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THE RELATION BETWEEN INTUITIONISTIC
AND CLASSICAL MODAL LOGICS

F. Wolter and M. Zakharyaschev* UDC 510.64

Intuitionistic propositional logic Int and its eztensions, known as intermediate or superintu-
itionistic logics, in many respects can be regarded as just fragments of classical modal logics
containing S4. The main aim of this paper is to construct a similar correspondence between in-
termediate logics augmented with modal operators — we call them intuitionistic modal logics —
and classical polymodal logics. We study the class of intuitionistic polymodal logics in which

modal operators satisfy only the congruence rules and so may be treated as various sorts of O
and O.

Intuitionistic propositional logic Int and its extensions, known as intermediate or superintuitionistic
logics, in many respects can be regarded as just fragments of classical modal logics containing S4. At the
syntactical level, the Gédel translation ¢t embeds every intermediate logic L = Int + I in modal logics in
the interval p™'L = [rL = S4 @ ¢(I'),0L = Grz @ t(T')]. Semantically this is reflected by the fact that
Heyting algebras are precisely the algebras of open elements of topological Boolean algebras. From the
lattice-theoretic standpoint, the map p is a homomorphism of the lattice of logics containing S4 onto the
lattice of intermediate logics, where o, according to the Blok-Esakia theorem, is an isomorphism of the
latter onto the lattice of extensions of the Grzegorczyk system Grz. At the philosophical level, the Gédel
translation provides a classical interpretation of the intuitionistic connectives. And from the technical point
of view this embedding is a powerful tool for transferring various kinds of results from intermediate logics
to modal ones and back via preservation theorems (see [6]). Both classical modal logic and the theory of
intermediate logics have gained from this correspondence.

The main aim of this paper is to construct a similar correspondence between intermediate logics enriched
with modal operators — we call them intuitionistic modal logics — and classical polymodal logics. That the
Godel translation can be extended to an embedding of at least a few particular intuitionistic modal systems
in some classical polymodal logics was observed by several authors (cf. {5, 13, 25, 26]). Fischer Servi [13,
15] used a version of that translation to define “true” intuitionistic analogs of a number of classical modal
systems. In [27] we exploited the translation proposed by Shehtman [25] to embed intuitionistic modal
logics with the single necessity operator O of K in bimodal logics above S4 @ K. However, like V and 3,
the necessity and possibility operators O and © are not supposed to be dual under the intuitionistic laws.

Here we consider a much more extensive class of intuitionistic polymodal logics (first brought in sight by
Sotirov [26]), in which modal operators satisfy only the congruence rules and so may be regarded as various
sorts of independent O and O. These logics are defined in Sec. 1. Sec. 2 introduces algebraic and (quasi-)
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relational semantics for the... and develops a duality theory and a little bit of correspondence theory for logics
with normal O-like and O-like operators. In Sec. 3 we bridge the semantics for intuitionistic and classical
modal logics and show that the translation prefixing the S4-necessity to all subformulas of intuitionistic
modal formulas embeds the intuitionistic modal logics under consideration in classical polymodal logics.
Moreover, we prove an analog of the Blok—Esakia theorem by establishing that the lattice of intuitionistic
modal logics is isomorphic to a principal filter in the lattice of classical modal logics. We show that the
embedding reflects decidability, the finite model property, and tabularity, and then use this result, along
with preservation theorems of [28] and [12], to prove that the finite model property of an intermediate logic
is inherited under adding to it a modal operator satisfying some simple axioms and inference rules. In the
final Sec. 4 we study the embedding of normal intuitionistic modal logics.

Note that all the results obtained in this paper can be extended in the straightforward way to intuition-
istic modal logics with polyadic operators.

Intuitionistic modal logics have never been considered in such a general setting as were classical ones.
Much is still to be done to obtain results comparable, say, to Fine’s or Sahlqvist’s completeness theorems.
. We hope that this paper will serve as a basis for further systematic studies in this branch of modal logic.

1. LOGICS

All the logics considered in this paper are formulated in the propositional modal language £LAM,, with
the standard connectives —, A, V, L (- is defined as ¢ — L and T as | — 1) and the modal operators
O, for i = 1,...,n. An intuitionistic modal logic in the language LM, (IM-logic for short) is a set
of LMg-formulas which contains an intuitionistic logic Int in the language LM (with only the first
four connectives given above) and is closed under substitution, modus ponens, and the congruence rules
9=+ 9%/Oip — Oi, forall i = 1,...,n. The smallest monomodal IM-logic is denoted by IntC (C stands
for “congruential” in accordance with Segerberg’s nomenclature in [24]). For a set of formulas ' and an
IM-logic L, we denote by L @ I the smallest IM-logic containing I' and L. Several kinds of IM-logics have
been considered in the literature, and all of them are covered by our definition, which is similar to one in
[26]. Here are a few basic monomodal and bimodal systems.

A monomodal IM-logic L (in the language LM, with O = () is said to be regular if it is closed under
the regularity rule ¢ — %/ O ¢ — O%. Equivalently, L is regular iff it contains Q(p A g) — Op. The
smallest regular IM-logic is denoted by IntR. A regular IM-logic L is said to be O-normal if it contains
O(pAg) < OpA Qg and QOT. In such a case we write O instead of O and call it the necessity operator.
Every O-normal logic is closed under necessitation ¢/0¢p. The smallest O-normal IM-logic is denoted by
IntKo A regular IM-logic L is called O-normalif Q(pV q) < OpV Ogq and =~ QO L belong to it. In this
case we write O instead of O and call it the possibility operator. Every O-normal logic is closed under
=p/=Op. The smallest O-normal logic is denoted by IntKo. Some particular O-normal IM-systems were
investigated in {5, 21, 26]; general results on the finite model property of such logics can be found in [27].
O-Normal systems were considered in {5, 26].

As in the classical modal logic, given a O-normal IM-logic L, we can define the dual operator O by
setting Gy = —UO~yp. Likewise, in a O-normal logic L’ we can take ~O-yp as a definition of Gy. However,
L and L' are not necessarily ©-normal and O-normal with respect to the operators defined. (This will
certainly be the case if their underlying nonmodal logic is classical.) On the other hand, the dual definition
of O and < is not consistent with intuitionistic principles (according to which V and 3 are not dual).
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To construct IM-logics with absolutely independent modal operators, we can take IM-logics L; and L.,
formulated in languages with disjoint sets of modal operators, and then form their fusion Ly ® L4, the
smallest IM-logic in the joined language containing L; U L;. In this way we can define the bimodal logic
IntKgo = IntKg® IntKo. Its extensions are called OO-IM-logics. There is no connection between ¢
and O in IntKgo, the latter being both O- and ¢-normal. Extensions of IntKg (IntKo) can clearly be
identified with extensions of IntKgpo @ Op — p (respectively, IntKoo & Op — p).

The well-motivated OO-IM-logic

FS = IntKao®O(p — ¢) = (Op —» Og) & (Op — Og) — O(p — q)

was constructed by Fischer Servi in {14, 15]. Extensions of FS will be called F'S-logics. Some of them were
studied in [15, 1, 10].

By adding to a consistent IM-logic in the language LM, the Law of the Excluded Middle p Vv —p, we
obtain a classical logic with n modal operators. Denote by C, R, and K the monomodal logics Int C®pV —p,
IntR®pV —p, and IntKg® pV ~p = IntKeo @ pV —p, respectively.

2. SEMANTICS AND DUALITY

The logics introduced above correspond to varieties (equational classes) of Heyting (or pseudo-Boolean)
algebras with operators. More precisely, given a language LM, we consider algebras of the form

A = (A,—o,A,V,T,O],,---,On):

where (4, —,A,V,T) is a Heyting algebra with unit element T, and ; for 1 < i < n are unary operators
on A. Such algebras will be called IM-algebras. A valuation U of LM, in A is a homomorphism of the
algebra of LM,,-formulas into %. A formula ¢ is true in % under D if V(p) = T; ¢ is valid in A, written
A k= g, if it is true under any valuation.

An IM-logic L is characterized by a class C of IM-algebras if L = {¢ : V% € C % = ¢}. In the standard
way one can show that the class of IM-algebras, validating all the formulas in an IM-logic L, forms a variety
characterizing L.

The relational semantics is usually derived from the algebraic one using the Stone-Jénsson-Tarski
representation of Heyting and modal algebras. Since the logics under consideration are rather weak, we

need, first, introduce some intermediate structures combining a relational intuitionistic component and an
algebraic modal one.

We remind the reader that an intuitionistic frame (or Int-freme for short) is a structure of the form
§ = (W, R, P), where R is a partial order on a nonempty set W and P is a collection of cones (i-e., upward
closed sets) in W with respect to R which contain @ and are closed under N, U, and the operation

XDOY={zeW:VyeW(zRyAyeEX = yeY)}

If P contains all the cones in W, then we call § a full (or Kripke) frame and write (W, R) instead of
(W, R, P). The underlying full frame of J is denoted by «3.

Now we define a quasi-IM-frame as a structure § = (W, R,O1,...,On, P) such that (W, R, P) is an
Int-frame and the O;, i = 1,...,n, are just operations on P. Every quasi-IM-frame gives rise to the
IM-algebra §! = (P,D,N,U,W,O1,...,On), called the dual of F. Writix;g 3 k= v means that ! = ¢. All
the other semantic notions above can be translated to quasi-frames in the same way. A model on F is a
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pair M = (F, V), wheie V is a valuation in § (= in F'). If z € V(p) then we write (M, z) = ¢, or simply
z = ¢ if this is understood, and say that ¢ is true at z (under T). It is clear that V(yp) is a cone for every
formula ¢.

Conversely, with each IM-algebra % = (4, —,A,V, T,Oy,...,On) we can associate its dual, the quasi-
IM-frame %; = (W, R,O4,...,QL, P) in which W is the set of prime filters in %, and for every z,y € W
and a € A,

zRyiff z Cy,

P(a)={z €W :ac€ z},
P={P(a):a€ A},
Qi(P(a)) = P(Oifa)), 1 <i<n.
Using the well-known correspondence between Int-frames and Heyting algebras (see, e.g., {7]), one can

readily see that every IM-algebra 2 is isomorphic to its bidual, written 2 ~ (2,;)!. A quasi-IM-frame J is
called descriptive if § ~ (F!);. Every quasi-IM-frame of the form 9; is clearly descriptive. Hence, we have

Proposition 1. Each IM-logic is characterised by a suitable class of descriptive quasi-IM-frames.

Another sort of adequate relational semantics for IM-logics — neighborhood frames — was introduced
in [26]. For OO-IM-logics, the algebraic modal component in quasi-IM-frames can also be replaced with a
relational one.

We say that an IM-algebra 2 = (4, —,A, Vv, T,0,0) is a O0-IM-algebra if the following identities hold
in it:

OT =T, 0(aAb)=0aA0b -OL =T, O(aVvbd)=CavOb.
All OO-IM-logics are clearly characterized by varieties of OO-IM-algebras.

Given a OO-IM-algebra %A = (4,—,A,V,T,0,0), we define its dual A, to be the structure
(W,R, Ro, Ro, P), where (W, R, P) is the dual of the Heyting algebra (A, —,A,V,T), and for every
z,yEW,

zRoy iff Vae A(Ca€z=>acy),

zRoy iff Vac A(a€y=> Oa€z).
It follows immediately from the definition that, for all z,u,v,y € W,

zRu A uRgv A vRy = zRpy,

zRuAvVRouAvRy = yRoz

or, equivalently,
Ro Rao RC Rg, (1

RoR3'o R C R3L. (2)

(Here o denotes the composition of relations.)
Structures of the form § = (W, R, Rg, Ro, P), where (W, R, P) is an Int-frame, Rg, Ro are binary
relations on W satisfying (1) and (2), and P is closed under the operations O and © defined by

OX ={zeW:Vy€ X (zRay > y € X)},

OX ={zeW:3y€ X zRoy},



will be called OC -IM-frames. The dual of a O0O-IM-frame § is then the algebra §* = (P, >,Nn,u, W, 0O, O).
It is not hard to check that §* is a OO-IM-algebra and that again % ~ (%,)* for every OO-IM-algebra .
We say that a OO-IM-frame J is descriptive if § ~ (F+)4. Since frames of the form 2, are descriptive, we
have

Proposition 2. Every O0-IM-logic is characterized by a suitable class of descriptive 0O-IM-frames.
The following internal characterisation of descriptive OO-IM-frames is obtained by the straightforward
combination of corresponding characterisations of descriptive modal and intuitionistic frames. For details,
consult {17, 7].
Proposition 3. A OO-IM-frame § = (W, R, Ro, Ro, P) is descriptive iff § is tightg, tightg,, and
tightg,, i.e.,
zRy iff VX eP(zeX=>yeX);

zRy iff VX e P(zcOX =2ycX);
zRoy iff VX €P (y€ X =z € 0X),

and compact, i.e., forany X C Pand Y C {W — X : X € P}, if XU Y has the finite intersection property,
then (X L Y) # 2.

A OC-IM-frame J = (W, R, Rg, Ro, P) is a full (or Kripke} OO-IM-frame if (W, R, P} is a full Int-frame.
(As far as we know full 0O-IM-frames were first introduced in {26].) A OO-IM-logic is called complete if it
is characterised by a class of full 0O-IM-frames. The underlying full frame of a OC-IM-frame § is denoted
by k§. A OO-IM-logic L is said to be d-persistentif xF |= L whenever § is a descriptive frame validating L.
All d-persistent logics are clearly complete. Another useful property of d-persistence is its being preserved
under sums, i.e., if logics Ly and L; are d-persistent then sois Ly @ L;. (In general, however, completeness
as well as many other important properties are not preserved under sums of logics.) We give some examples
of d-persistent OO-IM-logics. To this end we need the following well-known lemma on the existence of
prime filters (see [22]).

LEMMA 4. Suppose that A = (4, —,A,V, T) is a Heyting algebra and B, C are nonempty subsets of
A such that (i) ; A... A b, £ cfor any b;,...,4, € B, c € C, and (ii) for every cy,c3 € C, thereisc € C
for which ¢; V¢ < ¢. Then there exists a prime filter V in A such that BC Vand CNV = 2.

Here < is the lattice partial order on A defined by a < biff aAd = a.

Proposition 5. FS is d-persistent.
Proof. It suffices to show that any O0CO-IM-frame satisfying the conditions

¢Roy = 3z (yRz AzRuz AzRo2), (3)

zRoy = 3z (zRz A 2ng AzRoy) (4)

validates F'S and that (3) and (4) hold in any descriptive frame for FS.

To prove the former claim, suppose that a OO-IM-frame J satisfies (3) but O(p — ¢) — (Op — Oq) is
refuted in § under some valuation. Then z | O(p — ¢), = = Op, and z & Oq, for some z in §, and so
there is y such that zRoy and y k= p — q. By (3), we have yRz, zRaz, and zRoz for some point z. Then
z k= p — q (since the truth-set of any formula is a cone), z |= p, and z }& ¢, which is impossible. The second
axiom of F'S is treated analogously using (4) and (1).

Now, letting § = (W, R, Ro, Ro, P) be a descriptive frame for F'S, we show that it satisfies (4). Without
loss of generality, we may assume that § ~ %, for some 0O-IM-algebra % }= FS. Thus, points in F are
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prime filters in A. Let z,y € W and zRcy. Putting B=zU {Ob:b € y} and C = {Dc: ¢ & y}, we show
that B and C satisfy (i) and (ii) in Lemma 4. Suppose a AQb  A...AOb, < Oc for some a € z (z is closed
under \j, by,...,bs € y,and c € y. Then a AOb; A... AOb, — TOc = T in 2, from which by the second
axiom of FS we obtain a — O(by A...Ab, — ¢c) = T. It follows that O(b — c) € = for some b € y and
c € y. Since zRqy, we have b — ¢ € y and ¢ € y, which is a contradiction. Therefore, (i) holds. To derive
(i), assume c3,¢;3 € y. Since y is prime, ¢; V ez € y, and s0 O(c; Vez2) € C and Oc; V Ocz < Ofc; V ¢3).

By Lemma 4, there is a prime filter z € W such that B C z and C Nz = &. This means that zRz,
zRoy, and zRoy, as is required by (4). '

In the same way, using Lemma 4 and the first axiom of F'S, we can show that J satisfies (3).

Applying the same sort of technique, it is not hard to prove the following proposition in which O™ and
O™ are strings of 7 boxes and diamonds, respectively.

Proposition 6. For all k,I,m,n > 0, the logic
L(k,1,m,n) = IntKgo ® O*0'p — O™O"p

is d-persistent, with every descriptive OO-IM-frame § = (W, R, Rp, Ro, P) for L(k,1,m, n) satisfying the
condition
zREy ARz = Ju (yRLu A zRBu).

In fact, we face an analog of the result by Lemmon and Scott [18] which was the starting point for the
development of correspondence theory in the classical modal logic and which ultimately led to Sahlqvist’s
theorem (23]

The correspondence between OO-IM-algebras and OO-IM-frames being established, we extend it to
algebraic operators of forming subalgebras, homomorphic images, and direct products. As to the latter
operator, its relational analog is the standard disjoint union of frames defined in exactly the same way
as in the purely intuitionistic or classical modal case (see [17, 7]). However, the duals of the notions of a
homomorphism and a subalgebra of OO-IM-algebras are not direct translations of the standard definitions.

Let § = (W, R, Ra, Ro, P) be a 0O-IM-frame and V a nonempty subset of W satisfying the following
two conditions:

Vee VVye W (zRyVzRogy=>y € V) (5)
and

Yz € VVy € W (zRoy = 3z € V (zRoz AyRz)). (6)

Then it is easy to see that the structure
& = (V,RIV, RolV,Re[V,{X NV : X € P})

is also a OO-IM-frame. It is called a generated subframe of §. Condition (5) is standard: it requires V to
be upward closed with respect to both R and Ra. However, according to (6), V is not necessarily upward
closed with respect to Re. This is illustrated by Fig. 1 in which & is a generated subframe of &, although
the set {z,z} is not upward closed in § with respect to Ro.

THEOREM 7. (i) If 8 = (V,5,55,50,Q) is a generated subframe of a OO-IM-frame § =
(W,R, Rg, Ro, P), then the map h defined by

R(X)=X NV forevery X € P

[23]



is a homomorphism of §+ onto &*+.
(i) If A is a homomorphism of a 0O-IM-algebra A onto a OO-IM-algebra B, then the map A, defined
by
hy(V) = A~}(V) for every prime filter V in B

is an isomorphism of B, onto a generated subframe of A, .

Proof. (i) That h is a surjection preserving D, N, U, and O is proved in the usual way (see 17, 7]). We
show that h preserves O, i.e., that A(OX) = OA(X) for every X € P.

Suppose z € OX NV in §. Then there is y € X such that zRsy, and so (6) yields z € V with zRo2
and yRz. Since X is a cone, it follows that z € X; hence z € O(X N V) in &. Thus, A(OX)} C Oh(X), the
reverse being trivial.

(i) Let A4 = (W, R, Ra, Ro, P) and B, = (U, S, Sa, S0, Q). Put

V={VeW:h"Y(T)CV}.

It is shown in |17, 7] that V is upward closed in 2, with respect to R and Rq, A is a bijection of V onto
U, and h, is an isomorphism of B, onto the subframe of A, generated by V if R and Rp coincide. So it
remains to show that V satisfies (6) and that VSoV; iff A, (V1)Rohy(V3) for each of the V,,V; € U.

Assume that A=(T) C V (i.e., V € V) and VRoV’ for some V' € W. Putting B = V'UR™YT), C =
{a € A:Oa ¢ V}, we show that B and C satisfy the conditions of Lemma 4. Suppose b A ¢ < a for some
be V', c€ h}T), and Oa ¢ V. Then h(bA ¢c) = h(b) < h(a), and so h(Ob) < A(Oa). Since Ob € V,
h(V) is a filter in B and h~1(h(V)) = V, we must have Ca € V, which is a contradiction. Now suppose
Oay,Qaz € V. Since V is prime, Oa; V Oaz € V, whence O(ay Vay) = Ca; vOa ¢ V.

Let V; be a prime filter in Y such that B C V; and C NV = J. Then clearly V; € V, VRoV,, and
V'’ C V,. Thus V satisfies (6).

Suppose that V1SoV3, ie.,, Ob € V; whenever b € V;, and that a € h (V;) for some a in A. Then
h{a) € V3, h(Ca) = Oh(a) € V,, and so Oa € h;(V,). Conversely, assume that hy(V:i)Roh;(V32). Then,
for all ain A, a € h4(V;) implies Oa € h(V;). Since h is a bijection of V onto U, we see that if b€ V,
then b = h(a) for some a € h(V3). So Oa € hy(V,) and Ob = Oh(a) = h(Ca) € V;.

Given OO-IM-frames § = (W, R, Rg, Ro, P) and & = (V, S, Sp, So,Q), we say that the map f from W
onto V is a reduction (or p-morphism) of F to & if, forall z,y € W, u € V, and X € Q, the following four
conditions hold:

zR,y = f(z)Ssf(y), ® € {blank, 0,0}, (7)
f(z)Seu = 3z € f~'(u) zR,z, o € {blank, O}, (8)
f(z)Sou = 3z € W (zRoz A uSf(2)), (9)
fTHX) e P. (10)
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Fig. 2

For example, the map gluing the points 0 and 1 in the frame § in Fig. 2 is a reduction of § to & in
the same figure. Notice that if we consider these frames as classical bimodal frames we see that F is not
reducible to & because the points 2 and 3 as well as 2 and 4 are connected by So-arrows. If we remove
these arrows, then the modified & will not be a OO-IM-frame, since condition (2) does not hold.

THEOREM 8. (i) If f is a reduction of a OOC-IM-frame § = (W, R, Ra, Ro, P) to a OO-IM-frame
& =(V, S, S0,S50,Q), then the map ft defined by

fH(X)= fYX) for every X € Q

is an embedding of &7 into Ft.
() If B is a subalgebra of a OO-IM-algebra 2, then the map f defined by

f(V) = VN B for every prime filter V in A

is a reduction of A, to B,.

Proof. (i) It is known (cf. [17, 7]) that f* is an injection preserving —, A, V, . So we need only
show that f~}(OX) = Of~1(X) for every X € Q. Suppose that z € F7HOX), ie., f(z)Sou for some
u € X. By (9), we then have a z € W such that 2R,z and uSf(z). Since X is a cone, f(z) € X, and so
z € Of"}X). Thus, f~}(OX) C Of~}(X). The reverse inclusion follows from (7).

(i) It was proved in [17] and (7] that f satisfies (7), (8), and (16). To derive (9}, assume that (V; N
B)SoV; for some prime filters V; on % and V; on B. Putting B = V,, C = {a€A:0a ¢ V,}, we show
that B and C satisfy the conditions of Lemma 4. That (ii) holds was established in the proof of Theorem 7.
Suppose that (i) does not hold. Then there exist b € V3 and Oa ¢ V; such that b < a. It follows that
Ob £ Oa. Since (V4 N B)SeV,, we have Ob € VN B, and so Oa € V,, which is a contradiction. Let ¥
be a prime filter in A for which B C V and C NV = &. Then clearly V;RoV and VaiR(V N B).

In exactly the same way as in the classical modal logic (cf. [17, 2, 3]), we can use the duality results
above to prove the following definability theorems.

THEOREM 9. A class C of O0O-IM-frames is definable by LM -formulas (in the sense that there exists
a set T' of LM;-formulas such that C = {§ : § = T'}) iff C is closed under forming generated subframes,
reducts, disjoint unions, and both C and its complement (in the class of all 0O-IM-frames) are closed under
the operator F — (F*)4.

For a full OC-IM-frame §, the frame x(F*); is called the prime filter eztension of F. This concept
is an intuitionistic counterpart of the notion of an ultrafilter extension in the classical modal logic, intro-
duced in [2].

THEOREM 10. A class C of full OO-IM-frames coincides with the class of all full OO-IM-frames
validating a d-persistent OO-IM-logic L iff C is closed under the formation of generated subframes, reducts,
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dizjoint unions, and both C and its complement (in the class of all full OO-IM-frames) are closed under

forming prime filter extensions.

THEOREM 11. If a 00-IM-logic L is characterised by the class of full 0O-IM-frames which is closed
under elementary equivalence (in the first-order language with predicates =, R, Rg, and Ro), then L is
d-persistent. ‘

We conclude this section with a few remarks concerning other semantics for 0O-IM-logics. Note, first,
that conditions (1) and (2) can be made considerably weaker. We say that a structure § = (W, R, Ro, Ro, P)
is a weak OO-IM-frameif (W, R, P) is an Int-frame, Rgis an arbitrary binary relation, Ro is a binary relation
such that, for every z,y € W,

zRyAzRoz = Ju € W (yRou A zRu), (11)

and P is closed under the operations
O0X ={z € W:Vy,z (cRyRoz = z € X)},

OX ={zeW:3y€ X zRoy}.

For instance, both OO-IM-frames and frames from [5] are weak OO-IM-frames. One can readily check that
if § = (W, R, Ra, Ro, P) is a weak DO-IM-frame then the structure & = (W, R, 0, O, P) is a quasi-IM-frame
validating IntKgo. It follows that 8! is a OO-IM-algebra, which we denote by F*. The set of cones (with
respect to R) in J is closed under O and O. If P contains all such cones, then J is called full. A OO-IM-logic
is weakly complete if it is characterized by a class of full weak OO-IM-frames.

One can argue as to which conditions on Rg and Ro are more natural: (11) or (1) and (2), or something
in-between them, for instance, Ono’s frames from [20] or those of Bo#i¢ and DoSen in [5]. From the
technical point of view, however, this gives us nothing new. Indeed, with every weak OO-IM-frame § =
(W, R, Rn, R, P) we can associate the 0O-IM-frame 3° = (VV, R,RoRgoR,R Y0 Rso R}, P). And
then we have ‘

Proposition 12. For every weak OO-IM-frame § and every formula ¢, § = ¢ iff §° = ¢.

Proof. We can either show that * = (F°)* or simply use a straightforward induction on the complexity
of .

In particular, we obtain

COROLLARY 13. A O0-IM-logic is complete iff it is weakly complete. :

Fischer Servi’s birelational frames for F'S, introduced in [14], can also be derived from weak OC-IM-
frames. We say that a OO-IM-frame is an F'S-frame if it satisfies conditions (3) and (4). Given an FS-frame
§ = (W, R, Rg, Ro, P), define the relation S = RoN Ro. It follows from (1)-(4) that S satisfies (11), i.e.,
zRy and z5z imply ySu and zRu for some u € W, and

zSyRz = Ju zRuSz. (12)

Denote the weak 0OO-IM-frame (W, R, S, S, P) by 3°*.

We say that a weak OO-IM-frame § = (W, R, S, S, P) is a birelational FS-frame if it satisfies (12). One
can easily verify that every birelational FS-frame validates F'S and that F* = (3*)* for every FS-frame J.
Therefore, we have

Proposition 14. Every FS-logic is characterized by a class of birelational FS-frames.

Since §° is an FS-frame whenever § is a birelational FS-frame, we have also
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Proposition 15. An FS-logic is complete iff it is characterised by full birelational FS-frames.

3. EMBEDDING

Gédel [16] embedded Int in S4 via the translation ¢ prefixing O to all subformulas of intuitionistic
formulas.* Dummett and Lemmon {8] extended Godel’s embedding to all intermediate logics. Maksimova
and Rybakov [19], Blok [4], and Esakia [9] started a systematic investigation into the structure of “modal
companions” of intermediate logics.

In [27] we used the natural generalization of Gddel’s translation, which embeds extensions of IntKo
in classical bimodal logics containing S4 ® K, to obtain a number of general completeness results for
intuitionistic modal logics: Our aim here is to study the embedding of (not necessarily normal or regular)
IM-logics, in an arbitrary language LM, in classical logics with n + 1 modal operators.

Given a language LM, we define its extension LM, with one more modal operator Oy and consider
classical n + 1-modal logics in LM, (CM-logics for short) containing the S4-axioms for O;:

Oi(pAgq) = OrpADq, O;T, Orp —p, Orp— G;0;p.

These logics can be interpreted by gquasi-CM-frames which are structures of the form F =
(W,R;,O1,.++,On, P), where Ry is a quasi-order on W # &, (O; is an arbitrary operation on P, and
P C 2¥ contains @ and is closed under Boolean operations and the operation O; defined by

0, X ={zeW:VYy (zRry=>y € X)}.

The dual of §, i.e., the modal algebra (P,Nn,—, T,0;,O1,...,On), is denoted by 3. Conversely, for a
topological Boolean algebra with n operators A = (4,A,—, T,0,,Q4,...,On) (which validates the S4-
axioms), we define its dual %; = (W,R;,O},...,O}, P) in almost the same way as in Sec. 2; the only
difference is that now

zRry ff Ya€ A (Ora €z =>a € y).

Again we have % ~ (2;)! and call a quasi-CM-frame § descriptive if § ~ (F!);. It should be clear that all
CM-logics are characterized by corresponding varieties of topological Boolean algebras with operators and,
hence, by suitable classes of (descriptive) quasi-CM-frames.

Let t be the translation of LM, into LM, which prefixes Oy to every subformula of a given LM,
formula. To show that ¢ is an embedding of IM-logics (in £M,) in CM-logics (in LM, ), we need operators
transforming quasi-IM-frames to quasi-CM-frames and back. Those are generalizations of the operators
o and p defined in [27]. Since the number of modal operators is not essential, for simplicity we will be
considering the monomodal language LA with operator Q.

Given a quasi-IM-frame § = (W, R, (O, P), we construct a quasi-CM-frame ¢§ = (W, R;,0(Q,cP) by
taking Ry = R, 0P to be the Boolean closure of P and ¢ QO X = QO X, for every X € oP. It is well
known [27] that O;X € P for every X € oP (see [22]). Therefore, o P is closed under 0 and so o is a
quasi-CM-frame indeed. Moreover, O;ce QO O; X = 0; Q00 X = Q0 X =c QX forall X € oP. It
follows that the formula

Miz=0;00p~ Op

* Actually, Godel used a somewhat different translation, but it is equivalent to t as far as only S4 and its normal extensions

are concerned.
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is valid in 0F. We also know that (W, R;, o P) validates the monomodal Grzegorcsyk logic Grz = S4 &
Or(Os(p — Orp) — p) — p. To sum up, we obtain

LEMMA 16. If § is a quasi-IM-frame, then oF is a quasi-CM-frame validating Miz and Grz.

Conversely, let § = (W, R, O, P) be a quasi-CM-frame. From it, we construct a quasi-IM-frame pF
by, first, modifying O so that the resulting frame §* would validate Miz (and the same ¢-translations
of IM-formula as §), and then collapsing clusters in §" into single points and converting the result to a
quasi-IM-frame in the standard way (see [22]).

Define an operation (O° on P by setting O°X = 0Oy O OrX for every X € P, and put §° =
(W,R;, (", P).

LEMMA 17. If § is a quasi-CM-frame, then

(i) F° is a quasi-CM-frame also;

(ii) § b= Miz;

(iii) for every LM-formula ¢, §* k= t(p) iff § = t(p).

Proof. Clauses (i) and (ii) are trivial; (iii) is proved by a straightforward induction on ihe complexity
of .

Now assume that a quasi-CM-frame § = (W, R;,O, P) validates Miz. Denote by [z] the cluster
containing z, i.e., [z] = {y € W : zR;y and yR;z}, and put

[X]={(z]: z € X},
[z)[Ri][y) iff zR:y,
(P] = {[x]:Jix] € P},

(Ol1x] = {[z] : = € OU[x1}-
The structure [3} = ((W], [R;], [O],[P]) is called the skeleton of §.

LEMMA 18. If J is a quasi-CM-frame validating Miz, then
(i) [3) is also a quasi-CM-frame, with [3]' a subalgebra of !;
(i) [R/] is a partial order on [W];

(iii) for every LM-formula ¢,

5 Ete) il [3] E t(e).

Proof. (i) It is well known that the map z — [z] is a p-morphism of the S4-frame (W, Ry, P) onto
(W1, [R1],[P}]). Therefore, the map f : {X] — |J[X] is an injection of [P] into P preserving Oy. So it
remains to show that f preserves the second modal operator. Obviously, we have f([O](X])) = J{[z]:z €
OWUIXN} 2 O(UIX]) = O(f([X])). And the reverse inclusion follows from Miz. Indeed, OQ(UJ[X]) =
O; O Or(U[(X]), and so the whole cluster [z] lies in OQ({J[X]) whenever one of its points does.

Clause (ii) is obvious; (iil) is established by induction.

Finally, given an arbitrary quasi-CM-frame 3, we first form the frame [§*] = (W, R;, O, P), and then
transform it to a quasi-IM-frame p§ = (W, R, O, pP) by taking R = R; and pP = {0;X : X € P}. If we
drop O, p will be just the standard operator converting S4-frames to Int-frames. By Miz, () maps cones
to cones, and so pJ is a quasi-IM-frame. Using induction on the complexity of ¢ and Lemmas 17, 18, it is
easy to prove the following:

LEMMA 19. For every LM-formula ¢ and every quasi-CM-frame J,

FE o) i 3 E v
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We also have

LEMMA 20. § =~ poJ for every quasi-IM-frame J.

Now we are in a position to embed IM-logics L in extensions of S4 @ C, where S4 is treated in the
language with O; and C is treated in the language with O (with the modal operators of L, to be more
exact). We say that a CM-logic M is a CM-companion of L and L is the IM-fragment of M if, for all
LM-formulas ¢,

pw€L ifil t(p)eM.

It is easy to see that, for every extension M of S4® C (in LM'), the set
oM ={p € LM :t(p) € M}

is the IM-fragment (in LAMM) of M, and that p is a homomorphism of the lattice of CM-logics onto the
lattice of IM-logics.

Proposition 21. If a CM-logic M is characterized by a class C of quasi-CM-frames, the pM is charac-
terized by the class pC = {pF : § € C}.

The proof follows from Lemma 19.

The theorem given below describes an (infinite) family of CM-companions of each consistent IM-logic.

THEOREM 22. Every logic M in the interval

[(S4® C) @ ¢(T),(Grz ® C) @ ¢(T) & Miz]

is a CM-companion of the IM-logic L = IntC @ I, where I is a set of LAM-formulas.

Proof. Suppose ¢ & L. Then there is a quasi-IM-frame JF for L refuting . By Lemmas 19 and 20, we
have o }£ t(p) and oF k= ¢(T'). By Lemma 16, 0F |= Grz and oF = Miz. Thus, we obtain ¢F = M and
o B t(p), whence o ¢ pM.

Conversely, if ¢ € pM, then t(¢) ¢ M, and so there is a quasi-CM-frame § for M refuting t(¢). By
Lemma 19, pF }- pand pFJ ET. So o ¢ L.

Example 23. 1. If an extension M of S4 is a modal companion of the intermediate logic Int + T, then
M @C is a CM-companion of IntC@I'.* (For we have M = M’@t(T') for some M’ in the interval [S4, Grz],
and so M ® C = (M’' ® C) ®¢(T').) In particular, S4® C, S4.1® C, and Grz ® C are CM-companions of
IntC.

2. S4@ (Ce® QT) is a CM-companion of IntC @ QOT. This follows from the inclusions

(S4®@C) @ t(OT)C S48 (Ca OT) C (S48 C) @ Miz @ t(QT).

3. S4@ (C @ Op — p) is a CM-companion of IntC & Op — p. The proof is analogous.
4. Each IM-logic L = IntR @T is embeddable via ¢ in any logic in the interval [(S4®@ R) @ (T'), (Grz®
R) ® Miz @ t(T')]. Indeed, let ¢ = O(pAgq) = Op. Then the claim follows from the inclusions

(S40C)atMdt(¢) C (S4®R)DLT) C (S4d C) & Miz @ ¢(T) & t(¢),

which are established by a simple syntactical argument.
5. Each IM-logic L = IntKo@®T is embeddable via t in any logic in the interval [((S4® K)®t(T'), (Grz®
K)® Miz @ t(T')]. The proof is similar (for details, consult {27]).

“Here + presupposes taking the closure only under modus ponens and substitution.
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It is worth noting that every CM-companion M of an IM-logic L can be reduced, in a sense, to a
CM-companion of L containing Miz. We say that a CM-logic M’ is a Miz-reduct of a CM-logic M if
Miz € M', and for every formula ¢, ¢ € M’ iff r(p) € i1, where r replaces each occurrence of ) in ¢ with
Oy Q0. Then, by Lemma 17, for each CM-companion M of an IM-logic L, there exists a Miz-reduct M’
of M such that pM’ = L (if M is characterised by a frame J then M’ can be defined as a logic of §*).

As far as CM-companions with Miz ate concerned, we can get a correspondence similar to one between
intermediate logics and their modal companions above S4 (see [6]). Indeed, the logic (S4® C)@¢(T')® Miz
is clearly the smallest CM-companion with M iz for an IM-logic L = IntC@T; we denote it by L. Now we
want to show that the greatest CM-companion of L containing Mz is the logic 0 L = (Grz@®C)®t(T)® Miz.
To this end we need the following lemma concerning monomodal frames for Grz in the language with O.

LEMMA 24. Let M = (F, T) be a model based upon a partially ordered frame § = (W, R, P) for Grz
and let ' be a finite set of formulas closed under subformulas. Then there is a model 9 = (opF, ) (based
upon the frame opF = (W, R,0pP)) such that, for every ¢ € T, T(Op) = Y(Oyp).

Proof. It is enough to show that there exists a valuation U in opF such that T(Op) = L(Oyp) for all
@ € I'. To construct it, we first apply to M and I' the selection procedure introduced in [29]. As a result
we obtain a finite model M* = (F*, ") and a cofinal subreduction f of F to F* = (W*, R*) satisfying the
following properties:

(i) 3" is a partial order (since § = Grz);

(i) Vz € domf Vp € T (= € BV(p) & f(z) € T*(p));

(i) V2 € W — domf 3y € domf (zRyA z ~r y)* (from which it follows that f satisfies the closed
domain condition for the set D* of closed domains in IMN*).

With each point v € W* we associate the set

X, =0fv)- |J of '(w)

-“sR°u

Since f~'(v) € P, it follows immediately from the definition that X, € dpP, f~'(v) C X,, and fY(v)is
a cover for X,,. Then, for every z € W, we put

(z) = v fze X,,ve W,
9\=) = undefined otherwise.

One can readily check (see [28] or [7]) that g is a cofinal subreduction of opF to §* satisfying the closed
domain condition for D*.

Now we define a valuation U in ¢pJ in the same way as was done in the proof of Proposition 9 in [29].

Namely, for every z € domg and every variable p, put
z € U(p) iff g(z) € V*(p).

And if z € domg, then by (iii), there is y € domg for which zRy and = ~r y. For every z ¢ domg such
that g({u: zRu}) = ¢({u: zRu}), we then put

z € U(p) iff g(y) € T*(p).

Let M = (opF, U). By Proposition 9 in {29], for every ¢ € I we have

*Here z ~p y means that the same formulas in I' are true at z and y in 1.

85



if z € domy, then z € U(yp) iff g(z) € T*(y);

if z ¢ domg, then there is y € domg such that zRy and z € U(yp) iff y € U(yp).

The claim of our lemma follows immediately from these properties, and from (ii) and (iii).

Now we prove the following:

LEMMA 25. Let § = (W, R;,, P) be a quasi-CM-frame for Grz in the language with O; such that
R; is a partial order and § = Miz. Then, for all p € LA, we have

SEe iff opf e

Proof. The implication § | ¢ = 0p¥ = ¢ follows from opP C P.
Conversely, assume that J refutes ¢. For each subformula Q¢ of ¢, we fix a new variable ¢(QO%) and
put

x! = x, xis atomic,
(x1—=x3)* = xi-—xi
(x1Ax3) = xiAxi,
(xavxa)? = xivxd,
(Qrx)* = Ox?,

(Ox)* = 0Orq(Ox)-

Let I' = {¢? : ¥ € Subgp}, where Suby is the set of ¢’s subformulas, and let 9 = (&, V) be a model
refuting ¢. Define a valuation i of the extended language in § by setting

U(p) = B(p) for every variable p € Suby,

Wg(O¥)) = B(O) for OY € Sube.
By Miz, B(Oy) is a cone with respect to Ry, and so for ¢ € Subyp and z € W, we clearly have
B(y) = U(¥) = U(y?). (13)

By Lemma 24, there exists a valuation i’ in opF such that, forall 4 € T,

4(0ry) = Wary). (14)

Now we use induction to prove that for all 4 € Suby,

W(p?) = (). (15)
The only nontrivial case is with Q. We have
w(O¥)) = U(O¥)) (by (14))
= LL(D; O Dnj)q) (by (13) and sz)
&(0r O ary?) (by (14))
WOy Oary) (byIH)
w(O¥) (by Miz).

It follows from (13), (14), and (15) that ¢ is refuted in opJ.
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LEMMA 26. Each CM-logic L containing (Grz ® C) & Miz is chara.ierized by a quasi-CM-frame
5 =(W,R;,, P), where R; is a partial order.

Proof. Consider a descriptive quasi-CM-frame § = (W, R;, O, P) which determines L. We say that
a point £ € W is eliminable in § if it has a proper Ry-successor in every set X € P containing z. Put
W' = {z € W : z is noneliminable in J} and P’ = {X N W' : X € P}. One can readily check that
the structure §' = (W', R; | W', O/, P’), whete O'(X NW') = W' n X, is a quasi-CM-frame such that
3! ~ §'t and R; [ W’ is a partial order (for details, see [11] or [7]).

Now we are in a position to prove an analog of the Blok-Esakia theorem for IM-logics and their CM-
companions containing Miz.

THEOREM 27. A CM-logic M containing Miz is a CM-companion of an IM-logic Liff TL C M C oL.

Proof. (<) Follows from Theorem 22.
(=) It suffices to show that M C o L. First we prove that

{(3:5 =M} ={6:6k L} (16)

(of course, we do not distinguish between isomorphic frames). We will need Birkhoff’s characterization
of varieties, and therefore it will be more convenient to consider frames as algebras, that is, establish the
cquality {(¢3)! : 3 = M} = {61 : 6 | L}.

By Proposition 21, L is characterized by the class C = {(pF)! : § |= M}, and so it suffices to show that C
is closed under forming direct products, subalgebras, and homomorphic images. That C is closed under the
first two operations can be shown in the same way as in [19]. To prove the closure under homomorphisms,
assume that § = (W, R;, O, P) is a quasi-CM-frame for M and h is a homomorphism from (pF)! onto H!.
Since (o p¥)! is a subalgebra of J!, it follows that (0pF)! |= M. Besides, by Lemma 20 we have (po o) ~ nt.
These facts are all that we need to construct a homomorphism g from (¢pF)! onto (¢5)!, and then we shall
have 05 |= M. Every set X € opP can be represented as

X = h(—}’. U Z)

for some Y;, Z; € pP. Define g by setting
9(X) = [(~hr(¥:) UK(Z:)).
i=1

Clearly, ¢(X) is an element in (¢5)! which coincides with h(X) for every X € pP. It was shown in [19]
that g is a surjection that preserves the Boolean operations and O;. We prove that it preserves () as well.
Using Miz we have

9(00: (N(-¥:u 2)))

t=1

= (O oi(-Yiuz))

=1

= 9(O)% > %)

9(0OX)

i

= HO[)(¥i D> Z))

=1
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ON(h(¥:) > h(Z:))

=1

= Qg(X).

Now, to prove that M C oL, it suffices to show that a characteristic frame § = (W, R;,O, P) for oL
is also a frame for M. By Lemma 26, without loss of generality we may assume that Ry is a partial order.
In view of pJ |= L and (16), there is a frame § for M for which p§ ~ p¥’, and so 0pF =~ gpF’. Clearly,
opF = M. Therefore, 0p¥ = M, and by Lemma 25, § = M.

COROLLARY 28. The map o is an isomorphism from the lattice of IM-logics onto the lattice of
CM-logics containing (Grz ® C) & Miz.

Remark. It is worth noting that the analogy with the Blok-Esakia theorem is not complete if we
consider CM-logics without Miz. For, as has been observed by C. Grefe, there is an IM-logic L and its
CM-companion M (without Miz) such that L # p(M & Miz). This means that there are at least two
maximal logics in p~1L.

Proposition 29. If an IM-logic L is characterized by a class C of quasi-IM-frames, then oL is charac-
terized by the class oC = {¢F : § € C}. '

Proof. If § |= L then ¢§ = t(L) by Lemmas 19 and 20, and o, as is known, validates the Grzegorcayk
formula in the monomodal language with O;. Hence § |= o L. Now assume that ¢ ¢ oL and consider the
logic oL ® ¢. By Theorem 27, p(cL @ ¢) is a proper extension of L, and so there is a formula ¢ ¢ L for
which 0L & ¢ = oL @ t(). Take any frame § € C separating ¢ from L. Then, by Lemmas 19 and 20, o3
will separate t(4) and, hence, ¢ from o L.

THEOREM 30. The map p preserves decidability, the finite model property, and tabularity. The
map o preserves the finite model property and tabularity.

Proof. That p preserves decidability follows directly from the definition of p, and the rest — from
Propositions 21, 29 and the fact that pF is a finite IM-frame if J is a finite CM-frame and o is finite
whenever § is finite.

This preservation result provides us with a tool for establishing the finite model property (FMP for
short) of IM-logics by means of proving it for suitable CM-companions. For example, we have

THEOREM 31. Suppose that an intermediate logic Int + I' has FMP. Then FMP is shared by the
following IM-logics:

IntCoT, IntCaTl'dQOT,IntCd T Op — p;

IntReT, IntReTe Q7T, IntRaT @ Op — p;

IntKo® ', IntKa® T ® Op — p.

Proof. By Theorem 30, it suffices to present CM-companions of these logics with FMP. Example 23
shows that the logics under consideration have CM-companions of the form (S4 @ ¢(I')) ® L, where L is a
monomodal classical logic in the list

{C,CaOT,Ca0p—pR,LROQOT,ReOp—p,K,K® Op — p}-

All the above-listed logics are known to have the global FMP in the sense that for any formulas ¢ and ¥, if
there is a model 9 based on a frame for L such that 9 = ¢ and 9N }& 4, then there is a finite model with
the same properties. The claim of the theorem now follows from the two preservation results obtained in
(28] and [12]. Namely, (i) if Int + T has FMP then S4 @ t(T) has the global FMP, and (i) if two classical
monomodal logics L; and L, have the global FMP then L; ® L, has it as well.
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For further results on the finite model property of IM-logics, see [Z7].

4. CM-COMPANIONS OF 0¢0-IM-LOGICS

Now we focus attention on CM-companions of extensions of IntKgo. According to Example 23, all
extensions of IntKg are embedded via ¢t in normal bimodal logics. However, nothing guarantees that
extensions of IntKo and, more generally, arbitrary OO-IM-logics can be embedded in normal CM-logics.
The reason is that although the t-translation of O(p A ¢) — Op A Og is deductively equal to itself in
(S4® C) ® Miz, this is not the case for the t-translation of O(pV q) «— Op Vv Oq, which will be denoted
by tO: module Miz, it is deductively equal only to O(Qrp vV Opq) « OpV Og. This is another important
difference between O-like and O-like operators in intuitionistic modal logic, which reflects the nonstandard
behavior of generated subframes and p-morphisms.

We proceed to formulate a version of the Blok-Esakia theorem for OO-IM-logics. Put

$, = {O(Osrp Vv O1q) & OpV Og, =01},

$, = {Dp +«— O0r007p, Op = U[ODIP},
® =P, UP,;.

As a consequence of Theorem 22, Example 23, and Corollary 28, we obtain

THEOREM 32. Each OC-IM-logic IntKgo @ I' is embeddable via t in any logic in the interval
[(S4K@R)ptOat(~-OL)a(T),(Grz®@ K®R) & ¢ & t(T)],

where S4 is formulated in the language with Oy, K in the language with O, and R in the language with
©. The map o, restricted to the lattice of 0O-IM-logics, is an isomorphism of that lattice onto the lattice
of extensions of (Grz® K® R) & $.

Example 33. Using ®3, one can easily show that for all k,I,m,n > 0, the logic (S4 K@ R)9 ¢ o
OFalp — O™O™p is a CM-companion of IntKao & O*Ofp — O™O™p.

It is worth mentioning that although logics containing (S4®@ K @ R) @ @ are not necessarily normal (in
fact, these are normal only if O is almost trivial), they have a rather natural relational semantics with a
nonstandard truth-condition for O, viz., frames of the form § = (W, Ry, Ro, Ro, P) such that (W, R, P) is
an S4-frame, Rgand Ry satisfy conditions (1) and (2), respectively, and P is closed under the usual O and
the unusual ©:

OX ={xeW:3y€ 0;X zRoy}.

By adapting the Stone-Jénsson—Tarski argument to this case, we can show that the defined semantics is
adequate for logics containing (S49 K@ R) @ $.

We do not know whether all 0O-IM-logics have normal (with respect to ©) CM-companions. (We
conjecture that this is not the case.) But complete logics do have them.

Let § = (W, R, Ra, Ro) be a full weak OCO-IM-frame. We can also treat it as a frame for the language
with three modal operators O;, O, and © satisfying the classical truth-conditions. The classical modal logic
with these operators, characterized by the class C of such frames, is denoted by ThC.

By (11), every full weak OO-IM-frame § validates OOyp — O;Op. We also have
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LEMMA 34. For every full weak OQ-IM-frame § = (W, R, Rc, Ro) and for every ¢ in the language
with O and O,

T if § k),

where the former |= is intuitionistic, while the latter is classical.

Proof. (=) Let 0 be an intuitionistic valuation in J. We can treat it also as a classical valuation,
denoted l. By induction on the complexity of v, we show that T(p) = L(t(y)).

The nontrivial cases are ¢ = Oy and ¢ = Oy. Suppose z ¢ V(OyY). Then there are y € W and
z € D(¢) such that zRyRpz. By the induction hypothesis, z ¢ U(t(¥)), and so z ¢ U(t(Oy)) because
t(3¢) = O;0t($). Let = ¢ Y(T;0t(¢)). Then zRyRoz for some y € W and z ¢ U(t(¢)), whence
2 ¢ B(OY)

Now let z € U(Oy), i.e., zRoy for some y € V(¢¥), and let z ¢ U(D;OL(y)), i.e., for some z, TRz
holds, and no R¢-successor of z is in {i(t(#)). By (11), we have a point u for which yRu and zRou. Then
u € V() (since V() is a cone) and u ¢ U(t()), contrary to the induction hypothesis. Conversely, if
z € WOrOt(y¥)), in view of Rz, then, there is y € LU(t(1)) such that zRoy; hence, z € B(OP).

(<) Given a classical valuation il in J, we define an intuitionistic valuation U by setting U(p) = U(Oyp)
for every variable p, and in exactly the same way as above, prove that U(p) = U(t(y)).

THEOREM 35. Suppose that a 0O-IM-logic L = IntKgo @ I' is characterized by a class C of full
weak OCO-IM-frames. Then L is embedded via ¢ in every logic M in the interval

[(S4®K® K)o OOrp—0;0p0 t(I‘),ThC].

Proof. Let ¢ ¢ L. Then there is § € C separating ¢ from L. By Lemma 34, § }£ t(¢), and so
t(¢) & ThC. On the other hand, it is readily checked that the t-translations of the axioms of IntKno are
in (S4® K ® K) @ O0;p — 0;0p, and hence t(¢) € M whenever ¢ € L.

Some consequences of Theorem 35 for F'S-logics are worth noting. Fischer Servi [14, 15] proposed a
somewhat different embedding t' of a few complete FS-logics in bimodal classical logics (in the language
with O; and O) containing O;0p — OOyp and O'Oyp — O;O’'p, where O’ is dual to T, i.e., O'p = ~Op.
Namely, she defined

t'(0yp) = 00t (), t'(Cv) = O't'(p).

It turns out, however, that in fact t’ is a special case of t in the framework of complete FS-logics.
Indeed, let L = FS @I be a complete FS-logic. By Proposition 15, it is characterized by a class of full
birelational frames (in which the relations for O and © coincide). It follows from Theorem 35 and (12) that
L is embedded via ¢ in the logic

(S49 K@ K)® 0;0p — 00;p@ O0rp — 0;0p@ O'p — Op @ t(T),

where again O’ is dual to O. Identifying O’ and O, we then obtain

COROLLARY 36. Each complete FS-logic L = FS@® T is embedded via t' in (S4® K) & 0;0p —
COrp@<o'0rp — 00 pa t/(T).
However, it is not clear whether all FS-logics are embedded via ¢’ in bimodal logics of this type.
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