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Intuitionistic propositional logic In t  and its eztensions, known as intermediate or superintu- 

itionistic Iogicsl in many respects can be regarded as just fragments of classical modal logics 

containing $4. The main aim of this paper is to construct a similar correspondence between in- 

termediate logics augmented with modal operators - -  we call them intuitionistic modal logics - -  

and classical polymodal logics. We study the class of intuitionistic polymodal logics in which 

modal operators satisfy only the congruence rules and so may be treated as various sorts of [] 
and <). 

Intuitionistic propositional logic In t  and its extensions, known as intermediate or superintuitionistic 

logics, in many respects can be regarded as just fragments of classical modal logics containing $4. At the 

syntactical level, the Gfdel translation t embeds every intermediate logic L = In t  + r in modal logics in 

the interval p-XL : [~'L : $4 ~ t(F),crL : Grz  ~ t(I')]. Semantically this is reflected by the fact that  

Heyting algebras are precisely the algebras of open elements of topological Boolean algebras. From the 

lattice-theoretic standpoint, the map p is a homomorphism of the lattice of logics containing $4 onto the 

lattice of intezmediate logics, where cr, according to the Blok-Esakia theorem, is an isomorphism of the 

latter onto the lattice of extensions of the Grzesorczyk system Grz.  At the philosophical level, the G5det 

translation provides a classical interpretation of the intuitionistic connectives. And from the technical point 

of view this embedding is a powerful tool for transferring various kinds of results from intermediate logics 

to modal ones and back via preservation theorems (see [6]). Both classical modal logic and the theory of 
intermediate logics have gained from this correspondence. 

The main aim of this paper is to construct a similar correspondence between intermediate logics enriched 

with modal operators - -  we call them intuitionistic modal logics - -  and classical polymodal logics. That  the 

GSdel translation can be extended to an embedding of at least a few particular intnitionistic modal systems 

in some classical polymodal logics was observed by several authors (cf. [5, 13, 25, 26]). Fischer Servi [13, 

15] used a version of that  translation to define "true" intuitionistic analogs of a number of classical modal 

systems. In [27] we exploited the translation proposed by Shehtman [25] to embed intuitionistic modal 

logics with the single necessity operator C3 of K in bimodal logics above $4 | K. However, like V and 3, 

the necessity and possibility operators [] and (> are not supposed to be dual under the intuitionistic laws. 

Here we consider a much more extensive class of intuitionistic polymodal logics (first brought in sight by 

Sotirov [26]), in which modal operators satisfy only the congruence rules and so may be regarded as various 

sorts of independent [] and (>. These logics are defined in Sec. 1. Sec. 2 introduces algebraic and (quasi-) 
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relational semantics for the.., and develops a duality theory and a little bit of correspondence theory for logics 

with normal O-like and O-like operators. In Sec. 3 we bridge the semantics for intuitionistic and classical 

modal logics and show that the translation prefixing the S4-necessity to all subformulas of intuitionistic 

modal formulas embeds the intuitionistic modal logics under consideration in classical polymodal logics. 
Moreover, we prove an analog of the Blok-Esakia theorem by establishing that the lattice of intnitionistic 

modal logics is isomorphic to a principal filter in the lattice of classical modal logics. We show that  the 

embedding reflects decidability, the finite model property, and tabularity, and then use this result, along 

with preservation theorems of [28] and [12], to prove that the finite model property of an intermediate logic 

is inherited under adding to it a modal operator satisfying some simple axioms and inference rules. In the 

final Sec. 4 we study the embedding of normal intultionistic modal logics. 
Note that  all the results obtained in this paper can be extended in the straightforward way to intnition- 

istic modal logics with polyadic operators. 

Intuitionistic modal logics have never been considered in such a general setting as were classical ones. 

Much is stKl to be done to obtain results comparable, say, to Fine's or Sahlqvist's completeness theorems. 

We hope that  this paper will serve as a basis for further systematic studies in this branch of modal logic. 

1. L O G I C S  

All the logics considered in this paper are formulated in the propositional modal language s with 

the standard connectives -*, A, V, _L (-~o is defined as ~o --~ I and T as s --* •  and the modal operators 

Oi ,  for i : I , . . . ,  n. An intuitionistic modal logic in the language s (IM-logic for short) is a set 

of s which contains an intnitionistic logic l n t  in the language s (with only the first 

four connectives given above) and is closed under substitution, modus ponens, and the congruence rules 

~o ~ ~b/(~)i ~o *-, C)i~, for all i -- 1 , . . . ,  n. The smallest monomodal IM-logic is denoted by I n t C  (C stands 
for "congruential" in accordance with Segerberg's nomenclature in [24]). For a set of formulas r and an 

IM-logic L, we denote by L ~ F the smallest IM-logic containing r and L. Several kinds of IM-logics have 

been considered in the literature, and all of them are covered by our definition, which is similar to one in 

[26]. Here are a few basic monomodal and bimodal systems. 

A monomodal IM-logic L (in the language s with C) = O1) is said to be regular if it is closed under 

the regnlaxity rule ~ --, r  ~a -* C)~. Equivalently, L is regular itf it contains C)(P A q) --' OP. The 

smallest regular IM-logic is denoted by I n t t L  A regular IM-logic L is said to be O-~ormal if it contains 

O(P  A q) ~ O P  A Oq and O T. In such a case we write O instead of O and caU it the necessity operator. 
Every n-normal logic is closed under necessitation ~o/O~o. The smallest rT-normal IM-logic is denoted by 

IntKc~ A regular IM-logic L is called O-normal if O(P V q) ~-. OP V Oq and -, O J_ belong to it. In this 
case we write O instead of O and call it the possibility opera,or. Every <>-normal logic is closed under 

-,~o/-~O~o. The smaUest <)-normal logic is denoted by I n t K o .  Some particular O-normal IM-systems were 

investigated in [5, 21, 26]; general results on the finite model property of such logics can be found in [27]. 

O-Normal systems were considered in [5, 26]. 

As in the classical modal logic, given a n-normal IM-logic L, we can define the dual operator O by 

setting O~ : -,rT-~q0. Likewise, in a O-normal logic L' we can take ",O-,~ as a definition of Q~0. However, 

L and L' are not necessarily O-normal and n-normal with respect to the operators defined. (This will 

certainly be the case if their underlying nonmodal logic is classical.) On the other hand, the dual definition 

of O and O is not consistent with intuitionistic principles (according to which V and 3 are not dual). 
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To construct IM-logics ,vith absolutely independent modal operators, we can take IM-logics L1 and L2, 

formulated in languages with disjoint sets of modal operators, and then form their /usio,~ L1 | L2, the 

smallest IM-logic in the joined language containing L1 u L~. In this way we can define the bimodal logic 

Ea tKoo  = I n t K o  | I n t K o .  Its extensions are called mO-IM-logics. There is no connection between 

and O in IntKc~o, the latter being both r~_ and O-normal. Extensions of I n t K u  ( I n t K o )  can clearly be 

identified with extensions of I n t K n o  O Op ,-, p (respectivdy, l n t K o o  ~ ~p ,-, p). 

The well-motivated ~O-IM-logic 

FS = I n t K u o e  O(p ~ q) --* (Up --, Oq) �9 (Op ~ Dq) -~ m(p _~ q) 

was constructed by Fischer Servi in [14, 15]. Extensions of FS will be called FS-logics. Some of them were 

studied in [15, 1, 10]. 

By adding to a consistent IM-logic in the language s the Law of the Excluded Middle p V -~p, we 

obtain a classical logic with n modal operators. Denote by C, R,  and K the monomodal logics I n t C ~ p V - , p ,  

I n t R  ~ p V -~p, and In tKr ,  ~ p V -~p : I n t K o  ~ p V -,p, respectively. 

2. S E M A N T I C S  A N D  D U A L I T Y  

The logics introduced above correspond to varieties (equational classes) of Heyting (or pseudo-Boolean) 

algebras with operators. More precisely, given a language s we consider algebras of the form 

r~ = ( j  ._,, ^ ,V ,  T , 0 1  ' . . - , O r ) ,  

where (A, -% A, V, T) is a Heyting algebra with unit element T,  and Oi  for 1 < i < n are unary operators 

on A. Such algebras will be called IM-algebras. A valuation ~ of s  in ~t is a homomorphism of the 

algebra of s into ~t. A formula ~0 is ~rue in ~1 under ~ if ~(~o) = T;  ~0 is valid in ~t, written 

~t ~ ~o, if it is true under any valuation. 

An IM-logic L is characterized by a class C of IM-algebras if L = {~o : V~t E r ~ ~ ~0}. In the s tandard 

way one can show that  the class of IM-algebras, validating all the formulas in an IM-logic L, forms a variety 

characterizing L. 

The relational semantics is usually derived from the algebraic one using the Stone-J6nsson-Tarski  

representation of Heyting and modal algebras. Since the logics under consideration are rather weak, we 

need, first, introduce some intermediate structures combining a rdationai intuitionistic component and an 

algebraic modal one. 

We remind the reader that an inguigionis~ic frame (or Lut-fr~me for short) is a structure of the form 

: (W, R, P) ,  where R is a partial order on a nonempty set W and P is a collection of cones (i.e., upward 

closed sets) in W with respect to R which contain O and are closed under n, u, and the operation 

X D Y = { z E W : V v E W  ( z R y A y E X ~ v E Y ) } .  

If P contains all the cones in W, then we call ~ a .full (or Kr{pke) frame and write (W, R) instead of 

(W, R, P).  The underlying full frame of ~ is denoted by s~. 

Now we define a quasi-IM-frame as a structure ~ = (W, R, 0 1 , - - . ,  O r ,  P)  such that (W, R, P) is an 

Int-frame and the 0~,  i = 1 , . . . , n ,  are just operations on P. Every quasi-IM-frame gives rise to the 

IM-algebra ~! = (P, D, N, U, W, 0 1 , . . . ,  0 , , ) ,  called the dual of ~. Writing ~ ~ ~o means that ~! ~ ~o. All 

the other semantic notions above can be translated to quasi-frames in the same way. A model on ~ is a 
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pair fl3I = (~, ~),  where Q3 is a valuation in ~ (= in ~! ). If z E ~(~o) then we write (~B, z) ~ ~o, or simply 

z ~ ~o if this is understood, and say that ~o is true at z (under ~ ) .  It is clear that ~(90) is a cone for every 

formula ~a. 

Conversely, with each IM-algebra ~ = {A, --*, A, V, T, O x , . . . ,  O,,)  we can associate its dual, the quasi- 

IM-frame ~l = { W , R , O '  t . . . . .  O ' , P )  in which W is the set of prime filters in ~, and for every z , y  E W 

and a E A, 

zRy itf z C_ y, 

e ( a )  = { z  e W : a  ~ z}, 

P -  {P(a) : a e A}, 

O~(P(~ ) )  = P ( O , ( ~ ) ) ,  I < i < ~. 

Using the well-known correspondence between Int-frames and Heyting algebras (see, e.g., [7]), one can 

readily see that  every IM-algebra ~ is isomorphic to its bidual, written ~ ~ (~l)  I. A quasi-IM-frame ~ is 

called descriptive if ~ ~ (5 I)l. Every quasi-[M-frame of the form ~{t is clearly descriptive. Hence, we have 

P r o p o s i t i o n  1. Each IM-logic is chatacterised by a suitable class of descriptive quasi-IM-frames. 

Another sort of adequate relational semantics for IM-logics - -  neighborhood frames - -  was introduced 

ha [26]. For nO-IM-logics, the algebraic modal component in quasi-IM-frames can also be replaced with a 

relational one. 

We say that  an IM-algebra ~ = {A, - . ,  A, V, T,  O, O) is a taO-IM-algebra if the following identities hold 

in it: 

OT = T, O(aA b) ---- OaA Ob, - 0 2 .  = T, <>(a v b) = <>a v <>b. 

All O<>-IM-logics are clearly chatacterised by varieties of O<>-IM-algebras. 

Given a O<>-IM-algebra ~ = (A, --., A, v, T, C], <>), we define its dual 92+ to be the structure 

(W. R, Ro. Ro,  P),  where (W, R, P) is the dual of the Heyting algebra (A, --., A, V, Y), and for every 

z , y E  W, 

zRoy iff Va E A (Oa E z O a e y), 

zRoy  itf Va E A (a E y ~ <>a E z). 

It follows immediately from the definition that,  for all z, u, v, y E W, 

or, equivalently, 

zRu A uRov A vRy ~ zRoy, 

xRu A vRou A vRy ~ yRoz  

Ro  Roo R C_ Ro, (1) 

R o R ~  l o g C _ g ~  I. (2) 

(Here o denotes the composition of relations.) 

Structures of the form ~ = (W,R, Ro ,Ro ,P ) ,  where (W,R ,P)  is an Int-frame,  R~ Ro are binary 

relations on W satisfying (1) and (2), and P is closed under the operations • and O defined by 

o x  = { ,  e w : vy e x ( , R o y  = y e X ) } ,  

O X = { z E W : 3 y E X  zRoy},  
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will be called DC .IM-~rames. The dual of a OO-IM-frame 3 is then the algebra 3 + = (P, D, r U, W, n,  O). 

It is not hard to check that ~+ is a O<NIM-algebra and that again ~ ~ (~+)+ for every OO-IM-algebra 92. 

We say that a D<>-IM-frame ~ is descriptive if 3 ~- (3+)+ �9 Since frames of the form ~+  are descriptive, we 

have 

P r o p o s i t i o n  2. Every {:]O-IM-logic is characterired by a suitable class of descriptive [']O-IM-frames. 

The following internal characterization of descriptive r30-IM-frames is obtained by the straightforward 

combination of corresponding chatacterisations of descriptive modal and intuitioaistic frames. For details, 
consult [17, 7]. 

A I20-IM-frame 3 : (W, R, Rc~ Ro, P) is descriptive iff 3 is tightR, tightRa, and P r o p o s i t i o n  3. 

tightR., i.e., 

zRy iff VX E P (z E X => y E X); 

zRny iff u  

zRoy iff VX E P (y E X => z E <>X), 

and compact, i.e., for any X C_ P and y C {W - X : X E P}, if X U y  has the finite intersection property, 

then n ( x  u y) # o. 
A []O-IM-frame ~ = (W, R, Ro, Ro, P) is a full (or Kripke) DO-IM-frame if (W, R, P )  is a full ln t - f rame.  

(As far as we know full OO-IM-frames were first introduced in [26].) A oO-IM-logic is called complete if it 

is chatacterised by a class of full t30-IM-frames. The underlying full frame of a D<>-IM-frame 3 is denoted 

by r~.  A D<NIM-logic L is said to be d-persistent if r~ ~ L whenever 3 is a descriptive frame validating L. 

All d-persistent logics are clearly complete. Another useful property of d-persistence is its being preserved 

under sums, i.e., if logics L1 and L2 ate d-persistent then so is LI {~ L2. {In general, however, completeness 

as well as many other important properties ate not preserved under sums of logics.) We give some examples 

of d-persistent O<>-IM-logics. To this end we need the following well-known lemma on the existence of 

prime filters (see [22]). 

L E M M A  4. Suppose that 92 = (A,--% A, V, T)  is a Heyting algebra and B, C are nonempty subsets of 

A such that  (i) bl A . . .  A b,, /~ c for any b l , . . .  ,b= E B, c E C, and (ii) for every cl ,c2 E C, there is c E C 

for which cl V c2 < c. Then there exists a prime filter V in 92 such that B C_ V and C n V = ~. 

Here < is the lattice partial order on A defined by a < b iff a A b : a. 

P r o p o s i t i o n  5. FS is d-persistent. 

P r o o f .  It suffices to show that any [3<>-IM-frame satisfying the conditions 

zRoy ~ 3z (yRz ^ zRoz ^ =Rcz), (3) 

zRc3y ~ 3z (zR.z A zRDy A zR~y) (4) 

validates FS  and that  (3) and (4} hold in any descriptive frame for FS.  

To prove the former claim, suppose that  a D<>-IM-frame 3 satisfies (3) but <>(p ---, q) --* (t ip - .  <>q) is 

refuted in 3 under some valuation. Then z ~ O(p --* q), z ~ Op, and z ~ Oq, for some z in 3, and so 

there is y such that  zRoy and y ~ p --+ q. By (3), we have yRz, zRaz,  and zRoz  for some point z. Then 

z ~ p ~ q (since the truth-set of any formula is a cone), z ~ p, and z ~ q, which is impossible. The second 

axiom of FS is treated analogously using (4) and (1). 

Now, letting 3 = <W, R, Ro, Ro,  P) be a descriptive frame for FS, we show that  it satisfies (4). Without  

loss of generality, we may assume that 3 -~ 92+ for some O<>-IM-algcbra 92 ~ FS. Thus, points in 3 are 

77 



prime filters "Lu 21. Let z , y  G W and zRc~. Putting B = z U {<)b : b G y )  and C = {Oc  : c ~ Y}, we show 

that B and C satisfy (i) and (ii) in Lemma 4. Suppose a ^ Obt ^ . . .  ^ Oh,, <__ Oc for some a E z (z is closed 

under ,\), bx,...,b,, G y, and c ~ y. Then aAObx ^ . . .  ^<)b,, --, Oc = T in ~,  from which by the second 

axiom of PS we obtain a--~ O ( b x A . . . A b n - - . c )  = T. It follows that O ( b - - . c )  G z for some b E  y a n d  

c ~ y. Since zRc~/, we have b --, c E y and c G y, which is a contradiction. Therefore, (i) holds. To derive 

(ii), auume  ct, c~ ~ y. Since y i.s prime, cx v c~ ~ y, and so O(ct V c~) G C and Oct V Oc2 _< O(cl v c~). 

By Lemma4 ,  there is a p r i m e  filter z G W such that B C_ z and C N z  = ~ .  ThJ~ means that  zRz, 
zRoy, and zRoy, as is required by (4). 

In the same way, using Lemma 4 and the first axiom of FS,  we can show that  ~ satisfies (3). 

Applying the same sort of technique, it is not hard to prove the following proposition in which [3'* and 

<)n are strings of n boxes and diamonds, respectively. 

P r o p o s i t i o n  6. For all k, I, m, n >_ 0, the logic 

L(k, 1, m, n) = I n t K o o  ~ ~>k OZp __. O,n<),,p 

is d-persistent, with every descriptive DO-IM-frame ~ = (W, R, Ro, Ro,  P)  for L(k, 1, m, r~) satisfying the 

condition 

�9 R oy ^ : ,  ( y R S .  ^ 

In fact, we face an analog of the result by Lemmon and Scott [18] which was the starting point for the 

development of correspondence theory in the classical modal logic and which ultimately led to Sahlqvist's 

theorem [23]. 

The correspondence between oO-IM-algebras and OO-IM-frames being established, we extend it to 

algebraic operators of forming subalgebras, homomorphic images, and direct products. As to the latter 

operator, its relational analog is the standard disjoint union of frames defined in exactly the same way 

as in the purely intuitionistic or classical modal case (see [17, 7]). However, the duals of the notions of a 

homomorpkism and a subalgebra of O<)-IM-algebras are not direct translations of the standard definitions. 

Let ~ = (W, R, Ro,  Ro,  P)  be a OO-IM-frame and V a nonempty subset of W satisfying the following 

two conditions: 

Vz e W y  e W ( z R y V z n o y  ~ y e V) (5) 

and 

Then it is easy to see that  the structure 

(6) 

= (v, RW, Ro W, Ro W, {X n V: X e P) )  

is also a OO-IM-frame. It is called a generated subf-rame of 5- Condition (5) is standard: it requires V to 

be upward closed with respect to both R and Ro. However, according to (6), V is not necessarily upward 

closed with respect to Ro.  This is illustrated by Fig. 1 in which r is a generated subframe of 5, although 

the set {z, z)  is not upward closed in ~ with respect to Ro. 

T H E O R E M  7. (i) If ~ : (V,S, So,So,Q) is a generated subframe of a OO-IM-frame ~ = 

(W, R, Ro, Ro,  P),  then the map h defined by 

h ( X ) = X N V  for e v e r y X E P  
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o Ro  

~ 8 z  ~ o=  

Fig. I 

is a homomorphism of ~+ onto ~5 +. 

(ii) If h is a homomorphism of a oO-IM-algebra ~1 onto a OO-IM-algebra ~3, then the map h+ defined 

by 

h+(V) = A-I(V) for every prime filter V in ~3 

is an isomorphism of ~3+ onto a generated subftame of ~i+. 

Proof. (i) That h is a sutjection preserving D, n, U, and [:3 is proved in the usual way (sec [17, 7]). We 

show that  h preserves O, i.e., that h(OX) : Oh(X) for every X E P.  

Suppose z E OX n V in ~. Then there is y E X such that zRoy,  and so (6) yields z E V with z R o z  

and yRz. Since X is a cone, it follows that z E X; hence z E O(X n V) in ~5. Thus, h(OX) C_ Oh(X),  the 

reverse being trivial. 

(ii) Let ~I+ -- (W, R, Rm, Ro, P~ and ~+ -" (U, S, So, So, Q). Put 

V = {V E W :  h - l ( T )  C_ V}. 

It is shown in [17, 7] that V is upward closed in ~l+ with respect to R and Rm, h is a bijection of V onto 

U, and h+ is an isomorphism of ~ +  onto the subframe of ~l+ generated by V if R and Rm coincide. So it 

remains to show that  V satisfies (6) and that  VISoV2 iff h+(V1)Roh+(V2) for each of the V~, V~ E U. 

Assume that  A-*(T) C_ V (i.e., V 6 V) and VRoV'  for some V' 6 W. Putting a = V'  U h- l (T ) ,  C = 
{a E ~1 : ~Ya r V}, we show that B and C satisfy the conditions of Lemma 4. Suppose b A c ~_ a for some 

b e  V', c E  h-~(T) ,  a n d O a  • V. Then h(bAc) = h(b) < h(a), and so h(Ob) < h(Oa). Since O b e  V, 

h(V) is a filter in ~3 and h - l ( h ( V ) )  = V, we must have Oa E V, which is a contradiction. Now suppose 

Oal ,  On2 ~ V. Since V is prime, On1 v On2 ~ V, whence O(al  v a2) = On1 V On2 ~ V. 

Let V1 be a prime filter in 2 such that B C_ Vt  and C n V1 = O. Then clearly V1 E V, VR<>V1, and 

V' C_ VI. Thus V satisfies (6). 

Suppose that  V1SoVa, i.e., Ob E V1 whenever b E V2, and that a E h+(V~) for some a in ~l. Then 

h(a) EVa,  h(Oa) = Oh(a) E V1, and so Oa E h + ( V 0 .  Conversely, assume that h+(Vz)RoA+(Va).  Then, 

for all a in ~, a E h+(V~) implies Oa ~ h+(V1). Since h is a bijection of V onto U, we see that  if b ~ Vz 

then b = h(a) for some a ~ h+(Va). So Oa ~ h+(V 0 and Ob = Oh(a) = h(Oa) ~ V , .  
Given OO-IM-fzames ~ = (W, R, Ro, Ro,  P) and ~ = (V, S, So, So, Q), wc say that  the map jr from W 

onto V is a reduclion (or p-morphi~m) of ~ to ~5 if, for all z, y E W, u E V, and X ~ Q, the following four 

conditions hold: 

�9 R.y �9 e {bla.k, 0,0}, 

W ^ 

F (X) P 

(7) 

(s) 

(9) 

(10) 
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0 I ~ 4 

R 
O 

2 ~ 3 

Fig.  2 

Ol S. 4 

S 

2 So 3 

For example, the map gluing the points 0 and 1 in the frame ~ in Fig. 2 is a reduction of ~ to ~5 in 

the same figure. Notice that if we consider these frames as classical bimodal frames we see that  ~ is not 

reducible to ~ because the points 2 and 3 as well as 2 and 4 are connected by So-arrows. If we remove 

these arrows, then the modified ~5 will not be a [nG-IM-frame, since condition (2) does not hold. 

T H E O R E M  8. (i) If f is a reduction of a r~O-IM-frame ~ = (W, R, Ro, Ro,  P)  to a ~G-IM-frame 

~5 -- (V, S, Sv, So,  Q), then the map f+  defined by 

f+(X) = / - l ( x )  for every X E 

is an embedding of ~+  into ~+. 

(ii) If  ~B is a subalgebra of a nO-IM-algebra ~t, then the map f defined by 

f ( V )  = V N ~B for every prime filter V in ~{ 

is a reduction of ~{+ to ~ + .  

P r o o f .  (i) It is known (cf. [17, 7]) that f+  is an injection preserving ---,, A, V, O. So we need only 

show that / - I ( o x )  = O f - I ( X )  for every X G Q. Suppose that z E f - 1 ( ~ X ) ,  i.e., / ( z ) S o u  for some 

u E X.  By (9), we then have a z G W such that zRoz and uS/(z). Since X is a cone, f(z) E X,  and so 

z G Of - l (X ) .  Thus, / - I ( O X )  C O / - ~ ( X ) .  The reverse inclusion follows from (7). 

(ii) It was proved in [17] and [7] that .f satisfies (7), (8), and (10). To derive (9), assume that  (VI N 

~)SoV~ for some prime filters V1 on ~ and V2 on ~B. Putting B : V2, C = {a E ~ : Oa ~ V1}, we show 

that  B and C satisfy the conditions of Lemma 4. That  (ii) holds was established in the proof of Theorem 7. 

Suppose that (i) does not hold. Then there exist b E V2 and Oa ~ V1 such that  b < a. It follows that 

Ob ~_ Ou. Since (V 1 N ~)SoV2,  we have Ob E VI N B, and so Ou E Vl,  which is a contradiction. Let V 

be a prime filter in ~ for which B C V and C N V : O. Then clearly V1RoV and VaR(V N ~ ) .  

In exactly the same way as in the classical modal logic (cf. [17, 2, 3]), we can use the duality results 

above to prove the following definability theorems. 

T H E O R E M  9. A class C of r30-IM-frames is definable by s (in the sense that  there exists 

a set F of s such that C : {~ : ~ ~ F}) iff r is closed under forming generated subframes, 

reducts, disjoint unions, and both C and its complement (in the class of all oO-IM-frames) are closed under 

the operator ~ ~-* (~+)+. 

For a full OC,-IM-frame ~, the frame ir is called the prime filter ez~ension of ~. This concept 

is an intuitionistic counterpart  of the notion of an ultrafilter extension in the classical modal logic, intro- 
duced in [2]. 

T H E O R E M  10. A class C of full OG-IM-frames coincides with the class of all full OG-IM-frames 

validating a d-persistent E3G-IM-logic L iff C is closed under the formation of generated subframes, reducts, 
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dizjoint unions, and both C and its complement (in the class of all full DO-IM-frames) are closed under 

forming prime filter extensions. 

T H E O R E M  11. If a OO-IM-logic L is characterized by the class of full OO-IM-frames which is closed 

under elementary equivalence (in the first-order language with predicates - ,  R, Ro,  and Ro), then L is 

d-persistent. 

We conclude this section with a few remarks concerning other semantics for CgO-IM-logics. Note, first, 

that  conditions (1) and (2) can be made considerably weaker. We say that a structure ~ -- (W, R, Ro,  Ro,  P) 

is a weak DO-IM-fvame if (W, R, P)  is an Int-frame, Rois an arbitrary binary relation, Rois a binary relation 
such that,  for every z , y  E W, 

zRy  A zR<>z ~ 3u E W (yRou  ^ zRu), 

and P is closed under the operations 

(11) 

DX -- {z E W : Vy, z ( zRyRoz  ~ z E X)}, 

<>X = {z E W : 3y E X zRoy}.  

For instance, both D<>-IM-frames and frames from [5] are weak O<>-IM-frames. One can readily check that 

if ~ -- (W, R, Ro,  Ro, P) is a weak D<>-IM-frame then the structure ~ -- (W, R, D, <>, P)  is a quasi-IM-frame 

validating I n t K o o .  It follows that ~I is a oO-IM-algebra , which we denote by 3 +. The set of cones (with 

respect to R) in 3 is closed under O and <>. If P contains all such cones, then ~ is called full. A O<>-IM-logic 

is weakly complete if it is characterized by a class of full weak D<>-IM-frames. 

One can argue as to which conditions on Ro and Roare  more natural: (11) or (1) and (2), or something 

in-between them, for instance, Ono's frames from [20] or those of Boii~ and Do~en in [5]. From the 

technical point of view, however, this gives us nothing new. Indeed, with every weak DO-IM-frame ~ -- 

(W,R, Ro ,Ro ,  P) we can associate the D<>-IM-frame 5 ~ = (W,R, Ro  Roo R, R -1 o Roo R-1, P).  And 

then we have 

P r o p o s i t i o n  12. For every weak DO-IM-frame 3 and every formula ~, ~ ~ ~ iff ~o ~ ~. 

P r o o f .  We can either show that 3 + : (~-o)+ or simply use a straightforward induction on the complexity 

of ~. 

In particular, we obtain 

C O R O L L A R Y  13. A D<~-IM-logic is complete iif it is weakly complete. 

Fischer Servi's birelational frames for FS,  introduced in [14], can also be derived from weak D<>-IM- 

frames. We say that a O~)-IM-frame is an FS-f~me if it satisfies conditions (3) and (4). Given an FS-frame 

: (W, R, Rv, Ro, P>, define the relation S : RoN Ro. It follows from (1)-(4) that  S satisfies (11), i.e., 

zRy  and zSz  imply ySu and zRu for some u E W, and 

zSyRz  ~ 3u zRuSz.  (12) 

Denote the weak D<>-IM-frame (W, R, S, S, P> by 3 ' .  

We say that  a weak D&-IM-frame 3 - (W, R, S, S, P)  is a birelational FS-fv'ame if it satisfies (12). One 

can easily verify that every birelational FS-frame validates FS and that 3 + = (3*) + for every FS-frame 3. 

Therefore, we have 

P r o p o s i t i o n  14. Every FS-logic is characterized by a class of birelationai FS-frames. 

Since 3 ~ is an FS-frame whenever 3 is a birelational FS-frame, we have also 
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P r o p o s i t i o n  15. An FS-logic is complete iff it is chaxacterised by full birelational FS-frames. 

3. E M B E D D I N G  

GSdel [16] embedded In t  in $4 via the translation t prefixing O to all subformnlas of intuitionistic 

formulas." Dummett  and Lemmon [8] extended GOdel's embedding to all intermediate logics. Maksimova 

and Rybakov [19], Blok [4], and Esakia [9] started a systematic investigation into the structure of "modal 

companions" of intermediate logics. 

In [27] we used the natural generalisation of GSdel's translation, which embeds extensions of I n t K a  

in classical bimodal logics contaguing $4 | K, to obtain a number of general completeness results for 

intuitionistic modal logics. Our aim here is to study the embedding of (not necessarily normal or regular) 

IM-logics, in an axbitraxy language s in classical logics with n + 1 modal operators. 

Given a language s  we define its extension s with one more modal operator nx and consider 

classical n + 1-modal logics in s (CM-logics for short) containing the S4-axioms for nx: 

OI(pAq)  ~--* OlpA nlq  , FlIT , Olp---* p, [:]Ip--. nlE]Ip. 

These logics can be interpreted by quasi-CM-frames which are structures of the form ~ = 

IW, RI, O 1 , . . . , O , ~ , P ) ,  where RI is a quasi-order on W ~ O, Oi  is an arbitrary operation on P,  and 

P C_ 2 W contains O and is closed under Boolean operations and the operation O~ defined by 

OIX = {z E W :Vy (aRly =:> y E X)}. 

The dual of ~, i.e., the modal algebra (P, N , - ,  T, UI, O h . . .  ,O, , ) ,  is denoted by ~l. Conversely, for a 

topological Boolean algebra with n operators 92 = (A, A,--, T, Oz, O h . . . ,  On)  (which validates the S4- 

axioms), we define its dual ~i t = (W, Rz, O ~ , . . . ,  O~,  P) in almost the same way as in Sec. 2; the only 

difference is that  now 

z R i y  iif Va E A (Ora E z ::r a 6.. y). 

Again we have 92 ~_ (921)t and call a quasi-CM-frame ~ descriptive if qd ~ (~l)l .  It should be clear that  all 

CM-logics axe chaxacteri~ed by corresponding varieties of topological Boolean algebras with operators and, 

hence, by suitable classes of (descriptive) quasi-CM-f~ames. 

Let t be the translation of s into s  which prefixes Oi to every subformula of a given s 

formula. To show that  t is an embedding of IM-logics (in s in CM-logics (in s we need operators 

transforming quasi-IM-fIames to quasi-CM-f~ames and back. Those axe generalizations of the operators 

a and p defined in [27]. Since the number of modal operators is not essential, for simplicity we wiU be 

considering the monomodal language s  with operator O- 
Given a quasi-IM-~ame ~ = (W, R, O ,  P), we construct a quasi-CM-frame cr~ : <W, Rr, crO, crP) by 

taking Rr = R, aP  to be the Boolean closure of P and cr O X : OOxX,  for every X E crp. It is well 

known [27] that  O~X E P for every X E aP (see [22]). Therefore, a P  is closed under c 'O and so cr~ is a 

quasi-CM-frame indeed. Moreover, Oxcr O OzX : Ox O rl~QxX = C)rlIX : cr O X for all X E uP.  It 

follows that  the formula 

Miz  = Oz 0 rlrP ~ OP 

*Actually, GSdel used a somewhat different translation, hut it is equivalent to t as far as only S4 and its normal extensions 
are concerned. 
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is valid in u3. We also know that (W, Rs ,uP)  validates the monomodal Grzegorcsyk logic G r z  : $4 (B 

Qr(Ol(p ---, Otp) --. p) ---, p. To sum up, we obtain 

L E M M A  16. If 3 is a quasi-IM-frame, then ~r 3 is a quasi-CM-frame validating Miz  and Grz.  

Conversely, let 3 : (IV, Rr, O ,  P) be a quasi-CM-frame. From it, we construct a quasi-IM-frame p~ 

by, first, modifying O so that the resulting frame 3" would validate Miz (and the same t-translations 

of IM-formula as ~), and then collapsing clusters in 3" into single points and converting the result to a 

quasi-IM-frame in the standard way (see [22]). 

Define an operation O"  on P by setting O ' X  = QI O Q I X  for every X E P, and put 3" = 

(W, Rr, G',P). 

LEMMA 17. If ~ is a quasi-CM-hame, then 

(i) ~ is a quasi-CM-ftame also; 

(ii) 3* ~ Miz; 

(iii) for every s ~o, 3 ~ ~ t(~o) iff 3 ~ t(r 

P roof .  Clauses (i) and (ii) are trivial; (iii) is proved by a straightforward induction on ~he complexity 

of ~o. 

Now assume that a quasi-CM-frame 3 = (W, R t , O , P )  validates Miz. Denote by [z] the cluster 

containing z, i.e., [z] = {y E W : zRzy and !/Rzz}, and put 

[ x l  : : �9 E x } ,  

[PI = {[Xl: U [ x l  E P}, 

[ O l [ X ]  = { [ . 1 :  �9 o(U[xl}. 

The structure [~] = ([W], [Rz], [O], [P]) is called the skeleton of 3- 

L E M M A  18. If ~ is a quasi-CM-frame validating Miz, then 

(i) [~] is also a quasi-CM-frame, with [~]! a subalgebra of 3!; 

(fi) [Rz] is a partial order on [W]; 

(iii) for every EAt-formula qo, 

Proof. (i) It is well known that the map z ~-* [z] is a p-morphism of the S4-fxame (W, Rt, P) onto 

([W], [RI], [P]). Therefore, the map f : [X] ~-, U[X] is an injection of [P] into P preserving Oz. So it 

remains to show that f preserves the second modal operator. Obviously, we have f([O][X]) : U{[z] : z E 

O(U[X])} _D O(U[X]) : O(f([X])) .  And the reverse inclusion follows from Miz.  Indeed, O(U[X])  = 

Gl O ~ and so the whole cluster [z] lies in C)(U[X]) whenever one of its points does. 
Clause (ii) is obvious; (iii) is established by induction. 

Finally, given an arbitrary quasi-CM-ftame ~, we first form the frame [3"] : (W, R~ ,O,P) ,  and then 

transform it to a quasi-IM-frame P3 = (W, R, O,  PP) by taking R = Rt and pP : {OzX : X E P}. If we 

drop O ,  P will be just the standard operator converting S4-frames to Int-frames. By Miz,  0 maps cones 

to cones, and so ~ is a quasi-IM-ftame. Using induction on the complexity of ~o and Lemmas 17, 18, it is 

easy to prove the following: 

L E M M A  19. For every EAt-formula ~o and every quasi-CM-frame 3, 
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We also have 

L E M M A  20. ~ ~_ ~ ' ~  for every quasi-lM-frame 5- 

Now we are in a position to embed IM-logics L in extensions of $4 | C, where $4 is treated in the 

language with n I and C is treated in the language with 0 (with the modal operators of L, to be more 

exact). We say that a CM-logic M is a CM-companion of L and L is the IM-fragmen~ of M if, for all 

EArl-formulas ~o, 

It is easy to see that,  for every extension M of $4 | C (in s the set 

pM = {~ ~ s  ~(~) ~ M} 

is the IM-ftagment (in s of M, and that p is a homomorphism of the lattice of CM-logics onto the 

lattice of IM-logics. 

P r o p o s i t i o n  21. If a CM-logic M is characterized by a class C of quasi-CM-frames, the pM is charac- 

terised by the class pC = {p~ : ~ E C}. 

The p r o o f  follows from Lemma 19. 

The theorem given below describes an (infinite) family of CM-companions of each consistent IM-logic. 

T H E O R E M  22. Every logic M in the interval 

[(S4 | C) ~ t ( r ) ,  ( G r z  | C) I~ t(F) ~ Miz] 

is a CM-companion of the IM-logic L = I n t C  ~ F, where F is a set of s 

P r o o f .  Suppose ~o r L. Then there is a quasi-IM-frame ~ for L refuting ~. By Lemmas 19 and 20, we 

have a ~  ~: t(~) and a{~ ~ t(P). By Lemma 16, a~  ~ G r z  and a~  ~ Miz. Thus, we obtain a ~  ~ M and 

~r~ ~ t(~o), whence ~ ~ pM. 
Conversely, if ~o ~ pM, then t(~o) ~ M, and so there is a quasi-CM-frame ~ for M refuting t(~o). By 

Lemma 19, p~ ~= ~o and p~ ~ I'. So ~o ~ L. 

E x a m p l e  23. 1. If an extension M of $4 is a modal companion of the intermediate logic In t  + [', then 

M |  is a CM-companion of I n t C ~ r . "  (For we have M : M ' $ t ( [ ' )  for some M'  in the interval [$4, Grz] ,  

and so M | C = ( M ' |  C)(~ t(F).) In particular, $4 | C, $4.1 | C, and G r z  | C are CM-companions of 
I n t C .  

2. $4 | (C ~ O T )  is a CM-companion of I n t o  ~ O T. This follows from the inclusions 

($4| C) �9 t(O T) C_ S4| (C �9 O T) C_ (S4e C) �9 Miz et(OT).  

3. S4 | (C (B O P  --* P) is a CM-companion of I n t C  (BOP --* P. The proof is analogous. 

4. Each IM-logic L : I n t R ~  [" is embeddable via t in any logic in the interval [($4|  R) e t ( F ) ,  (G rz@ 

R) ~ m i z  (B t(r)]. Indeed, let ~ = O(p ^ q) -" Op. Then the clam follows from the inclusions 

($4 | C) $ t(F) �9 t(r C_ ($4 | R) �9 t(F) C_ ($4 $ C) $ Miz  �9 t([') �9 t(r 

which are established by a simple syntactical argument. 

5. Each IM-logic L : In tKo(~ F is embeddable via t in any logic in the interval [($4|  K ) ~ t ( F ) ,  ( G r z |  

K) e #ri~ e t(r)}. The proof is simaar (for d e t ~ ,  consult [271). 

�9 Here + presupposes taking the closure only under modus ponens and substitution. 
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It is worth noting that every CM-companion M of an IM-logic L can be reduced, in a sense, to a 

CM-companion of L containing Miz .  We say that a CM-logic M'  is a Miz-reduct of a CM-logic M if 

Miz  E M ~, and for every formula ~o, ~o E M'  iff r(~o) E I4, where r replaces each occurrence of O in ~o with 

rnt O rat. Then, by Lemma 17, for each CM-companion M of an IM-logic L, there exists a Miz-reduct  M'  

of M such that  pM' = L (if M is chatactefised by a frame ~ then M'  can be defined as a logic of ~'*). 

As far a.s CM-companions with M i z  are concerned, we can get a correspondence similar to one between 

intermediate logics and their modal companions above $4 (see [6]). Indeed, the logic ($4 @ C)6} t ( r ) ~  M i z  
is clearly the smallest CM-companion with M i z  for an IM-logic L = I . u t c ~ r ;  we denote it by rL.  Now we 

want to show that the greatest CM-companion of L containing M i z  is the logic aL = ( G r z |  
To this end we need the following lemma concerning monomodal frames for G r z  in the language with 13. 

L E M M A  24. Let 9Y~ --- (~, ~ )  be a model based upon a partially ordered frame ~: = (W, R, P) for G r z  

and let I" be a finite set of formulas closed under subformulas. Then there is a model 9I = {ap~, it) (based 

upon the frame ap~ = (Fir, R, apP)) such that,  for every ~o E F, ~(ra~0) : It(Clio). 

P r o o f .  It is enough to show that there exists a valuation tl in ap~ such that  ~(O~o) = s for all 

~o 6 r .  To construct it, we first apply to 9)I and r the selection procedure introduced in [29]. As a result 

we obtain a finite model 9)I* = (~*, ~ ' )  and a cofinal subreduction f of J to ~* = (W ~ R*) satisfying the 

following properties: 

(i) ~* is a partial order (since ~ ~ Grz) ;  

(ii) Vz e d o m f  V~o e r (z e ~I(~o) r162 f ( z )  6 ~*(~o)); 

(iii) Yz 6 W - domf  3y E d o m f  ( zRy  ^ z " r  Y)* (from which it follows that  f satisfies the closed 

domain condition for the set ~)* of closed domains in flY/'). 

With each point v 6 W ~ we associate the set 

x ,  = o:-'(,,)- [.J o/-l(u). 

Since f -X(v)  E P, it follows immediately from the definition that X,, E apP,  / - l ( v )  C X, ,  and f -X(v)  is 
a cover for X , .  Then, for every z E W, we put 

= ~  . i f z ~ X ~ , v e W ' ;  
g(z) 

t undefined otherwise. 

One can readily check (see [28] or [7]) that g is a cofinal subreduction of ap~  to ~* satisfying the closed 

domain condition for ~D ~ 

Now we define a valuation g in ePt~ in the same way as was done in the proof of Proposition 9 in [29]. 

Namely, for every z 6 domg and every variable p, put 

And i f z  ~ d o m g ,  then by (iii), there is y E  domg for which zRy and z ~ r  y. For every z ~ domg such 

that 9({u:   Ru}) = we then put 

e U(p) ie 9(u) e m'(p). 

Let 92 = (ep~:, s By Proposit ion 9 in [29], for every ~o E F we have 

*Here z "~r Y means that the same formulas in F axe true at z and y in frJ~. 
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if z e domg, then z G ll(qo) iff g(z) e ~'(~o); 

if z ~ domg, then there is y G domg such that zRy and z G 11(~o) iff y G ll(~o). 

The claim of our lemma follows immediately from these properties, and from (ii) and (iii). 

Now we prove the follos6mg: 

L E M M A  25. Let ~ = (W, Rt, O ,  P) be a quasi-CM-f~ame for Grz  in the language with Or such that  
Rz is a partial order and ~ ~ Miz. Then, for all ~o E EAA ~, we have 

; }~ , ,  i~ a ~ r  

Proof .  The implication ~ ~ ~o =~ ~'Pt~ ~ ~o follows from apP C_ P. 
Conversely, assume that  ~ refutes ~o. For each subformala O r  of ~o, we fix a new variable q (Or  and 

put 

X ~ = 

(Xl - -  X~) ~ = 

(X~ ^ x~)'  = 

(x~ v x~)~ = 

(O~x)~ = 

( O x P  = 

Let P = (r : r E Sub,p}, where Sub~  is the set 

refuting q0. Define a valuation II of the extended language in ~ by setting 

If(p) = ~(p) for every variable p e Sub~, 

~(q(�9162 = ~(C)r for �9162 e S~b~. 

By Miz, 93(�9162 is a cone with respect to RI, and so for Ib E Sub~o and z ~ W, we clearly have 

~ ( r  = 11(r = s162 (13) 

By Lemma 24, there exists a valuation s ~ in a ~  such that,  for all r E r ,  

a ' (o , r  = a(Qrr 

Now we use induction to prove that for all r E Sub~,  

~'(r = ~'(r 

The only nontriviM case is with (De. We have 

a'C(Or = a ( (Or  q) 
= ti(o: O c~,r 

= ~i'([]i O o,r  
= u'(o~ O []re) 

= u ' (Or 

It follows from (13), (14), and (15) that ~o is refuted in crp~. 

X, X is atomic, 

x! -- xl, 

xl A xl, 

xl v x�94 

OIX~, 

OIq(Ox). 

of ~0's subfotmulas, and let ~It = (5, ~ )  be a model 

(by (14)) 

(by (13) and Miz) 
(by (14)) 

(by IH) 

(by Miz). 

(14) 

( is)  
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L E M M A  26. Each CM-logic L containing ( G r z  @ C) (9 Miz  is chara.:teriffied by a quasi-CM-frame 

qd = (IV, Rt, O,  P), where Rr is a partial order. 

P r o o f .  Consider a descriptive quasi-CM-frame ~ = (IV, Rz, O ,  P) which determines L. We say that  

a point z E W is eliminable in ~ if it has a proper Rr-successoz in every set X E P containing z. Put  

W' = {z G W : z i snonel imlnable in~} and P '  -- { X n W '  : X E P) .  One can readily check that  

the structure ~' = (W', Rr [ W', O',  P'), where O ' ( X  f] W') = W' ~ O X ,  is a quasi-CM-frame such that  

~! "m_ ~,t and Rz [W'  is a paxtial order (for details, see [11] or [7]). 

Now we are in a position to prove an analog of the Blok-Esakia theorem for IM-logics and their CM- 

companions containing Miz.  

T H E O R E M  27. A CM-logic M containing Miz  is a CM-companion of an IM-logic L itf I"L C_ M C_ ~rL. 

P r o o f .  (r  Follows from Theorem 22. 

(:~) It suffices to show that M C_ ~L. First we prove that 

{Pt~: ~ b M} : {~5:~5 b L} (16) 

(of course, we do not distinguish between isomorphic frames). We will need Birkhoff's characterization 

of varieties, and therefore it will be more convenient to consider frames as algebras, that is, establish the 

equality {(pt~)! : ~ b M} = {~St : ~5 b L}. 

By Proposition 21, L is characterized by the class C :{ (p tT)  ! : ~ b M}, and so it suffices to show that  C 

is dosed under forming direct products, subalgebras, and homomorphic images. Tha t  C is closed under the 

first two operations can be shown in the same way as in [19]. To prove the closure under homomorphisms, 

assume that  ~ : (W, Rt,  O ,  P)  is a quasi-CM-frame for M and h is a homomorphism from (p~)! onto y)t. 

Since (~p~)t is a subalgebra o f~! ,  it follows that (crp~)! b M. Besides, by Lemma 20 we have (p~rYj)! --. Y)t. 

These facts axe all that  we need to construct a homomorphism g from (a,p~:)! onto (crO)t, and then we shall 

have ~.Q ~ M. Every set X E ~pP can be represented as 

7% 

x :  
i : l  

for some Y~, Zi E pP. Define g by setting 

I% 

g(x) = u h ( z , ) ) .  
i----1 

Clearly, g(X) is an element in (a~) t which coincides with h(X)  for every X G pP. It was shown in [19] 

that  g is a surjection that preserves the Boolean operations and Qx. We prove that  it preserves O as well. 

g(OX) 

Using Miz  we have 

n 

= g(O , u z,)) 
i ---1 

= g(�9 N u 

: 9(0 N(Y, z,)) 
i = l  

-- h(o N(Y, z,)) 
i = l  
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= h ( Z , ) )  
i = l  

= 0 9 ( x ) .  

Now, to prove that  M C_ crL, it suffices to show that  a characteristic frame ~ : (W, R I , O ,  P) for aL 
is also a frame for M. By Lemma 26, without loss of generality we may assume that  RI is a partial order. 

In view of Pt~ ~ L and (16), there is a fzazae ~ for M for which p~ = p~', and so ap~ "~ aptT'. Clearly, 

up~t ~ M. Therefore, apt~ ~ M, and by Lemma 25, ~ ~ M. 

C O R O L L A R Y  28. The map u is an isomorphism from the lattice of IM-logics onto the lattice of 

CM-logics containing (Grz  | C) $ Miz. 

R e m a r k .  It is worth noting that the analogy with the Blok-Esakia theorem is not complete if we 

consider CM-logics without Miz. For, as has been observed by C. Grefe, there is an IM-logic L and its 

CM-companion M (without Miz) such that L ~ p(M (3 Miz). This means that  there are at least two 
maximal logics in p-lL. 

P r o p o s i t i o n  29. If an IM-logic L is characterized by a class C of quasi-IM-frames, then ~L is charac- 

terized by the class a d  = {a~ : ~ E C}. 

Proof .  If ~ ~ L then cr~ ~ t(L) by Lemmas 19 and 20, and a~, as is known, validates the Grzegorczyk 

formula in the monomodal language with O I. Hence ~ ~ crL. Now assume that  ~0 ~ aL  and consider the 

logic aL  (9 ~0. By Theorem 27, p(<rL (9 ~0) is a proper extension of L, and so there is a formula r ~ L for 

which a L  (9 ~o - a L  (9 t(r  Take any frame ~ E C separating r from L. Then, by Lemmas 19 and 20, c~  
will separate t(r  and, hence, ~o from aL.  

T H E O R E M  30. The map p preserves decidability, the finite model property, and tabularity. The 
map a preserves the finite model property and tabularity. 

Proof .  That  p preserves decidability follows directly from the definition of p, and the rest ~ from 

Propositions 21, 29 and the fact that p~ is a finite IM-frame if ~ is a finite CM-frame and a ~  is finite 

whenever ~ is finite. 

This preservation result provides us with a tool for establishing the finite model property (FMP for 

short) of IM-logics by means of proving it for suitable CM-companions. For example, we have 

T H E O R E M  31. Suppose that an intermediate logic In t  + r has FMP. Then FMP is shared by the 
following IM-logics: 

I n t C  (9 r ,  I n t C  (9 r ( 9 0 T ,  I n t C  (9 r ( 9 0 P  - '  P; 

IntR (9 r, IntR (9 r (90T, IntR (9 r (90P -~ P; 

IntKo (9 r, IntKo (9 r (90p -* p. 

Proof. By Theorem 30, it suffices to present CM-companions of these logics with FMP. Example 23 

shows that the logics under consideration have CM-companions of the form ($4 (9 t(r)) | L, where L is a 
monomodal classical logic in the list 

{C,  C ( 9 0 T ,  C ( 9 0 P  ~ p, R, l:t ( 9 0 T , R  ( 9 0 P  ~" p ,K ,  K ( 9 0 P  - *  P}- 

All the above-listed logics are known to have the global FMP in the sense that for any formulas ~o and r if 

there is a model 9X based on a frame for L such that 9)l ~ ~o and 9X ~ r then there is a finite model with 

the same properties. The claim of the theorem now follows from the two preservation results obtained in 

[28] and [12]. Namely, (i) if In t  + r has FMP then $4 (9 t ( r )  has the global FMP, and (ii) if two classical 

monomodal logics L1 and L2 have the global FMP then L1 | L2 has it as well. 
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For further results on the finite model property of IM-logics, see [27]. 

4. CM-COMPANIONS OF o<>-IM-LOGICS 

Now we focus attention on CM-companions of extensions of I-ntKoo. According to Example 23, all 

extensions of In tKv are embedded via t in normal bimodal logics. However, nothing guarantees that 

extensions of In tKo and, more generally, axbitraxy OO-IM-logics can be embedded in normal CM-logics. 

The reason is that although the t-translation of O(p A q) ~ Op A C3q is deductively equal to itself in 
($4 | C) ~ Mix, this is not the case for the t-translation of O(p V q) ~ Op V Oq, which will be denoted 

by tO: modulo Mix, it is deductively equal only to O(Olp v Oxq) ~ (>p v Oq. This is another important 

difference between (>-like and O-llke operators in intuitionistic modal logic, which reflects the nonstandard 

behavior of generated subframes and p-morphisms. 

We proceed to formulate a version of the Blok-Esakia theorem for fa<~-IM-logics. Put 

�9 1 = {<>([]zp v a~q) ~ e p  v <>q, -<>• 

�9 2 = { o p  ~ o x o o r p ,  O p  ,--, o r o o ~ p } ,  

As a consequence of Theorem 22, Example 23, and Corollaxy 28, we obtain 

T H E O R E M  32. Each O<>-IM-logic In tKoo O r is embeddable via t in any logic in the interval 

[(S4 | K | R) �9 tO (~ t(-.<>• �9 t(r) ,  (Grz | K @ R) �9 �9 �9 t(r)], 

where $4 is formulated in the language with Or, K in the language with ra, and R in the language with 

<>. The map a, restricted to the lattice of O<>-IM-logics, is an isomorphism of that lattice onto the lattice 

of extensions of (Grz | K | R) ~ ~. 

Example  33. Using ~2, one can easily show that for all k, l, m, n > 0, the logic ($4 | K | R) ~ �9 

<>~OZp ~ ra'~<y-p is a CM-companion of IntKoo ~ <>kOlp--+ D'~<Y"p. 

It is worth mentioning that although logics containing ($4 | K | R) ~ �9 are not necessarily normal (in 

fact, these are normal only if <> is almost trivial), they have a rather natural relational semantics with a 

nonstandard truth-condition for O, viz., frames of the form ~ : (W, RI, Ro, Ro, P) such that (W, R~, P) is 

an S4-fxame, Ro and Ro satisfy conditions (1) and (2), respectively, and P is closed under the usual [] and 

the unusual O: 

<>X = {z E W : 3y E n~X z / toy} .  

By adapting the Stone-J6nsson-Tarski argument to this case, we can show that the defined semantics is 

adequate for logics containing ($4 | K | R) ~ ~. 

We do not know whether all nO-IM-logics have normal (with respect to <>) CM-companions. (We 

conjecture that this is not the case.) But complete logics do have them. 

Let ~ = (W, R, Ra, Ro) be a full weak fq<)-IM-fxame. We can also treat it as a frame for the language 

with three modal operators Oi, O, and <> satisfying the classical truth-conditions. The classical modal logic 

with these operators, characterized by the class C of such frames, is denoted by ThC. 

By (11), every full weak O(>-IM-frame ~ validates (>Oip--* Ol(>p. We also have 
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L E M M A  34. For every full weak nO-IM-frame {j = (W, R, RG, Ro) and for every ~o in the language 

with 0 and O, 

~ iff ; ~ t ( ~ ) ,  

where the former ~ is intuitionistic, while the latter is classical. 

P r o o f .  (=~) Let ~ be an intuitionistic valuation in ~. We can treat it also as a classical valuation, 

denoted LL By induction on the complexity of ~0, we show that ~(~o) : Lt(t(~o)). 

The nontrivial cases are ~o = rl~b and ~o = O~b. Suppose z ~ ~3(rl~b). Then there are y E W and 

z r ~(~b) such that  zRyRuz.  By the induction hypothesis, z r L[(t(~b)), and so z r /~(t(O~b)) because 

t(U~b) = QtC3t(~b). Let z r Lt(UtOt(•)). Then zR~tRvz for some ~/ E W and z r tt(t(~b)), whence 
r 

Now let z 6 ~(O~b), i.e., z R o y  for some U e ~(~b), and let z r U(ElzOt(~b)), i.e., for some z, zRz 

holds, and no/?.o-successor of z is in Li(t(~b)). By (11), we have a point u for which yRu and zRou.  Then 

u E ~(~k) (since ~(~b) is a cone) and u r ls contrary to the induction hypothesis. Conversely, if 

z E fl(OlOt(~b)), in view of zR t z ,  then, there is y E Lf(t(~b)) such that zRoy;  hence, z E ~](O~b). 

(r Given a classical valuation 1~ in ~, we define an intuitionistic valuation ~ by setting ~3(p) = Lt(Olp) 

for every variable p, and in exactly the same way as above, prove that ~3(~o) = tl(t(~o)). 

T H E O R E M  35. Suppose that a t~O-IM-logic L = I .ntKvo @ P is characterized by a class C of full 

weak r~O-IM-frames. Then L is embedded via t in every logic M in the interval 

[(s4 | K | K) ou v - .  u Ov t(r),  ThC]. 

P r o o f .  Let ~0 ~ L. Then there is ~ ~ g separating ~o from L. By Lemma 34, ~ ~ t(~0), and so 

t(~o) r ThC. On the other hand, it is readily checked that the t-translations of the axioms of I n t K v o  are 

in ($4 @ K @ K) ~B <>QtP --* [3~Op, and hence t(~o) ~ M whenever ~o ~ L. 

Some consequences of Theorem 35 for FS-logics are worth noting. Fischer Servi [14, 15] proposed a 

somewhat different embedding t ~ of a few complete FS-logics in bimodal classical logics (in the language 

with O I and O) containing OiO p ~ OOtp and O'O/p ~ OiO~p, where 0 ~ is dual to O, i.e., ~'~o = ~O-,~o. 

Namely, she defined 
= = 

It turns out, however, that in fact t' is a special case of t in the framework of complete FS-logics. 

Indeed, let L = FS @ I' be a complete FS-logic. By Proposition 15, it is characterized by a class of full 

birelational frames (in which the relations for El and O coincide). It follows from Theorem 35 and (12) that 

L is embedded via t in the logic 

(S4 | K | K) ~ Elt~p --, t3Eltp ~ Ot3~p ---, ~t<>p ~ <>'p ,-, <>p ~ t(P),  

where again <>' is dual to ~. Identifying <>' and <>, we then obtain 

C O R O L L A R Y  36. Each complete FS-logic L = FS ~ F is embedded via t ~ in ($4 | K) ~ OlGp --. 

However, it is not clear whether all FS-logics are embedded via t ~ in bimodal logics of this type. 
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