mentioned in
Seec. 1, in some cases the application of direct methods to the solution of local linear systems can prove to be
ecither impossible or too expensive. For this reason, in this section we consider the possibility of constructing
the FSAI preconditioners (2.3)-(2.5) approximately by applving an iterative solution technique.

The general theoretical basis for replacing an explicit SPD preconditioner It = A~ for an SPD matrix
A by an SPD approximation K to K is as follows. Let K = K + E and assume that lE||2 is small. Then

KA=FKA+EA.

and thus the perturbation of ' A induced by perturbing K is EA, and for the spectral norm of the latter
matrix we have

IEA[2 < Anax(A) (| E |2

Therefore, if Ay ac(A) is not considerably greater than 1, then the norm of the matrix KA — KA will be
almost as small as that of the matrix £ = K — K

This simple argument leads us to the conc lublOIl that the less the norm of the original matrix A the less
harmful the replacement of the initial explicit preconditioner for A by an approximation to it.

In the case of a symmnetric preconditioning of the form A — GAGT, we have the following result.

Theorem 3.1. Let A be an nxn SPD matrix, and let nxn matrices G and H be invertible and satisfy
the assumption

|\ I-HG ', <e< 1. (3.1)

Then
(1 -2 N(GAGT) < M(HAHT) < (1 + )’ X\(GAGT), i=1.....n, (3.2)

where the eigenvalues of both G AGT and HAHT are nonincreasingly ordered.

Proof. Denote F =1 — HG™!. Since, by assumption, ||F|l» < ¢ < 1, we have
IGH Yo =T~ F) o< Q= |Fll2)™ < (1 —¢)7h (3.3)
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Therefore, using the standard singular-values inequality (see, e.g., {12, Theorem 3.3.16(d)]) and (3.3), we
derive

M(GAGT) = 02(GLA) = 62(GH 'HL,y) <03 (GH Y)o?(HL )
= |GH Y PN(HAHT) < (1— ) 2A(HAHT), i=1,...,n,

where A = L4 Lg as in Sec. 2 and by o; we denote the nonincreasingly ordered singular values. This
establishes the left-hand-side inequality in (3.2). Similarly,

M(HAHT) = 62(HG ' GLa) < M(GAGT|HG Y2, i=1,...,

3

and the proof is completed by taking into account that, by virtue of (3.1),
NHG Mls = I = Flla < 1+e.

O

Now, after providing the above general considerations, we come back to the FSAI preconditioners. Since
our approach to the construction of FSAI preconditioners is based on minimizing the Frobenius norm, it is
of interest to consider the growth of the value of the target functional when the exact FSAI preconditioner
G is replaced by an approximation H to G that is of the same sparsity pattern.

Let an SPD matrix A = L4 Lg and a lower triangular sparsity pattern S satisfying (2.1) be fixed,
and let the matrices G and G be defined in accordance with (2.3)-(2.5). Consider an arbitrary matrix
H= (E,j ij=1 that satisfies the relations

hiy=1 i=1...,n,

Tlij =0, (i,5) €S, (3.4)
and define
H=D"'H, (3.5)
where D = diag((zl,... ,g,,,),
d?=(HAH )y, i=1,...,n (3.6)

Then for the matrix H = (h;;)7 ;- the relations

hij =0, (i.§) € S,
(HAHT)” = 1, i=1.....n, (37)

obviously hold. Therefore, by Lemma 2.1,
h,r,ﬁvlj < Jiis t=1.....n, (‘38)

and, by Theorem 2.1,
|l —HLallp > | —GLallg- (3.9)

Actually, in the case considered, we can derive explicit expressions for ||[—-H L/\llgp and for the difference
2 2
Il —HLallw — 1T — GLallg-
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Lemma 3.1. Under the previous notation, we have

1= HLall: =2) (1 — hii £) (3.10)

and n
1 —HLAI} = 1T — GLal7 = Z(EAET)u' Gii Lii, (3.11)

i=1

where we denote La = (£;5)7 ;-1 and E=G — H.

Proof. Equality (3.10) immediately follows from the relations
[(I-HL)I —HLA)T], =21 = hi ), i=1,...,n.

On the other hand, we have

hii .
2(1 = hitis) =2(1 = gis b)) +2(9si — has) €z =2 (1 — g3 £is) +2 <1 - L—) Gi b i=1,....,n,
JlL
and since
(I -GLAYI-GLA)T], =2(1=gulu). i=1...,n, (3.12)
we conclude that
. ) i i
I = HLallp = 1T = GLallf +2 Z (1 - ~) i i (3.13)
Thus, to complete the proof, it only remains to show that
]Il .
(EAET);; = 2(1 - (’—) i=1.....n. (3.14)
Jii
Indeed,
(EAET); = [(G - H)A(G ~ H)"],, = (GAGT )i + (HAHT);; — 2(GAH");;
=211 - A,hz =211 - A“ 293
[ 3 (64, )] =20 - (G Ay il (3.15)
(212 9 [1 - (GAGT)I-Z-@] = 2(1 - h—) i=1,....n.
i Gii

Lemma 3.1 is proved. O

Here, three comients are in order. First, for a fixed FSAI preconditioner G, the difference || ~ HL 4 i -
(1 - GLAH‘;)T depends only on the diagonal entries of H (see (3.13)). Second, (3.11) provides the represen-
tation of [ — HL 4 ]]“;‘ in the form of two summands, the first of which depends ounly on the sparsity pattern
S. whereas the sccond one accounts for the inexactness in computing G. Third, the closer g;; €;; to 0 (i.e.,
see (3.12), the worse the quality of the ith row of the exact FSAI preconditioner G), the smaller the coeffi-
clent with which (EAEI )ii (1., the squared A-norm of the ith 10w of the error matrix £ = G — H) occurs
in (3.11). Thus, from the standpoint of minimizing || — HL \|| p- it is most essential to find high-quality
approximations to those rows of G for which the corresponding g;; £;; are close to 1, whereas the rows for
which g;; £;; are small do not need to be approximated very accurately.

Using Lemma 3.1, we can easily obtain a lower bound in terms of the quantities related to the Frobenius-
norm minimization for the spectral norm of the matrix I — HG™!, occurring in Theorem 3.1.
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Corollary 3.1. Under the previous assumptions,
HI—HLﬂ?—HI—GLM?r“
n

- He|, = |
Proof. Taking into account that, by (2.18), £; g;; <1,i=1,... ,n, we derive

Z (EAET);; il < ttEAET =t L ETELy =r LS GT (G~T ETEG™') GLa

< Amax (G"TET EG™) tr LL GT GLa = |EG™!||; tr GAGT =n ||I - HG™Y||3,
and the result follows from (3.11). O
Note that in the case S = {(7,7) : ¢ < j}, the FSAI preconditioner G coincides with the inverse LZI, and
the above lower bound reduces to the trivial bound

| — HL4||
I-HL > AR
” A ”2 = ﬁ
In fact, it would be very helpful to have a nontrivial upper bound for the spectral norm HI - HG™! ||2 in
terms of the quantities related to the target functional. Unfortunately, we are able to derive only an almost

trivial bound

n hii
tr EAET  (3.15) Zi=l(1—gii)

In particular, this bound shows that whenever
I . T
g =it Amin(GAGT) (3.17)

i 2n
we certainly have
|1 - HG| < 1,
and thus Theorem 3.1 is applicable.
Our next purpose is to provide two-sided bounds for the quantities (EAET);; occurring in (3.11). To
this end, we need the following result.
Lemma 3.2. Under the previous notation, we have
hi?—g;2=(EAET),, i=1.....n, (3.18)
where E = G — H is the intermediate error matrix.
Proof. We have

(EAET),; = {(é—ff)A(é—H’)T] = (GAGT )+ (HAHT ) —2GAHT Yy i=1.....n. (3.19)

it

But since, in view of (2.3) and (3.4),

(GAHT )i => (GA)ijhiyj=(GAu. i=1....n,
=1
and, similarly

(GAGT )iy = (G Ay, i=1,....n.
from (3.19) it follows that
(BAET )= (HAH )i ~(GAGT ). i=1....n.
and (3.18) stems from (2.3)-(2.5) aud (3.4)-(3.6). 0O
Remark 3.1. Relation (3.18) shows, ~in particular, that the decrease of (E‘ AET )ii, 1.€., of the squared

A-norm of the ith row of the matrix £, is equivalent to the increase of the corresponding diagonal entry
hi; of the approximate FSAI preconditioner H and, in view of (3.10), to the decrease of ||I — HL4l|F.
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Lemma 3.3. Under the previous notation,
W(EAE")q <(EAET); <2h3(EAET )i, i=1,...,m; (3.20)
(EAET)ii < g?i(EAET )ii7 1= 1,... ,n. (3.21)

Proof. In order to prove the right-hand-side inequality in (3.20), we make use of (3.14) and Lemma 3.2. In
this way we obtain

2
—> =202 (EAET )y, i=1....,n.

hi
(EAET); = (1—_)<2( 2

g’LL
The left-hand-side inequality in (3.20) is also derived by using (3.14) and Lemma 3.2:
h; hii\2 h2 h2 ~ o~
(EAET); = 2(1 - —) =1+ (1 - i) >1— 2 = p2(EAET )y, i=1.....n.
Gii Gii gu gn
Finally, by using Lemma 3.2 and (3.8), inequality (3.21) can be deduced as follows:

(EAET); = 2(1 - %“) = Qh(‘hl— - EL) -

(EAET);

bii T—
(hiz' +95") /2
<hi( EAET ) hi{? g/ < g2(EAET )y, i=1,.

1

O
Now, instead of two matrices H and H , we consider two sequences of matrices { H ("’)} k>1and {H (k)}k'ZI,
where, for cach k, the matrices H *) and H®) satisfy the correspouding counterparts of relations (3.4)-
(3.6). We assume that the matrices H %), k > 1, are obtained as successive (P)CG approximations to the
matrix G defined in (2.3). More precisely, this can be described as follows. As already mentioned, the basic
equation of system (2.3) decouples into independent “local” linear systems of the form
giAi=b;, i>2, n;>1, (3.22)
where ~
Ai= Al Ji)s gi = G} i), b= —A[{i}, Ji],
Ji={j:j#i&(i,j) ¢ S}, | Jil=mn,

and B[, .J] denotes the submatrix B that corresponds to the row index set I and the column index set J.

(3.23)

We assume that the row vectors l'l,gk) =H®[{}, ], >2,n; >1, k> 1, which completely determine
H®) | are the approximate solutions of the corresponding local systems (3.22) obtained after k iterations
of the PCG method [7]. Then we obviously have

~ ~ 0. n; =10
k wTy ' T 2 , 3.9
(EWAE® )ii_{é(k)A_égk)T i=1,...,n, (3.24)
4 L)

N 13
where E® = G — H® and é,;(;k) =g — f;,gk), i=1.....n, k > 0. Now the application of the well-known
bound (7] for the PCG method yield the estimate

(EW AEWT), <4(\/7’ 1)’L'(E<<’>AE<°>'F)i,. ni>1. k> 1. (3.25)
Vi + 1
where 3 = /\nmx(l\[i_1 Ap) / Amin (M i'l A;) is the spectral condition number of the preconditioned matrix
A‘[i‘[ Ai and A, = 1\.[, - NL
Taking into account Lemmas 3.1 and 3.3 and (3.25), we arrive at the following upper bound for
[[I H* LA” as a function of k.

3249



Theorem 3.2. Let, for a fixed n xn SPD matrix A and a fixed sparsity pattern S of the form (2.1),
G = (9ij)]'j=1 be the exact FSAI preconditioner defined by (2.3)-(2.5) and let the sequences {H®)} and

{ﬁ (!)} of n xn matrices of the sparsity pattern S, satisfying the conditions
(W), =1, HW = DWW E . (H(’*)AH(’*’)T)ii =1, i=1,....n, k>1,
be constructed by applying the PCG method to the local systems (3.22)~(3.23). Then

II—GLal%: < I -H® La|%

Vi — 1\2k ~ ~ T 3.26
<II-GLal%:+4 Y g?i(ﬁ) (E@AEOT), gt k>1, (3.26)
img>1 Vi

where, for1 < i < mnsuchthatn; > 1, 2; = )\nmx(.Mi—1 A)//\mi,,(.Mi—1 A), A; = M;—N;, and E© = G-H®
is the initial intermediate error matrix.

Remark 3.2. Clearly, in constructing an approximate FSAI preconditioner H using the PCG method, one
can perform a different number of iterations for each of the local systems. In this case, in the right-hand
side of (3.26) one must replace k by the corresponding &;’s.

We conclude our theoretical analysis of iteratively constructed approximate FSAI preconditioners by
considering the behavior of Kaporin's function G(H®*) A H("")T) = ,H(H("')T H®) A) as a function of k. The
role of this functional in the theory of preconditioning is clarifed by the following theorem.

Theorem 3.3 [15]. Let A be an SPD matrix and M =~ A~! be an SPD preconditioner for A. Then the
kth PCG iterate y;. for the system Ay = f satisfies the error bound

k/2
rllar < [BOLAYE =1 lrollar, 1<k <0 -1,

where v, = f — Ayr..

Thus, using 3 it is possible (provided that § < 2 is close enough to 1) to bound the convergence rate
of the PCG method in terms of the corresponding norm of the residuals. Therefore, the deterioration of
the preconditioning quality when passing from an exact FSAI preconditioner G to an approximate FSAI
preconditioner H can be evaluated in terms of the ratio

B(HAH") T g\ . 2 B ADT 1/n ., ~ =
S D == —_— = " E )] < 3 = T “} ] 5 .2
GACT) (H hz’i) [E (1 + g (EAE" )y <1+ max {g”(EAE Yaps  (3:27)
where we have used Lemma 3.2. Note that, by Theorem 2.2. 3(HAHT) / B(GAGT) > 1.

Relations (3.27) and (3.25) immediately imply the following estimate for the ratio g(H () AH ("‘)T) /

J(GAGT), where the matrices H*) are the PCG approximations to G of the same sparsity patteri.

Theorem 3.4. Under the hypotheses of Theorem 3.2,

a¢ 17 (k) T . 7R TN ~
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4. NUMERICAL RESULTS

In this section, we present the results of numerical experiments on using approximate FSAI precondi-
tioners instead of the exact ones when solving linear systems of equations with SPD coefficient matrices
resulting from finite-element approximations of 3D problems of linear elasticity.

For our experiments, we have chosen two linear-elasticity problems for orthotropic materials considered
previously in [10]. The first one corresponds to a cubic domain with zero-displacement conditions on three
pairwise-adjacent faces. The second problem is the standard channel problem of structural analysis. Three
test systems of linear algebraic equations of the form Az = b with SPD coeflicient matrices* have been
obtained by applying the hierarchical p-version of the conforming FEM with p = 3 for the cubic domain
and with p = 1 and p = 4 for the channel problem to the corresponding variational formulations (see [10]
for more details) and by symmetrically scaling the resulting coefficient matrices by the Jacobi method. The
first linear system, which corresponds to the cubic domain, is relatively well conditioned (condA = 1.1-107),
whereas the other two are quite ill conditioned (condA > 3.0 - 109).

For each of the test systems, by applying the Cholesky method, we have constructed the exact FSAI
preconditioners corresponding to two sparsity patterns, referred to as “original” and “emnlarged.” The
“original” sparsity pattern coincides with the sparsity pattern of the lower triangular part of the coefficient
matrix in question, whereas the enlarged one is the sparsity pattern with one level of fill-in.

Approximate FSAI preconditioners have been constructed by using the (unsymmetrically) preconditioned
block conjugate gradient method (PBCG) [21]. The choice of the block version of the CG method is based
on the fact that, for the test problems considered, local linear systems with the same coefficient matrices
and several (> 3) right-hand sides naturally arise. Further, as implied by Theorem 2 in [21], the PBCG
method possesses the property of minimizing the A-norm of individual error vectors, which guarantees that
the diagonal entries of successively constructed approximate FSAI preconditioners converge monotonically
(see Sec. 3). Finally, it should be mentioned that the local linear systems have also been preconditioned
with FSAI preconditioners the sparsity pattern of which reproduce those of the lower triangular parts of
the “local” coefficient matrices.

The main practical iimplication of the considerations in Sec. 3 is that the sequences {h,,Ei )} mounotonically
(k)

converge to the corresponding g;;’s, and the magnitudes of the diagonal cntries h;;’, which determine

the values of ||I — H®) Lu|lp and S(H® AH® ) can be accepted as measures of the quality of the
corresponding rows of the preconditioner H*). Based on this, for the termination of local iterations we
have used the following stopping criterion:

BEFD _ p®)

ax i < g0l . 4.

11%2(” A0 <tol (tol >0) (4.1)
(A3

Note that at each iteration for the ith local linear system, which determines the ith row of the matrix
H®) | the quantity

N—1 ~ ~ T .
W = (W A W72

i i

must be computed, whereas the off-diagonal entries of the final preconditioning matrix H arce computed
ouly once upon termination of all local iteration processes.

The numerical results for three test linear systems, each preconditioned with several exact and approxi-

*The test linear systems are available by request from the authors through fip in the ASCII format.
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* mate FSAI preconditioners, are presented in Table 1. This table adopts the following notation:

N is the order of the linear system;
NZ is the number of nonzero entries in the coefficient matrix A;

tol is the threshold parameter used in the local stopping criterion (4.1), and tol = 0 means

that the preconditioner has been computed by the Cholesky method;
IT o is the number of local iterations needed to satisfy (4.1} with the corresponding value of

tol;
IT is the number of global FSAI-CG iterations required to satisty the global stopping criterion

logio(llrell2/lroll2) < —10,

where 7y is the residual at the kth iteration of the PCG method;

Amax(Amin) is the largest (smallest) eigenvalue of the tridiagonal matrix made up of the
coeflicients of the PCG method;

cond = /\max//\min

TABLE 1

Test system 1: N = 5040, NZ = 688108

S tol [ITt IT Amin Amax cond
Original 0.0 — | 218 | 8.9145e-03 | 3.9629 | 444.55
Original | 1.0-el 1 218 | 8.9145e-03 | 3.9629 | 444.55
Enlarged | 0.0 73 | 3.4061e-02 | 2.0882 | 61.307
Enlarged | 1.0e-1 32 | 2.7588e-02 | 2.2096 | 80.095
Enlarged | 1.0e-2 76 | 3.1572¢-02 | 2.1416 | 67.830
Enlarged | 1.0¢-3 3 | 3.3242¢-02 | 2.0910 | 62.901
Enlarged | 1.0e-4 73 | 3.3905¢-02 | 2.0876 | 61.571

— S .
ol ool et |
~J
(A4

Test system 2: N = 3083, NZ = 733372

S tol |IT|e.| IT Amin Amax cond
Original | 0.0 —~ | 2855 | 3.8945e-07 | 4.0550 | 1.0412e+07
Original | 1.0e-1 | 2 | 2823 | 3.8945e-07 | 4.0550 | 1.0412e4-07
Enlarged | 0.0 - 418 | 3.1321e-06 | 2.0657 | 6.5952e+05

Enlarged | 1.0e-1 ] 9 440 | 3.0968e-06 | 2.2011 | 7.1075e+05
Enlarged | 1.0e-2 | 11 | 425 | 3.1796e-06 | 2.0703 { 6.5112e+05
Enlarged | 1.0e-3 | 21 | 417 | 3.1602e-06 | 2.0638 | 6.5306e+05
Enlarged | 1.0e-4 | 28 | 411 { 3.1403e-06 | 2.0635 | 6.5712e+05

Test system 3: N = 6183, NZ = 790755

S tol ITod IT Amin Amax cond
Original 0.0 — | > 3000 | 5.8359¢-07 | 4.0447 | 6.9307e+006
Original 0.0 — 1065 | 2.1491e-06 | 2.8593 | 1.3304e+006

Enlarged | 1.0e-1 | 9 1385 | 1.3032¢-06 | 3.1800 | 2.4401e+06
Enlarged | 1.0e-2 | 33 1172 | 1.8281e-06 | 2.9511 | 1.614d3e+06
Enlarged | 1.0e-3 | 43 | 1050 | 2.1332¢-06 | 2.8609 | 1.3411e+406
Enlarged | 1.0e-4 | 60 | 1025 | 2.0805e-06 | 2.8604 | 1.3748e+06




Analyzing the data in Table 1, we can draw two main conclusions. First, the local stopping criterion
(4.1) works quite satisfactorily, and the number of global iterations required monotonically decreases if we
decrease the value of tol. It is of interest to note that the number of global iterations required to satisfy
the global stopping criterion for an iteratively constructed FSAI preconditioner can be even less than that
for the corresponding “exact” FSAI preconditioner (see data for test systems 2 and 3), provided that the
value of tol used in the local stopping criterion (4.1) is small enough. So far we have no explanation of
this phenomenon. Second, if the coefficient matrix is relatively well conditioned and/or the exact FSAI
preconditioner is relatively poor, then tol = 107! or tol = 1072 is a reasonable choice, whereas for ill-
conditioned systems and for FSAI preconditioners of a high quality the value of tol must be decreased up
to 1073 or 1074,

5. CONCLUSIONS AND FINAL REMARKS

In this paper, new results of the theoretical and experimental study of factorized sparse approximate
inverse preconditionings have been presented. The importance of incorporating the Jacobi scaling into
the construction of FSAI preconditioners has been explained. It has also been demonstrated that exact
FSAI preconditioners can be replaced by approximate FSAI preconditioners almost without deteriorating
the resulting preconditioning quality. This is achieved by using a simple criterion for the termination
of local iterations that is based on the monotone convergence of the diagonal entries of the sequence of
approximate preconditioning matrices under construction. It is important to emphasize that approximate
FSAI preconditioners do not need to be computed very accurately, and, as our experience suggests, the
value tol = 1072 in (4.1) is suitable in practice.

Another conclusion implied by the numerical results presented is that at least for the class of problems
considered, a rcasonable sparsity pattern of the FSAT preconditioner can be prescribed a priori, and the
sparsity pattern referred to as “enlarged” in Sec. 4 is a possible choice.

Finally, it should be noted that in this paper we have deliberately avoided all issues concerning the
comparisoun of exact and approximate FSAT preconditioners (assuining that the former can actually be con-
structed) from the viewpoint of their time/cost efficiency, because without specifying a sufficiently narrow
class of problems and a computing platforn, such a comparison can be only speculative. Accordingly, the
main purpose of this contribution is to dewmonstrate the possibility of replacing exact FSAI preconditioners
by approximate ones without a siguificant convergence deterioration.

This work was supported in part by the Netherlands Organization for Scientific Research (NWO) under
grant 047 003 017, by INTAS under grant INTAS-93-377 EXT, and by INTAS and RFBR under grant
INTAS-RFBR 95-0098.

Translated by L. Yu. Kolotilina.
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