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F A C T O R I Z E D  S P A R S E  A P P R O X I M A T E  I N V E R S E  
P R E C O N D I T I O N I N G S . . I I I .  I T E R A T I V E  C O N S T R U C T I O N  OF 
P R E C O N D I T I O N E R S  

A. Yu. Yeremin,  L. Yu.  Koloti l ina,  and A.  A.  N i k i s h i n  UDC 519.612.2 

This paper presents new results of the theoretical study or factorized sparse approximate inverse (FSAI) precon- 
ditionings. In particular, the effect of the a posteriori Jacobi scaling and the possibility of constructing FSAI 
preconditioners iteratively are analyzed. A simple stopping criterion for the termination of local iterations in 
constructing approximate FSAI preconditioners using the PCG method is proposed. The results of numerical 
experiments with 319 finite-element problems from linear elasticity are presented. Bibliography 21 titles. 

I. INTRODUCTION 

This paper considers the so-called factorized sparse approximate inverse (FSAI) preconditionings for 
linear algebraic systems with symmetric positive-definite (SPD) coefficient matrices. FSAI preconditi- 
onings were introduced and theoretically studied in [19]. The application of FSAI preconditionings to the 
solution of 3-dimensional finite-element problems on massively parallel computers was considered in [20]. 
An alternative approach to the construction of sparse approximate inverses in factored form, based on an 
algorithm for constructing two sets of A-biconjugate vectors, was suggested in [2, 3]. In comparison with the 
nonfactorized sparse approximate inverse (SAI) preconditionings, introduced much earlier [1] and studied 
rather intensivity in the last decade (see, e.g., [18, 9, 13, 4, 5, 8]), the FSAI  preconditionings have the 
obvious advantage of preserving the symmetry and positive definiteness of the original matrix. 

In this paper, tile lower triangular sparsity pat tern  S of an FSAI preconditioner for an SPD matrix A 
is assmned to have been fixed beforehand, and the problem of tile optimal selection of S is not considered. 
This is in contrast with the apt)roaches used in [2, 3] and in [13, 4, 5, 8], where tile sparsity pattern is 
selected during the computat ion of the precondit, ioner. The present paper mainly a(ldresscs the following 
two issues. First, in See. 2, we give additional evidence to support  the necessity of incorporating the 
Jacobi  scaling in constructing FSAI preconditioners. To this end, we theoretically compare two types 
of FSAI preconditioners (that (lifter by a diagonal scaling matrix), the first of which corresponds to the 
mmonstrained minimization of the Frobenius norm of the corresponding residual matrix over all lower 
triangular preconditioning matrices of a fixed sparsi ty pattern S, whereas the second one corresponds to 
the minimization of the same flmctional but m:der tile additional constraint tha t  the preconditioned matrix 
has all of its diagonal entries equal to 1. 

The results of this comparison show that the unconstrained minimization of the Frobenius norm yields 
preconditioned matrices with smaller eigenvalues, which frequently leads to spectral condition numbers 
significantly larger than when the a posteriori Jacobi  scaling is used. This exhibits  the potential  danger of 
basing the construction of sparse approximate inverse preconditioners on the unconstrained minimization 
of the Frobenius norm. 

The second issne addressed in this paper is the possibility of constructing FSAI preconditioners iter- 
atively. The necessity of the iterative construction is due to two main reasons. First. this provides the 
possibility of reducing the costs of constructing FSAI  preconditioner, which can be quite large, especially 
on a sequential computer.  Second, in some cases (e.g., when factorized sparse approximate inverses are 
used to approximate the inverses to Schur complements during the construction of an incomplete block fac- 
torization preconditioner), it is unreasonable to [brm the matrix for which we need an approximate inverse 
explicitly, for instance, because of  the memory considerations. In such situations,  direct solution methods 
simply cannot be applied. 
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Concerning the iterative construction of FSAI preconditioners, considered theoretically in Sec. 3 and 
numerically in Sec. 4, our main conclusion is that  FSAI preconditioners do not need to be computed with 
high accuracy, and a simple stopping criterion based on the relative variation of the diagonal entries of the 
preconditioner under construction can be used. 

2.  O P T I M A L  AND Q U A S [ O P T I M A L  F S A I  P R E C O N D I T I O N I N G S  

In this section, we recall (see [19, 20]) and compare two types of FSAI preconditionings for an SPD 
matrLx A. Preconditionings of the first type are introduced for purely theoretical  reasons. They  are 
referred to as optimal because, by definition, they are required to nfinimize the Frobenius norm of the 
corresponding residual matrix over the set of all lower triangular matrices of a prescribed sparsity pattern.  
We also consider another type  of FSAI preconditionings, which actually possess the same nfinimization 
property but under the additional constraint that  the resulting preconditioned matr ix  has unit diagonal 
entries. Thus, preconditionings of the second type are quasioptimal from the s tandpoint  of minimizing the 
corresponding Frobenius norm. On the other hand, it turns  out that from the viewpoint of optimizing 
the spectrum distribution of preconditioned matrices, the quasioptfinal preconditioners are superior to the 
optimal ones. 

Let A be an n x n SPD matrix and let S, 

{(i , j )  : i < j}  C__ S c_ {( i , j )  : i r j } ,  (2.1) 

be a fixed lower triangular sparsity pattern. Fm'ther, let A = LA LrA be the Cholesky decomposition of A. 

The lower triangular matrix G (~ ,( (0),,~ = (.Tij)id=~ is defined as the minimizer of the functional H I -  HLAI] 2 = 
tr [ ( I -  H L A ) ( I -  HLA) T] over all matrices H = (h.ij)~,j=~ such that h,~j = 0 whenever (i,j) E S, i.e., 

over all matrices H of st)arsity pattern S. Thus, the matrix G (~ can be regarded as the ot)timal sparse 
at)t)roximate inverse of sparsity t)attern S to the Cholesky factor LA, and it is natural  to use G (~ as a 

preconditioner for A, where the preconditioned matrix is of the form G(~ (~ 
As is not diffi(:ult to see [19], the matrix G (~ is determined by the equations 

(o) = (), ( i , j )  E S;  .']ij 

(G~ = O, i # j & (i,j) ~ S; 

(G(~ = gii ,  i = 1 , . . .  ,n, 

(2.2) 

where LA = ((.'ij)~ij=l. Since all of the principal submatrices of the SPD matrix A are nonsingular, system 

(2.2) is uniquely solw~ble, and thus G (~ is uniquely determined. However, G (~ cannot  be computed unless 
the diagonal entries of LA are available. 

We also consider another lower triangular preconditioning matrix G = (gij)'i*,j=l of sparsity pa t te rn  S, 
?7 n which is defined below. First one constructs the auxiliary matrix G = (gij)i,j=l defined by the following 

relations: 

g~;j = 1. i = j ;  

g:~j = 0, (i,j) E S; 

(0A)~.j = 0, (i ,j)  ~ S & i  # j. 

(2.3) 

Then one conlputes the diagonal matrix D = diag (dr . . . .  ,dn) defined by tile equal i ty  

D2 = diag ( G A G  T)  

and, finally, one sets 
G = D - l G .  

(2.4) 

(2.5) 
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As is trivial to see, the corresponding preconditioned matrix GAG T has unit diagonal entries: 

( G A G T ) i i =  I, i =  l , . . .  ,n, (2.6) 

i.e., G A G  r is Jacobi scaled. 
As far as we know, the matrices defined by (2.3)-(2.5) first appeared in [8], where they were introduced in 

a different (recursive) way in the context of approximating banded SPD matrices. In [14] (see also [15-17]), 
these matrices (described slightly differently) arose as the minimizers of Kaporin's functional 

/3( H A H  T ) - tr H A H T  (det  H A H  T )-1/~ (2.7) 
n 

over the set of all lower triangular matrices of a fixed sparsity pattern. Finally, in [19] the same matrices 
were suggested as a practically computable replacement for the optimal sparse approximate inverses (2.2). 

Our first result shows tha t  the preconditioner G defined by (2.3)-(2.5), which is optimal w.r.t, minimizing 
Kaporin's/3, actually possesses a more general optimality property, which can be formulated in terms of 
the diagonal entries of G. 

L e m m a  2.1. Let A be an SPD matrix and let S be a fixed lower triangular sparsity pattern. I f  the matIffx 
G is defined by" (2.3)-(2.5) and the matr ix  H = (ho)~,j= ~ satisfies the conditions 

V(i , j )  e S hij = 0 (2.8) 

and 

then 

( H A H T ) i i  <- 1, i =  l , . . .  ,n, (2.9) 

.qii  >_ h . i i ,  i = 1 , . . .  , n .  (2.10) 

Pry@ Let i, 1 < i < n, be fixed. By (2.6) and (2.9), we have 

0 _< [(G - H ) A ( G -  H) r]i i  < 2 [1 - (GAHT) i i ] ,  

wtlel ice 

(GAUl) < 1 
i'i - -  

Taking into account that ,  by (2.3)-(2.5) and (2.8) 

(2.11) 

Tt 

( C A H r ) i i  = E ( G A ) i j  hij = (GA)i~ hii, 
j= l  

and. sinlilarly, 

froln (2.11) we ot)tain tha t  

which implies (2.10). [] 

1 = ( G A G  T)  = (GA)iig~.i, 
i i  

(2.12) 

(GA)ii h4i <_ (GA)ii gi~, 

Using this sinlple result, one can easily derive some important implications and, in particular, the qua- 
sioptimality of' matrices (2.3)-(2.5) regarded as sparse approximate inverses to tile Cholesky factor LA. 
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T h e o r e m  2.1. Let, for an n x n  SPD matr ix  A and a fixed lower triangular sparsity pattern S, the matrix  
G = (gij)~:j=l be defined by (2.3)-(2.5) and let the matrix H = (h/j)~j=l of  sparsity pattern S be such 
that 

( H A H T ) i i = I ,  i = l , . . . , n .  (2.13) 

Then 
I I I -  GLAllF <_ {[ I -  HLAllF.  

Pro@ Obviously, it is sufficient to show that  

[ ( I - - G L A ) ( I - - G L A ) T ] i i  <_ [ ( I - - H L A ) ( I - - H L A ) T ] . i i ,  i =  l , . . . , n .  (2.14) 

Since, in view of (2.6) and (2.13), we have 

[ ( I - G L A ) ( I - G L A )  T ] i i = 2 ( 1 - g i i g i i ) ,  i = 1 , . . .  ,n,  

[(I -- H L A ) ( I  - H L A ) T ] i i  = 2(1 -- h ,  e , ) ,  i = 1, . . .  ,n,  (2.16) 

relations (2.14) trivially follow from inequalities (2.10), established in Lemma 2.1. [] 

Theorem 2.1 states tha t  the matrix G defined by (2.3)-(2.5) is the minimizer of I l I -  HLAIIF over all 
matrices H of the same sparsity pat tern S that  satisfy the addition constraint diag (HAI-[ r)  = I,~. Thus, 
G proves to be a quasioptimal sparse approximate inverse to LA. 

Based on Lemma 2.1, it is also possible to reestablish the above-mentioned minimization property of the 
matr ix G defined by (2.3)-(2.5) w.r.t, the functional (2.7) in a very simple way. 

T h e o r e m  2.2. For any  n x n  SPD matrix A and a fixed lower triangular sparsity pattern S, the matrix  G 
defined by (2.3)-(2.5) minimizes  the functional (2.7) over all nonsingular matrices H of the same spm:~ity 
pattern S. 

Pro@ Let 

Then 

[( ]1/, 
F = d i a g ( T t , . . . , % ~ ) ,  where 7 i =  HAHT)i, i  . i = 1  . . . .  ,n. 

/ i ( H A H  r )  = E')'} ((let H A H  T ) - t / n  
Tt 

> (H~/f) 1/ '  (det HAHr) -1In = det ( H A H r )  -1 /~  

where we set H = F -1 H.  Since (HAHT) i i  = 1, i = 1 , . . .  ,n,  and H = (hij)i~,j=l tl&s the same sparsity 
pat tern  S. Lemma 2.1 ensures that 

hii =hi,z/Ti <_gii, i =  l , . . .  ,n,  

w h e n c e  

det _> (det = (aAGT). 
[]. 

Now we will establish tile explicit relation between G and G (~ 

,. ((. ~n L e m m a  2.2. Let. for an ' nxn  SPD matrix" A = LA L~. where LA = ~ ,:Ji4=t is the Choleskv factor of  A. 

and a fixed lower triangular sparsity pattern S, the. matrices G (~ and G be defined by (2.2) and (2.3)-(2.5). 
respectiyel.v: Then 

G(~ = AG, (2..17) 

where 
A = diag(51, . . .  ,Sn), 5i = gi,i.qii <_ 1, i = 1, . . .  ,n. (2.18) 
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Proof. First we note that ,  in view of (2.3), 

n 

i i  
j = t  

and thus, by (2.3)-(2.5), the  matrix G satisfies the following relations: 

(GA)ii = d~, 1 (GA)i i  > O, 

(aA) i j  = d~ -1 ( GA)ij  = O, 

g i j  = d~ 1 "gij = 0 ,  

i = i , . . .  , n ,  

i = 1 , . . .  ,n; 

i # j ~:( i , j )  r s; 

( i , j )  E S. 

( 2 . 1 9 )  

1 < I I f - G L , , t l l r  < 

- 1 1 / -  0 (~  L . ,xIIp  - 

and, fltrthermore, ]1I ~ GLA[IF. approaches H I -  G (~ LAI]p as G (~ approach(,s LT{ t. Thus, though the 
matr ix  G defined by (2.3)-(2.5) is worse as an approximate inverse to LA than G (~ defined by (2.2), the 
wdues of I [ I -  GLAHF and ] [ I -  G (~ LA[IF cmmot differ by a factor larger than v/2., and the difference 
between the two norms decreases as the optinml approximate inverse G (~ approaches L~ 1. Note also that, 

by (2.22), g~O) Cii = 1 if and only if gii gii = 1. 

3 2 4 1  

[] 

Based on Lenmia 2.2, we will first show that, independently of A and S, 

Comparing these relations with (2.2) and making use of the unique solvability of (2.2), we arrive at the 
conclusion that there exists a diagonal matr ix  A = diag (51,...  , 5n) with positive diagonal entries such that  

(2.17) holds true. Obviously, 5i = g~~ i = 1, . . .  ,n, and thus, by (2.17) and (2.6), 

( = 2 ( c A t s .  = 
\ z i i  

Oil the other hand, in view of (2.2) we have 

7t 

'G(~ (~ -= Z(G(~  )) eli (o) (2.21) ii ". -~ gii , i = 1 . . . .  , n. 
j = I  

Comparing (2.20) with (2.21), we see that  

(j o) " ' ( 2 . 2 2 )  

which implies that 
6.~ (o) ~ =g~i  / g i i=g i i~ i i ,  i - - - - i , . . .  ,n. 

Thus,  to complete the proof of Lennna 2.2, it remains to ascertain that  gii ~.i _< 1, i = 1 . . . . .  n. Indeed, for 
a n y i ,  1 < i < n ,  w e h a v e  

1 -~ ( G A G T ) i i - - =  [GLA(GLA)T]~i = (OLA)~.~ + E ( G L A ) ~ j  > (.qi.i ~i~) 2. 
j ~ i  



T h e o r e m  2.3. Let, for an n x n SPD matrix A and a fixed lower triangular sparsity pattern S, the sparse 
approximate inverses G (~ and G to LA be defined by (2.2) and (2.3)-(2.5), respectively. Then 

2 ] 1/2 
III-G(~ < II I -GLAIIF < , (o) gii}l/2 N I - G ( ~  LAI[F" 

1 + min {gii 
l<i<n 

(2.23) 

Proof. The left-hand-side inequali ty in (2.23) follows from the opt imal i ty  of the matrix G (~ wi th  respect 
to  I l I -  G (~ LAIIF. The right-hand-side inequali ty in (2.23) is a consequence of the following relations: 

[ ( I - G  (0) LA)(I  - G  (~ LA)T]~z : 1-- 2g} ~ fii + (G(~ (~ 
"" \ - ii 

(2"2')1- g}/~ (2"22) 1--gi2igi 2 =-(1-giifi i)(1 H-giifii)__> (1  + ,min<i<,~ {giigii})(1--giigii)  

(2.22),__(2.15) (1 + l<i<nmin {g}O)~i i} l /2  ) [(Z--~LA)(I--GLA)T]ii2 ' i ~ -  1 , . . .  , I7,. 

[] 

The  result below, concerning the eigenvalues of GAG T and G(~ (~ is also a consequence of Lem- 
ma  2.2. 

T h e o r e m  2.4. Under the hypotheses of Theorem 2.3, 

]- ' (  ) 
- -  L t < i < n  ' �9 , 

where the eigenvahws of" both matrices are mmlberod in the same monotone order, say, nonincreasing]2: 

Pro@ Using (2.17) a~u:l (2.18) we dcriw. 

= A i (  lmin{6i- '2}>Ai(  G(O) - , i = l  . . . . .  .'n., 

which proves the left-hand-side inequalities in (2.24). The remaining inequalities can be established in a 
similar way: 

max {(gii i-i) -} = A.i G(~ (~ (g(~ i = 1 , . .  n. 
l < i < n  l < i < n  

[] 

As Theorem 2.4 shows, no eigenvalue of the  matrix GAG T can be smaller than the corresponding 

eigenvalue of the matr ix G (~ (~ In particular,  we lnay expect that  Amh, (GAG T) > A,.i, (G (~ (~ T). 
which demonstrates  the advantage  of using G as a preconditioner for A if one knows that  Am~• T) is 
bounded  from above by a reasoimble constant .  For instance, if A is an H-matrix,  then Am,~x(GAG T) < 2 
[19, Theorem 4.2]. On the  other  hand, from Thcorem 2.4 it fbllows tha t  the corresponding eigenwflues 

of the matrices GAG rr and  G(~ (~ approach each other as tlie diagonal entries g}.l ~) (or, equivalently, 
gii) approach r i = 1 . . . . .  ,n .  Thus, the closer to L,. any of the preconditioned matrices GAG T and 

G(~ (~ the less tim difference between them.  

Theorem 2.4 implies the  foUowing relations for the smallest eigenvalues of G(~ (~ and GAG T. 
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C o r o l l a r y  2.1. Under the hypotheses of  Theorem 2.3, 

(2.25) 

Pry@ In view of the left-hand-side inequality in (2.24), it is sufficient to establish the relation 

Ami,, (G(~ (~ > A~.,,(GAGT), 

which stems from the right-hand-side inequality in (2.24), equality (2.22), and the relation 

~min(aAa T) ! min {gi 2 f, i2}. 
l < i < n  

The latter relation immediately follows from the well-known inequality (see, e.g., [12, p. 191]) 

#mi,,(B) _< nfin I ~ (B) I ,  
l < i<n  

(2.26) 

where O'min (B)  is the smallest singular value of B, applied to the matrix B = GLA. 

Two-sided bounds for the smallest eigenvalues of G(~ (~ and GAG T 
= (G(~176 are provided in the next theorem. 

T h e o r e m  2.5. Under the previous notation, 

,<i<,,Inin tgii ~i',., \ .--7~-~. / H.q}  ~ e,.,: _< A,,,i,, C ( ~  (~ < U[ ,niI,<.,<,, t.~j.,.,:r,(~ ~,.i 
i = 1  

n } 
'r,. / II.I.~ ,mi"<i<,,. { "q'}~ " 

i = l  

[] 

in terins of _(0) gii gii 

2 

(227) 

(2.2s) 

P w @  The upper b(mnds in (2.27) and (2.28) follow from the general ine(tuality (2.26) and the ,'elation 
.qi~fii = (]}.I ') (see (2.22)). Both lower bounds in (2.27) and (2.28) readily follow front the bound [11, 
Theorem 1] 

( 'n - i ~ - -  

a , . i , , ( A )  > \ ~ / 
'rnH,,(A) 

[ d e t A  [ f l  r i(A) '  (2.29) 

i=1  

where A E C nx*~, r,~(A) = ( s l a i j l 2 )  1 /2 ,  a n d  *'m~,(A) = rain ri(A),  if one applies it to the inatrices G(~ 
j = l  l < i < n  

and GLA and uses the relations 

r~(G (~ LA) = G (~ A G  (~ (2.'21) _(o) ,, ii = Yii gi~, r.7(GL.4)=(GAGT)ii (2.6) 

det(G (~ LA) v-r (o) H = l l g i i  ~i~, de t (GLA)= .qiit"ii (2"22)= 1111~ gii(O) ~bi 

i= 1 i= I i= 1 

[] 

R e m a r k  2.1. As has been shown ill [11], tile lower bound (2.29) in its general form can be easily deduced 
(by applying an appropriate matrix scaling) fl'om the bound 

n -  L 

Crmi,(A ) _> ]de tA  I >_ e - 1 / 2 1 d e t A  , (2.30) 
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which is valid for any matrix A E C ~x'~ such that (AA*)ii  = r~(A) = 1, i = 1, . . .  ,n. We note that the 
proof of (2.30) presented in [11] is unnecessarily complicated, and this bound is actually almost trivial. 
Indeed, for any A E C ,.x~, we have 

o.2in(A)=/~n(aa,)__ d e t A A *  > I d e t A I  2 > ] d e t A i 2  / ( n - 1  \ },,.-1 
,~- t  - " - '  \ t T A Z *  / ' 
r I  Ai(AA*) [,g, 
/= I  ~ J 

whence (2.30) immediately follows, provided that tr AA* <_ n. 

Note that  the interval (2.27) for Am~,(G (~ A G  (~ is ob ta ined  by multiplying the interval (2.28) for 

Amin(GAG T) by the quantity min g} ~ g~, which is strictly less than 1 unless G = G (~ = LA t. 
l < i < n  

We conclude our comparison of the two preconditioners G (~ and G by considering a simple example, 
which shows that the relation 

~ " " n l l t l l  

may actually occur in tile case where tile Cholesky factor LA of  A has a large off-diagonal entry. In view 

of (2.25), the latter relation corresponds to the case where the  ratio a.,,.(aAa~)/am,, "(a(~ Aa(~ ~)" is 
k / 

of tile greatest possible order. Note that  since G and G (~ differ by only a diagonal scaling matrix, it is 
sufficient to consider the case of the diagonal preconditioning matrices G = D and G (~ = D (~ 

E x a m p l e  2.1. Consider the 2 x 2 parmnetric matrix 

OL > 0. (~ 1 +c~ 2 a 0 

Applying tile syminetric Jacobi scaling to A, we arrive at the mat r ix  

B = 
g L + a  2 I 

with tile eigenvalues 

Since, obviously, 

we see that  

w h e n c e  

Therefore,, 

AI(B) = 1 + 
ct 

A2(B) = 1 

o~ c~ 
< < 1, 

l + c t  - v/1 +ct  2 -- 

1 
2 < ,~ (B)  < 2, 

l + a  

v ~ + a  2 

At(/?) = O(1), as ,t ---+ +oc .  

det B _ 1 O ( a _ 2 )  ' 
A.,(B) - ;~ , (B)  (1 + , ~ ) A , ( B )  

a s  (~ ---, -}-oo. 

On tile other hand, by mininfizing [tDLA - Ill r we obtain the  matrix 

B ( O ) : D ( O ) A D ( O ) :  [ 1 t--~']  
Oz * 

l-gWz J 
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Clearly,  

Hence,  

1 
1 _< AI(B (~ <_ t r B  (~ = 1 +  

l + a  2 

(let B (~ A 2 ( B ( O ) ) -  ) 

Thus ,  we see that  as o~ --+ +oo,  

- o (1) ,  

whereas  

1 
(1 + a2)2AI(B(0)) 

= O((~-4),  Ol -"+ -~- ~ . 

2 (0) ;~,,~n(B)/An,~,,(B )--+ 1, 

Amax(B) = O(1), Amax(B (~ = O(1). 

Therefore ,  for this example,  in which tile presence in L A  of the large off-diagonal entry  a is responsible for 
the  occurrence of tile small  diagonal entry  (B (~ = ~-7-~ - ~  - O(a  -2),  from the  s tandpoint  of min imiz ing  the  
spec t ra l  condition number  the Jacobi  scaling indeed proves to be superior to  t ha t  minimizing [[ D L  A -- Ill F 
and,  moreover,  

(cond B) 2 / c o n d  B (~ + 1, c~ --~ +oo.  

3. APPROXIMATE F S A I  PRECONDITIONERS 

In order  to construct  an FSAI precondit ioner (2.3)-(2.5) for an SPD m a t r i x  A, one needs to solve l inear 
equa t ions  (2.3), which, as is easy to realize, decouple into n independent  l inear  systems (referred to as local), 

each of  which determines  the nonzero entries of the corresponding row of the  ma t r ix  G. As was nmnt ioned  in 
Sec. 1, in some cases the  application of direct nmthods to the solution of local linear systems can prove to be 
e i ther  impossible or too expensive. For this reason, in this section we consider the possibility of cons t ruc t ing  
the  F S A I  precondit ioners (2.3)-(2.5) approximately  by applying an i terat ive solution technique. 

T h e  general theoret ical  basis tot replacing an e x p l M t S P D  precondi t ioner  It" ~ A - I  for an SPD m a t r i x  
A by an  SPD approximat ion/~" to It" is as follows. Let It" = It" + E and  assume that  HEll2 is small.  T h e n  

f.[A = I ( A  + E A .  

and thus  the per turba t ion  of I ( A  induced by perturbing K is E A ,  and for the  spectral norm of the  la t te r  
m a t r i x  we have 

IIEAI]= _ A,,..x(A)IIEll2. 

Therefore ,  if A,,,~,• is not considerably greater  than 1, then tile norm of the matr ix  ~ 'A  - K A  will be 

a lmos t  as small as t h a t  of the matr ix  E = A" - K .  
Th i s  simple a rgument  leads us to the conclusion that  tile less the norm of the  original mat r ix  A the  less 

ha rmfu l  the replacenmnt of the initial explicit preconditioner for A by an  approximat ion to it. 
In t he  case of a symlnet r ic  precondit ioning of the form A - +  G A G  T, we have the following result .  

T h e o r e m  3 .1 .  
the assumption 

Let  A be an n x n SPD matrix,  and let 'n • n matrices G and H be invertible and sat is fy  

II I - H a - 1 1 1 2  < < 1. (3.1)  

[ I ' h  011 

(1 - c)2Ai(GAG T) < A i ( H A H  T) < (1 + c)2Ai(GAGT) ,  i = 1 . . . . .  n. 

where tile eigem~lues o f  bof, h G A G  T and H A H  T are nonincreasingly ordered. 

Proof. Denote F = I - H G  -~. Since, by assumption,  [[F][2 < a < 1, we have 

(3._9) 

IIGH-'II2 = II(I - F ) - l l I 2  < (1 - IlYl12) -L ~ (1 - a) -1. (3.3) 
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Therefore, using the s tandard singular-values inequality (see, e.g., [12, Theorem 3.3.16(d)]) and (3.3), we 
derive 

)~(GAG y) = a~(GLA) = o2(GH -~ HLA)  < a2(GH-1)a~(HLA)  

= IIGH-1II~)~i(HAH T) < ( 1 - e ) - 2 ) ~ i ( H A H T ) ,  i =  1 , . . .  ,n, 

where A = LA L T as in Sec. 2 and by ai we denote the nonincreasingty ordered singular values. This 
establishes the left-hand-side inequality in (3.2). Similarly, 

)~i(HAH T) = o2(HG -1GLA)  <__ A~(GAGT)IIHG-1II~, i = 1 , . . .  ,n,  

and the proof is completed by taking into account that,  by virtue of (3.1), 

I I H a  112 = l it  - FII2 ~ J- + ~. 

[] 

Now, after providing the above general considerations, we come back to the FSAI preconditioners. Since 
our approach to the construction of FSAI preconditioners is based on minimizing the Frobenius norm, it is 
of interest to consider the growth of the value of the target flmctional when the  exact  FSAI preeonditioner 
G is replaced by an approximation H to G that  is of the same sparsity pat tern.  

Let an SPD matrix A = LA Lr T and a lower triangular sparsity pat tern S satisfying (2.1) be fixed, 

and let the matrices G and G be defined in accordance with (2.3)-(2.5). Consider an arbitrary mat r ix  

ff[ ~ - -  (h'ij)~',j=l that satisfies tile relations 

hii = l, i =  1 . . . .  ,n, 

h~j=O,  (i , j)  e S, (3.4) 

and define 

w h e r e / ~  = diag ( d-l,.. - , d,,, ), 

H = / ) - i  ~r,. (3.5) 

d 2 = ( f i IAFIT) , i ,  i = 1 , . . .  ,n. (3.6) 

Then for tile matrix H = (hij)~,j=l tile relations 

hij = O, (i, j)  E S, 

(HAHT)zi  = I, i =  i . . . . .  n, (3.7) 

obviously hold. Therefore, by Lemma 2.1, 

hi,: <__ gii, i = 1 . . . . .  n, (3.8) 

an(l, by Ttmorem 2.1, 

I l I -  HLA]IF k t l I  - GLANF. (3:9)  

Actually, in the case considered, we can derive explicit expressions for [] I - H L A  [[2 and for the difference 

]]I - HLAII 2 - - I l I - -  GLAII2F. 
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L e m m a  3.1. Under the previous notation, we have 

[ [ I -  HLAII2F = 2 E (1 - h i i e i . i )  
i=t 

(3.1o) 

and 

- -  L 2 = IIZ - HLAII  2 ]lI - C Ally 

n where we denote LA = (~ij)i,j=t and E = G -- H.  

Proof. 

n 

E ( E AET  )ii gii fii, 
i = i  

Equality (3.10) immediately follows from the relations 

(3.11) 

[ ( I - H L d ) ( [ - H L A ) T ] i i = 2 ( 1 - - h i i g i / ) ,  i = l , . . . , n .  

On tile other hand ,  we have 

2 ( 1 - h ' ~ ' ~ g ' i i ) = 2 ( 1 - g i i g i i ) + 2 ( g i ' ~ - h i i ) g ' i i : 2 ( 1 - g i i e i i ) + 2 (  1-hii~giigii9.~i] i = l , , . . , n ,  

and since 
[(I - GLA)(I  - GLA)T]ii  = 2(1 -- g.ii~ii), i = 1, . . .  ,n, 

we conclude tha t  

[]I - HLA[[~ ][I - G ,~[]~, + 2 1 - 9ii gi~. 
~= t 9 .  / 

Thus, to complete the  proof, it only relnaitls to show tha t  

(3.12) 

(3.13) 

(EAET).~i = 2 ~ I -  / i = 1  . . . .  ,n. (3.14) 

Indeed, 
(EAET){ i  = [(G - H ) A ( G  - H)T]{{ = (GAGT),~.i + (HAHT)i i  - 2(GAHT)ii  

: 211-  (GA) j : 211- (cA) .  
j = l  

Lemma 3.1 is proved. [] 

Z ') Here, three commen t s  are in order. Firs t ,  for a fixed FSAI  preeondi t ioner  G, the difference II ~r _ g a II ; , -  
IIz - a L A [ I ~  depends  on ly  on the diagonal  entries of H (see (3.13)). Second, (3.11) provides the represen- 

tatiou of ]]I-  HLA II ~ in the form of two suznznands, tile first of  which depends only on the sparsity pa t tern  
S, whereas the second one aecomlts ['or the inexactness in comput ing  G. Third, the closet' .(]ii ~'ii tO 0 (i.e., 
see (3.12), the worse the  quali ty of the i th  row of the exact  FSAI  preeonditioner G), the smaller the coeffi- 
cient wi th  which (EAET) i i  (i.e., the squared A-norm of the i t h  row of the error ma t r ix  E = G - H)  occurs 

S ,) �9 , in (3.11). Thus ,  fi'om iche s tandpoint  of ininimizing 11I - LAI I ) ,  it is most essential to lind high-quality 
approximations to those  rows of G for which the  eorwsponding  .(]ii f i i  a r e  (:lose to 1, whei:eas the rows fbz' 
which gii f i i  a r e  small  do not need to be approx imated  very accurately.  

Using L e m m a  3.1, we can easily obta in  a lower bound in t e rms  of the quantit ies related to the Frobenius- 
norln minimizat ion for the  spectral norm of the  mat r ix  I - H G  -1, occurring in Theorem 3.1. 
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C o r o l l a r y  3.1. Under the previous assumptions, 

Ii i_ gc_~ll2 > [11I- HLAII~-IIZ-GLAII~ ],/2 
Tt 

Pro@ Taking into account that,  by (2.18), ~i gii _< 1, i = 1 , . . .  , n, we derive 

E ( E A E T ) i i g i i f i  i < t r E A E  T T T = t r L T G  T = t rL  A E E L A  ( G - T E r E G  -1) GLA 
i = 1  

_< ~.,~.~ ( o - ~  E~ EC-~)  trL~ G ~ O L ~ =  ,EC-IlI~trOAO~=~II~-HC-111 ~ , 
and tile result follows from (3.11). [] 

Note that in the case S = {(i, j )  : i < j},  the FSAI preconditioner G coincides with the inverse LA l, and 
the above lower bound reduces to the trivial bound 

I I / -  HLAII2 > III - HLAIIF 
- v ~  

In fact, it would be very helpful to have a nontrivial upper bound for the spectral norm [lI - H G  - l  ]12 in 
terms of the quantities related to the target functional. Unfortunately, we are able to derive only an almost 
trivial bomld 

I I x - ~ a - ' l l ~ =  - ,  , , , Ilza II_, -< Ilzc,~ IIc -I  a -  I1., -< 

In particular, this bound shows that whenever 

f f i i  - -  h, i i  < 
g~i 2n 

we certainly have 

and thus Theorem 3.1 is applicable. 

~ i= l  l -  tr E A E  T (3.__t5) 2 (3.16) 
Ami,, (GAG T) An,i,, (GAG T) " 

Amin (GAG T ) 
, i = 1 , . . .  ,n ,  (3 .17)  

III -  Hc- ' l l~  < 1, 

Our next pro'pose is to provide two-sided boml(ls for the quantities (EAET)i,: occurring in (3.11). rio 
this end, we need tile following result. 

L e m m a  3.2. Under tile previous notation, we have 

/,.~2_g~.~ = (~2A~,T)~i, i = 1 . . . . .  n, (3.18) 

where E = G - ~I is tlle intermediate error matrix.  

Proof. We, }lave 

(F, A E T ) . i i =  [ ( G - ~ r ) A ( G - H )  T] = ( G A G T ) i ~ + ( H A f f I T ) i i - 2 ( G A f t T ) i , ,  i = 1  . . . .  ,n. (3.19) 
ii 

But since, in view of (2.3) and (3.4), 
7& 

= ~ - -  -E(GA)ij/~ij - =  (GA)i.i ,  i =  1 . . . . .  n, 
j = l  

and, similarly 
( G A ~ T ) i i = ( G A ) i i ,  i =  l , . . . , , , .  

fronl (3.19) it follows tha t  

( E A E T ) i i = ( f l A ~ I T ) i i - ( G A G 7 ) i i ,  i = l , . . . , n .  

and (3.1S) stems from (2.3)-(2.5) ~llld (3.4)-(3.6). [] 

R e m a r k  3.1. Relation (3.18) shows, in particular,  that tile decrease of" ( E A E  T)ii,  i.e., of tile squared 

A-norm of tile ith row of tile matrix J~, is equivalent to the increase of tile corresponding diagonal entry 
h,-~ of the approximate FSAI preconditioner H and, in view of (3.10), to the decrease of [[I - HLA }l F. 
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L e m m a  3.3. Under the previous notation, 

h~i ( E A k7 r )ii < (EAET)ii  <_ 2h/2i(/~ A/~T )ii, i = 1 , . . .  , n; 

(EAET)ii < gi2(EAF, T)ii, i = 1, . . .  ,n. 

(3.20) 

(3.21) 

Pro@ In order to prove the right-hand-side inequality in (3.20), we make use of (3.14) and Lemma 3.2. In 
this way we obtain 

= - - = ) i = 1 , . . .  ~'n,. 
.qii / g[i 

The left-hand-side inequality in (3.20) is also derived by using (3.14) and Lemma 3.2: 

(EAET)ii = 2 ( 1 -  
,, ~ J  

( hii) 2 hi2 > 1 h2i - -  hi2( Y-~ A E  T )ii, 
= 1 + 1 -- g i i  / gi'2i -- gi'~i i = l , . . . , n .  

Finally, by using Lemma 3.2 and (3.8), inequality (3.21) can be deduced as follows: 

( ( ~  1 ( E A E T ) i i  hii ] = 2hii - )  = hii (EAET)ii = 2 1 - gi.i ,' ,i .qii (h,.Ti I q-(gi'71 ) /2 

. 1 / 2  1/2 ":' <-hii(~TA~TT)iinii gii <-gT[i(EAE'T)ii, i = l , . . . , n .  
[] 

Now, instead of two matr ices/~ and H, we consider two sequences of matrices { H (~:)}A:>t and { H (~')} ~.>l, 

where, R)r each k, the lnatrices H (k) and H (~:) satisfy the corresponding counterparts of relations (3.4)- 
(3.6). We assmne tha t  the matrices ~r (~'), k: _> 1, are obtained as successive (P)CG apt)roximations to tile 
matrix G defined in (2.3). More precisely, this can be described as follows. As already mentioned, the basic 
equation of system (2.3) decout)les into indet)endent "local" lilmar systems of the form 

-giAi=bi, i>_2, 'hi_> 1, (3.22) 

where 
A,: = A[J~, Ji], g~ = G [ {i}, ,L: ], bi = - A [  {i},.Ii], 

(3.23) 
J~= { j : j~k i& . ( i , j )  ~ S } ,  [ J.~l=n.~, 

and B[I, J] denotes tile sublnatrix B that corresponds to tile row index set I and the colunul index set J.  

We assume tha t  the row vectors ,Trl~') = H (a)[ {i}, or,: ], i > 2, ni > 1, k > 1, which completely determine 

(k) are tile approximate  solutions of the corresponding local systelns (3.22) obtained after k iterations 
of the PCG method [7]. Then we obviously have 

( Y'(k) AE(k)T)ii = { ~ik) Aie i:(k) 'r, 
ni - -0 ,  

i = 1, . . .  ,n, (3.24) 
ni >1, 

where E (*:) = G - H (k.) and g!#).~ =/)~ - tT~,l k), i = 1,. . . ,  n, k _> 0. Now tile application of tile well-known 
bound [7] fbr tile P C G  nmthod yield tile es t imate  

4~--T)2~:(~(O)A~(O)g)ii,/ l \  'tti)" 1, L~,> 1, (3 .25)  - ~ _ + _  - _ 

w h e r e  zi = Am~,• -1 Ai)/~mi,(MF ~ Ai) is tile spectral condition munber of the preconditioned matrix 
M/-l A~ and A.i = 5[i - Ni. 

Taking into account  Lemmas 3.1 and 3.3 and (3.25), we arrive at the following upper bound for 
. )  

[ [ I -  H (a) LAll ~ as a function of k. 
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T h e o r e m  3.2. Let, for a fixed n x n SPD matr ix  A and a fixed sparsity pattern S of  the form (2.1), 
G = (go)~j=t be the exact F S A I  preconditioner defined by (2.3)-(2.5) and let the sequences {H (k) } and 

{ f I  (~') } of  n x n matrices of  the sparsity pattern S, satisfying the conditions 

( f t ( k ) )~ i=  l, H ( k ) = D ( k ) - ~ I  (k), (H(k) A H ( k ) T ) i i =  l, i =  l , . . . , n ,  k>_ l ,  

be constructed by applyqng the PCG method to the local systems (3.22)-(3.23). Then 

II1 - GLAII 2 t l / -  H (k) LAII2F 

_< IIZ - GLAII  + 4 
i : n i  > l 

2 ( _ _ _ ~  _ 1 2 k  g~i \ ~ -~'~) ( ~, (o) A E, (~ gii gii, k > _ l ,  
(3.26) 

where, for1 < i < nsnch  tha tn i  > 1, xi = Amax(Jl///-1 A)/Amin(-~I[ -1A),  Ai = A f i - N i ,  a n d E  (~ = G - H  (~ 
is the initial intermediate error matrix. 

R e m a r k  3.2. Clearly, in constructing an approximate  FSAI preconditioner H using the PCG method, one 
can pertbrm a different number of iterations for each of the local systems. In this case, in the right-hand 
side of (3.26) one must replace k by the corresponding ki's. 

W~ conclude our theoretical mmlysis of i teratively constructed approximate FSAI preconditioners by 

considering the behavior of Kaporin's func t ion/3(H (k) A H (~,)T) = /3 (H (~')T H (k) A) as a function of k. The 
role of this flmctional in the theory of preconditioning is clarifed by the following theorem. 

T h e o r e m  3.3 [15]. Let  A be an SPD matr ix  and M ~ A - I  be an SPD preconditioner for A. Then the 
kth PCG iterate y~, for the system Ay = .f satisfies the error bound 

] : II,'a, llAt <_ ZJ(~IA) "r~/~, - 1 II,'011 z, 1 < h < n -  1, 

where rg: = .f - Ayh,. 

Thus, using 3 it is possible (provided that  /3 < 2 is close enough to 1) to bound the convergenc, e rate 
�9 of the PCG method in terms of the corresponding norm of the residuals. Therefore, the deterioration of 
the preconditioning quali ty when passing from an exact FSAI preconditioner G to an approximate FSAI 
preconditioner H can be evaluated in terms of the ratio 

( / ~ 1 )  _ [fl ( )]l/n. { , ) } , 3 (HAH T) _ g,:i 2 / , ~  l + g ' y i ( E , A . E T ) i i  < 1 +  max .qT i (EAET) i i  , (3.27) 
/3(GAG'r) ,= ~ i=t - i:,~>l 

where we have used Lemma. 3.2. Note that, by Theorem 2.2 , /3(HAHT)/ /~(GAG T) > 1. 

12elations (3.27) and (3.25) innnediately inlply tile following estimate tbr the r a t io /3 (H (~') A H(~')T)/ 

,3(GAG'r), where the matrices H (~') are the P C G  apIn'oximations to G of the same sparsity pattern. 

T h e o r e m  3.4. Under tile h.gpotheses of  77moz'em 3.2, 

_ 9 ( G A G T  ) _< 1 + 4i:.~_>~max g T~ v / ~ i ~ l  (o) A , h >_ 1. 
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4.  N U M E R I C A L  RESULTS 

In this section, we present the results of numerical experiments on using approximate FSAI precondi- 
tioners instead of the exact ones when solving linear systems of equations with SPD coefficient matrices 
resulting from finite-element approximations of 3D problems of linear elasticity. 

For our experiments, we have chosen two linear-el~ticity problems for orthotropie materials considered 
previously in [10]. The first one corresponds to a cubic domain with zero-displacement conditions on three 
pairwise-adjacent faces. The second problem is the s tandard channel problem of structural  analysis. Three 
test systems of linear algebraic equations of the form A x  = b with SPD coefficient matrices* have been 
obtained by applying the hierarchical p-version of the conforming FEM with p = 3 for the cubic domain 
and with p = 1 and p = 4 ['or the channel problem to the corresponding variational formulations (see [10] 
for more  details) and by symmetrically scaling the resulting coefficient matrices by the Jacobi method.  The 
first linear system, which corresponds to the cubic domain, is relatively well conditioned (condA = 1.1-107), 
whereas the other two are quite ill conditioned (condA > 3.0- 109). 

For each of the test systems, by applying the Cholesky method,  we have constructed the exact FSAI 
preconditioners corresponding to two sparsity patterns, referred to as "original" and "enlarged." The 
"original" sparsity pat tern coincides with the sparsity pa t te rn  of tile lower triangular part of the coefficient 
inatrix in question, whereas the enlarged one is the sparsity pat tern  with one level of fill-in. 

Approximate FSAI preconditioners have been constructed by using the (unsymmetrieally) preconditioned 
block conjugate gradient method (PBCG) [21]. The choice of the block version of the CG method is based 
on the fact that, for the test problems considered, local linear systetns with the santo coefficient matrices 
and several (> 3) right-hand sides naturally arise. Further,  ,'us implied by Theorein 2 in [21], the PBCG 
method  possesses the property of minimizing the A-norm of individual error vectors, which guarantees that  
the diagonal entries of successively constructed approximate FSAI preconditioners convcrge monotonically 
(see See. 3). Finally, it should be mentioned that the local linear systems have also been preconditioned 
with FSAI t)reconditioners the sparsity pattern of which reproduce those of the lower triangular parts of 
the "local" coefficient matrk:es. 

r I (k:)l Tile main practical ilnplication of the considerations in Sec. 3 is that the sequences / tii ~ monotonically 

converge to the corresponding gii'S, and the magnitudes of the diagonal entries It, l) :), which determine 

the wflues of I [ I -  H (k) LAllF and 9 (H  (a:) A H(a:)T), can be accepted as measures of the quality of the 
corresponding rows of tile preeonditioner H (~,). Based on this, for tim terminat ion of local iterations we 
have used the following stopping criterion: 

'+') - h T  0) (4.1) max ' _<tol ( t o l >  . 
h,.l,? 

Note that at each iteration for the ith local linear system, which determines tile i th  row of tile matr ix 
~r (k), the quantity 

(k) 1 (k)T,}l/2 

:::::st be comput(,d, whereas the off-diagonal entries of the final preconditioning matrix H are computed 
only once upon termi:mtion of all local iteration processes. 

The nulnei'ical results for three test linear systems, each preconditioned with several exact and approxi- 

*Tile  tes t  l inear sys tems are avai lable  by request from the  a t t thors  t h r o u g h  ftp in tile ASCI I  format .  
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mate FSAI preconditioners, are presented in Table 1. This table adopts the following notation: 

N is the order of the linear system; 
NZ is the number of nonzero entries in the coefficient matrix A; 
tol is the threshold parameter  used in the local s topping criterion (4.1), and tol = 0 means "~ 
t h a t  the preconditioner has been computed by the Cholesky method; 
ITlo~ is the number of local iterations needed to satisfy (4.1) with the corresponding value of 
tol; 
IT is the number of global FSAI-CG iterations required to satistly the global s topping criterion 

log,o(llrkll2/ll'roll2) < -10 ,  

where rk is the residual at the kth iteration of the P C G  method; 
Ama• is the largest (smallest) eigenvalue of the tridiagonal matr ix  made up of the 
coefficients of the P C G  method; 
cond = Amax/Amin 

S 
Original 
Original 
Enlarged 
Enlarged 
Enlarged 
Enlarged 
Enlarged 

S 
Original 
Original 
Enlarged 

TABLE 1 

Test system 1: N = 5040, NZ = 688108 

tol IT~oc IT And, Am~• cond 
0.0 - 218 8.9145e-03 3.9629 444.55 

1.0-el 1 218 8.9145e-03 3.9629 444.55 
0.0 - 73 3.4061e-02 2.0882 61.307 

1.0e-1 3 82 2.7588e-02 2.2096 80.095 
1.0e-2 4 76 3.1572e-02 2.1416 67.830 
1.0c-3 8 73 3.3242e-02 2.0910 62.901 
1.0c'-4 12 73 3.3905e-02 2.0876 61.571 

Enlarged 
Enlarged 
Enlarged 
Enlarged 

S 
Original 
Original 
Enlarged 
Enlarged 
Enlarged 
Enlarged 

Test system 2: N = 3088, NZ = 733872 

tol IT,o(: IT An,in Amax 
0.0 -- 2855 3.8945e-07 4.0550 

1.0e-1 2 2823 3.8945e-07 4.0550 
0.0 -- 418 3.1321e-06 2.0657 

1.0e-1 9 440 3.0968e-06 2.2011 
1.0e-2 11 425 3.1796e-06 2.0703 
1.0e-3 21 417 3.1602e-06 2.0638 
1.0e-4 28 411 3.1403e-06 2.0635 

cond 
1.0412e+07 
1.0412e+07 
6 .5952e+05 
7.1075e+05 
6 .5112e+05 
6 .5306e+05 
6.5712e+05 

COlld 
6 .9307e+06 
1.3304e+06 
2 .4401e+06 
1.6143e+06 
1.3411e+06 
1.3748e+06 

Test system 3: N = 6183, NZ = 790755 

tol 
0.0 
0.0 

1.0e-1 
1.0e-2 
1.0e-3 
1.0e-4 

ITio( 

9 
33 
43 
60 

IT Amin 
> 3000 5.8359e-07 

1065 2.1491e-06 
1385 1.3032e-06 
1172 1.8281e-06 
1050 2.1332e-06 
1025 2.0805e-06 

AnI~X 
4.0447 
2.8593 
3.1800 
2.9511 
2.8609 
2.8604 
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Analyzing the data in Table 1, we can draw two main conclusions. First, the local stopping criterion 
(4.1) works quite satisfactorily, and the number of global iterations required monotonically decreases if we 
decrease the value of tol. It is of interest to note that the number of global iterations required to satisfy 
the glolJal stopping criterion for an iteratively constructed FSAI preeonditioner, can be even less than that 
for the corresponding "exact" 'FSAI preconditioner (see data for test systems 2 and 3), provided that the 
value of tol used in the local stopping criterion (4.1) is small enough. So far we have no explanation of 
this phenomenon. Second, if the coefficient matrix is relatively well conditioned and/or the exact FSAI 
preconditioner is relatively poor, then tol = 10 -1 or tol = 10 .2 is a reasonable choice, whereas for ill- 
conditioned systems and for FSAI preconditioners of a high quality the value of tol must be decreased up 
to 10 .3 or 10 .4 . 

5. CONCLUSIONS AND FINAL REMARKS 

In this paper, new results of the theoretical and experimental study of factorized sparse approximate 
inverse preconditionings have been presented. The importance of incorporating the Jacobi scaling into 
the construction of FSAI preconditioners has been explained. It has also been demonstrated that exact 
FSAI preconditioners can be replaced by approximate FSAI preconditioners ahnost without deteriorating 
the resulting preconditioning quality. This is achieved by using a simple criterion for the termination 
of" local iterations that is based on the monotone convergence of the diagonal entries of the sequence of 
approximate preconditioning matrices under construction. It is important to emphasize that approximate 
FSAI preconditioners do not need to be computed very accurately, and, as our experience suggests, the 
value tol = 10 .3 in (4.1) is suitable in practice. 

Another conclusion implied by tile numerical results presented is that at least for the class of problems 
considered, a reasonable sparsity pattern of tim FSAI preconditioner can be prescribed a priori, and the 
sparsity pattern referred to as "enlarged" in See. 4 is a possible choice. 

Finally, it should be noted that in this paper we have deliberately avoided all issues concerning the 
comparison of exact and approximate FSAI preconditioners (assmning that the tbriner can actually be con- 
structed) h'om tile viewpoint of their tinle/cost efficiency, because without speci[ying a sufficiently narrow 
class of problems and a computing t)latform, such a comparison Call be only st)eculative. Accordingly, the 
main purpose of this contribution is to demonstrate the possibility of replacing exact FSAI preeonditioners 
by approxinlate ones without a significant convergence deterioration. 

This work was supported in part by the Netherlands Organization for Scientific Research (NWO) under 
grant 047 003 017, by INTAS nnder grant INTAS-93-377 EXT, and by INTAS and RFBR under grant 
INTAS-RFBR 95-0098. 

Translated by L. Yu. Kolotilina. 
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