Cavity Formation from Inclusions
in Ductile Fracture

A. 8. ARGON, J. IM, AND R. SAFOGLU

The previously proposed conditions for cavity formation from equiaxed inclusions in ductile
fracture have been examined. Critical local elastic energy conditions are found to be nec-
essary but not sufficient for cavity formation. The interfacial strength must also be reached
on part of the boundary. For inclusions larger than about 100A the energy condition is al-
ways satisfied when the interfacial strength is reached and cavities form by a critical inter-

facial stress condition. For smaller cavities the stored elastic energy is insufficient to
open up interfacial cavities spontaneously. Approximate continuum analyses for extreme
idealizations of matrix behavior furnish relatively close limits for the interfacial stress
concentration for strain hardening matrices flowing around rigid non-yielding equiaxed in-
clusions. Such analyses give that in pure shear loading the maximum interfacial stress is
very nearly equal to the equivalent flow stress in tension for the given state of plastic
strain. Previously proposed models based on a local dissipation of deformation incompati-
bilities by the punching of dislocation loops lead to rather similar results for interfacial
stress concentration when local plastic relaxation is allowed inside the loops. At very
small volume fractions of second phase the inclusions do not interact for very substantial
amounts of plastic strain. In this regime the interfacial stress is independent of inclusion
size. At larger volume fractions of second phase, inclusions begin to interact after mod-
erate amounts of plastic strain, and the interfacial stress concentration becomes dependent
on second phase volume fraction. Some of the many reported instances of inclusion size
effect in cavity formation can thus be satisfactorily explained by variations of volume frac-

tion of second phase from point to point.

It appears that Joseph Henry,! of electro-magnetism
fame, has recognized as early as 1855 that metals frac-
ture prematurely by a process of internal necking when
extended by stretching. He advised that wire drawing
and rolling were preferable operations (for this and
other interesting historical perspectives on deformation
processing see Backofen®). In more recent times Put-
tick® traced the cause of ductile fracture to the develop-
ment of holes from inclusions (for a summary of earlier
views on ductile fracture and their inadequacy see Oro-
wan®). The process has since been investigated exten-
sively both experimentally and theoretically. The cur-
rent level of understanding of the role of inclusions in
ductile fracture has been reviewed by Rosenfield.® It
has now been generally established that once internal
cavities are nucleated from inclusions or second phase
particles, they can be plastically expanded under vari-
ous combinations of shear stress and negative pressure.
Analyses of homogeneous plastic cavitation by McClin-
tock,® Rice and Tracy’ and others have elucidated the
importance of negative pressures in the flow field in
hastening the plastic hole expansion process. Compari-
son of such analyses with experiments have shown that
local ductile fracture requires considerably smaller
average plastic strain as a result of localization of dila-
tional deformation into zones,® followed by formation
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and propagation of cracks where the hole expansion pro-
cess is sharply confined into portions of the highly
strained zone in front of the crack.”'® Although these
processes of terminal ductile separation are not yet
fully understood, they are in a far better level of devel-
opment than the initial processes which lead to the nu-
cleation of holes from second phase inclusion particles.
On the experimental side there have been conflicting ob-
servations reporting the nucleation of cavities from in-
clusions anywhere from immediately upon yielding to
after the development of very large plastic strains.
Cavities have been reported to nucleate both on inter-
faces by tearing the inclusion away from the ductile
matrix, and by cracking of non-deformable inclusions.
On the other hand semi quantitative theoretical studies
have been made, based on release of stored elastic en-
ergy,**? production of high stresses by impingement of
dislocation pile-ups on inclusions,'”’'® and by reverse
pile-ups of plastic accommodation loops initiated by
punching from the interface.'* More phenomenological
models have also been advanced based on the develop-
ment of high local shear strains at particle interfaces.”
Here we will briefly review these mechanisms of cavity
nucleation and present new analytical developments on a
local stress criterion of interfacial separation. In the
accompanying paper'® we compare the results of experi-
ments on a number of inclusion-bearing metals with
these new analytical developments.

5

1. CRITERIA FOR INCLUSION SEPARATION

1.1. Assessment of Earlier Developments

Although it has generally been recognized that some
plastic strain is necessary to form holes at inclusions,

VOLUME 6A, APRIL 1975825



most quantitative developments for ductile fracture have
compared experimentally measured strains to fracture
with theoretically computed strains for hole growth and
coalescence.'”” There are many observations, however,
which show that most often large plastic strains are re-
quired to tear inclusions free, or produce internal frac-
ture in them.®* *° Hence we assume together with most
of the former workers who have considered the problem
of cavity nucleation that such holes are a result of a
more or less extensive pre-processing. It has been gen-
erally observed that while inclusions with large aspect
ratio may undergo multiple internal fracturing, equi-
axed inclusions almost always nucleate holes by inter-
facial separation. Heve we confine our attention only to
the equiaxed inclusions which we will consider as a first
approximation as vigid and plastically non-deformable.
The problem of non-equiaxed inclusions, whose behavior
depends on their shape and orientation in addition to
their size and spacing is a complex one and will not be
discussed here.

As already mentioned in the previous section, the
earlier considerations of inclusion separation can be
grouped into three categories, energy criteria, local
stress criteria, and local strain criteria.

Gurland and Plateau proposed that cracks at inter-
faces could form when the locally concentrated elastic
strain energy which could be released upon decohesion
becomes comparable to the energy of the surfaces to be
generated. Considering no local plastic accommodation
and without investigating whether or not the stored elas-
tic energy could actually be released by crack forma-
tion, they based their arguments on dimensional analy-
sis and concluded that cracks would form at lower ap-
plied stresses on large inclusions. As pointed out by
Brown and Stobbs® the analysis of Gurland and Plateau
is only a necessary condition for inclusion separation.
A more correct analysis by Tanaka, Mori, and Naka-
mura'® has shown that in a purely elastic situation, the
energy criterion is always satisfied for particles above
a diameter of about 250A, almost upon yielding, Since
in many instances inclusions of more than hundred
times this size have been observed to remain attached
to the matrix at strains more than hundred times the
yield strain it must be concluded that the energy re-
quirement is only a necessary one and that actual sepa-
ration requires reaching the interfacial strength at the
interface, at least at some local points, to provide a nu-
cleus of separation. It must then follow that for very
small particles of diameter much less than the critical
diameter of 250A where the energy criterion may not
be satisfied even when local stresses reach the inter-
facial strength, stable cavities are difficult to form.
The interface would merely separate a distance of the
order of atomic dimensions relieving much of the elas-
tic strain energy but still transmitting some long range
attractive forces. Cavities could then still form very
gradually and in a stable manner as the local displace-
ment incompatibilities at the interface continue to in-
crease with increasing average plastic strain. Similar
problems of this nature related to the very short range
singular stress fields arcund dislocation cores have
been discussed by Stroh,*

Gurland and Plateau'! and also Broek®® have attributed
cavity formation to impingement of dislocation pile-ups

at inclusions in the manner proposed by Zener® and ana-
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lyzed by Stroh.® At low temperature where slip tends to
be planar, cavities can be produced by this mechanism
especially if the inclusions have a large aspect ratio in-
creasing the probability for them to interfere with such
planar slip. Some of the observations on the splitting of
elongated inclusions is probably due to this mechanism.
At moderate temperatures in close packed metals where
many equivalent slip systems become operable and slip
tends to become wavy, the ease of secondary slip will
make the development of high stresses difficult or al-
most impossible. Therefore, in ductile fcc metals and
even in bee metals at moderate temperatures this mech-
anism is almost certainly not responsible for cavity for-
mation around inclusions. Ashby' has discussed an in-
teresting alternative in which primary deformation in-
compatibilities do not produce cavities directly, but ini-
tiate highly organized secondary slip by punching out
dislocation loops from the interface of the inclusion with
the matrix to reduce the local shear stresses. These
loops then form reverse pile-ups and can build up in-
creasing interfacial tensile stresses until they reach

the interfacial strength when a cavity is formed. Ashby’s
model amounts to a special upper bound analysis for
plastically dissipating primary deformation incompati-
bilities; it is however not an upper bound analysis for
the total problem since the assumed flow field is only
local and does not satisfy the distant deformation bound-
ary conditions of the entire body. Ashby has shown that
this model can also be formulated completely as a mac-
roscopic slip line field in which positive and negative
deformation incompatibilities around the particle can

be balanced against each other by a closed slip line field
of four lobes.?* Thus, in spite of the fact that the inter-
facial stresses calculable by this model are no better
than a high upper bound, the model is conceptually sim-
ple and as we will show later is useful in understanding
interactions between particles to explain why large par-
ticles lead to cavity formation before small particles.

MeClintock™ has given an extensive elastic-plastic
continuum analysis of stress distributions around cylin-
drical particles in anti-plane strain, where it is shown
that large strain concentrations can develop around non-
deforming particles in non-strain hardening matrices.
Arguing that similar strain concentrations must also
occur in plane strain deformation and that such high
strain concentrations in crystal plasticity are usually
composed of dislocation pile-ups, McClintock has sug-
gested that cavity formation at interfaces may obey a
critical local strain criterion, or alternatively a cri-
terion that may be a mixture of a critical interfacial
shearing strain and an interfacial normal stress. The
nature of this combined criterion has not been clarified.
Most investigators have adopted one of the above cri-
teria to explain their results.

Below we will consider the separation primarily of
only large particles for which the energy criterion is
always satisfied and cavity formation can be expected
fo depend on reaching locally a critical interfacial ten-
sile strength.

1.2 Critical Stress Criteria Based on
Continuum Deformation

In most instances ductile fracture results from cavi-
ties formed around inclusions of micron size. On the
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other hand, transmission electron microscopy of dislo-
cation structures around inclusions of sub-micron size
have shown that the spacing of the surrounding disloca-
tions in the high strain gradient zones are very much
smaller than the particle diameter, (see ¢.g., Ref. 18)
suggesting that at least for large particles a continuum
analysis of deformation is proper. On the other hand
dislocation structures around small particles of only
several hundred Angstroms diameter are usually highly
organized prismatic loops,?”® requiring a more dis-
crete dislocation analysis for the interfacial stresses.*

*In materials where strong slip bands can form due to a low stacking fault
energy or due to some form of strain softening, the scale for continuum analysis
will be of the order of these slip band lengths.

Below we will discuss both approaches in order.
Considering the particle as a rigid cylinder and the
surrounding matrix as an elastic, plastic strain harden-

ing continuum, the development of interfacial stresses
is desired for pure shear deformation. The solution for
any other state of deformation having a negative pres-
sure component can then be obtained by superimposing
this negative pressure on the interfacial stresses of the
pure shear solution. Some solutions of this type already
exist. Huang® has presented a deformation theory solu-
tion for a rigid cylindrical inclusion embedded into an
incompressible Ramberg-Osgood (power-law) material
with a stress exponent of 7. He finds that a strain inde-
pendent, constant interfacial tensile stress concentra-
tion develops which is maximized at an angle of about

12 deg toward either side of the principal tension axis,
and has a magnitude of 1.36 times the distant boundary
shear traction. Huang also showed that for a decrease
in the stress exponent corresponding to increasing strain
hardening behavior the stress concentration increases
steadily (and presumably approaches asymptotically the
solution for an incompressible linear material). Orr and
Brown® have considered the same problem in which the
matrix was modelled as an incompressible elastic-plas-
tic material with either no hardening or a linear harden-
ing rate equal to 1/40 of the Young’s modulus. Orr and
Brown too find that the interfacial tensile stress reaches
a maximum value away from the principal tensile direc-
tion but at an angle of about 17 deg toward either side of
this direction. Unlike Huang, Orr and Brown find, how-
ever, that the magnitude of the interfacial tensile stress
concentration increases steadily as the distant plastic
strain increases both for the non-hardening as well as
the hardening material, and shows little change in this
behavior even at distant plastic strain levels 15 times
the yield strain—in spite of the fact that a steady state
might be expected from upper bound arguments for the
non-hardening case. At that time the maximum inter-
facial stress is 2.52, and 3.03 times the boundary shear
traction for the non-hardening and linearly strain hard-
ening material respectively. Because of this difficulty
of a lack of steady state for the non-hardening material
even at large plastic strains, we find the solution of

Orr and Brown not very useful.

Rhee and McClintock® have demonstrated by means
of a number of specific examples that the strain concen-
trations in inhomogeneous deformation fields in strain
hardening materials can be bounded by two limiting
idealizations of the plastic behavior of the material: a
non-hardening rigid plastic behavior and a linear be-
havior with zero yield stress as shown in Fig. 1. As-
suming that the same idea may also extend to stress
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Fig. 1—Idealization of actual plastic behavior by two limiting
forms of non-hardening rigid plastic, and linear behavior.
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Fig. 2—One quadrant of grid for finite element solution of ini-
tiation of plastic flow in pure shear around a rigid cylinder.

concentrations we have obtained a finite element solu-
tion for the pure shear deformation of an elastic-ideally
plastic, non-hardening continuum around a rigid cylin-
drical inclusion and compared this with the available
linear solution as the other form of extreme idealiza-
tion.

The chosen net configuration for the finite element
solution corresponding to 0.01 volume fraction of second
phase is shown in Fig. 2. The elastic-plastic program
of Marcal and King?® was used for six increments of con-
stant tensile and compressive boundary displacements
equivalent to pure shear, starting from the point where
some elements in the chosen network just become plas-
tic. The solution was obtained for conditions represen-
tative for a ductile metal such as aluminum (or copper),
i.e., for a Young’s modulus of 10* ksi, a Poisson’s ratio
of 1/3, and a yield stress in tension of 1.6 ksi, giving
€y =1.6- 1072, The spreading of the plastic zones with
these increments is shown in Figs. 3(a) through () as
the shaded regions. The computed interfacial tensile
stresses and tangential shear strains around the inclu-
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Fig. 3—Spreading of the plastic region (shaded) with increas-
ing boundary displacements for elastic, non-hardening plastic
idealization: (@) u; = ug where plastic flow is just initiated, ()
uy = 1.1ug, (€) uy = 1.2ug, (d) uy = 1.3uy, (€) uy = 1.4ugy, (f) u,
=1.5 Ug.

sion as a function of an angle 6 measured from the di-
rection of principal tension are given in Tables Ia
through c¢. Unlike the two solutions discussed above our
solution shows a flat maximum for the interfacial stress
in the principal tensile direction without a significant
drop before an angle of about 15 deg. Since the finite
element net is quite coarse and other unevennesses of
stress are apparent from Table I, we attribute this to
defects in the program and accept the maximum inter-
facial stress at 9 = 0 deg as an appropriate measure of
the concentrated interfacial tensile stress. The change
of this maximum stress in units of the yield strength in
shear % of the matrix is given as a function of the in-
creasing distant shear strain in Fig. 4, and indicates
that a fairly stable solution was reached. The maximum
interfacial tensile stress is found to be 1.5% which is
somewhat higher than the stress obtained by Huang. The
distribution of equivalent shear strain which is mapped
out by the spreading plastic zones shown in Fig. 3(a)
through (¢) resemble closely that obtained by Orr and
Brown. We note further from Table Ic that there is
only a very moderate interfacial shear strain concen-
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Table la. Normalized Radial Stresses 0,./k Around the inclusion,
Measured From a Point under the Tensile Direction

8

YI(k/G) 4.5 deg 13.5 deg 22.5 deg 31.5 deg 40.5 deg
0.770 1.495 1.400 1.025 0.765 0.160
0.848 1.606 1.535 1.125 0.825 0.175
0.925 1.550 1.510 1.070 0.905 0.180
1.000 1.480 1.440 1.000 0.875 0.150
1.080 1425 1.380 0.930 0.875 0.140
1.158 1.400 1.380 0.900 0.870 0.100

Table Ib. Normalized Tangential Stresses 0gg/k Around the Inclusion,
Measured From a Point Under the Tensile Direction

[

Y/(k/G) 4.5deg 13.5 deg 22.5 deg 31.5 deg 40.5 deg
0.770 0.745 0.700 0.510 0.385 0.080
0.848 0.800 0.765 0.560 0435 0.090
0.925 0.780 0.755 0.535 0.420 0.100
1.000 0.740 0.720 0.500 0.500 0.090
1.080 0.710 0.690 0.465 0.500 0.090
1.158 0.700 0.690 0.450 0.520 0.060

Table Ic. Magnitude of Normalized Tangential Shear Strain v,9/(k/G) Around the
Inclusion, Measured From a Point Under the Tensile Direction

[

Y/(k/G) 4.5 deg 13.5 deg 22.5 deg 31.5 deg 40.5 deg
0.770 0.026 0.570 0.615 0.950 0.970
0.848 0.032 0.622 0.675 1.060 1.080
0.925 0.032 0.610 0.660 1.225 1.250
1.000 0.032 0.675 0.725 1.220 1.240
1.080 0.026 0.692 0.740 1.255 1.275
1.158 0.026 0.725 0.770 1.340 1.360

tration of about 1.10 on the interface parallel to the
planes of maximum shear strain in the distant field
(i.e., at 6 = 45 deg).

The second bounding solution for the interfacial
stresses around a rigid inclusion in an incompressible
(i.e., v = 0.5) linear material can be obtained directly
from the theory of elasticity (see Muskhelishvilli*® or
Savin®' and are

0,y =b :4 (%)2 -3 (%)'1 + 1} cos 26 [1]
Gp =P Ts (%)‘1 - 1] cos 26 2]
0., =b 2(%)z cos 20 3]
org = [2(2 - 3(£) ~1] sm 2 g

where p is the boundary shear traction and p the radius
of the cylinder. The interfacial tensile stresses and
shear strains around the inclusion are plotted in Fig. 5
as a function of the angle §. We see that the tensile
stress is maximized at § = 0 and is equal to 2 times the
boundary shear traction. Similarly the interfacial shear
strain is maximized at 6 = 45 deg and is also equal to
twice the distant boundary shear strain.
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Fig. 4—Change of maximum interfacial tensile stress with in-
creasing boundary strain in non-hardening material. Solutions
of others are also shown for comparison.
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Fig. 5—Distribution of interfacial tensile stress and shear

strain around a rigid particle in an incompressible linear
matrix,

Fig. 6 shows the distribution of the total principal
strain €, outside the inclusion for the two bounding
solutions, in units of the total distant strain. The solid
curve represents the distribution obtained from the final
increment in the finite element analysis, while the bro-
ken curve is computed from Egs. [1} and [2] by means
of the elastic stress strain relations, in which the local
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Fig. 6 —The distribution of principal total strain €,, parallel
to the tension direction for the elastic, non-hardening plastic
material, the linear incompressible material, and experimen-
tal measurements on a model copper specimen with a hard-
ened cylindrical Cu-Be ‘‘inclusion’’,

strains are again normalized with the distant strain
€rr oo
m](f the distant deformation field were not pure shear
but had a negative pressure component o, this negative
pressure would have to be added to the plastic drag in-
duced interfacial stresses computed by the two limiting
solutions discussed above. Thus, based on Rhee and
McClintock’s hypothesis the actual interfacial stresses

could now be bounded as
(5]

where the left hand bound is for the non-hardening ideal-
ization while the right hand bound is for the linear ideal-
ization where & is considered as the flow siress in shear,
If Huang’s solutions for the Ramberg-Osgood material
with power-law hardening were to be extrapolated to
non-hardening behavior and were taken for the lower
limit it may be as low as k. Since for most of the strain
hardening behavior of interest, i.e., for the exponents n
between 2 and 8, Huang’s solutions either fall slightly
below the lower limit or between the limits, we will take
the above limits as bounds for the plastic drag induced
interfacial tensile stress. Since these limits are rather
close together and since their mean value of 1.75% is
very nearly the flow stress in tension, Y, we take for
the total interfacial tensile stress

Sk <0, —or <2k

6]
where Y (€?) is the flow stress in the region of the in-
clusion for the average local plastic strain of the region,
had the inclusion not been present.

Eq. [6] shows that the interfacial stress will increase
with strain hardening and with triaxiality. Both of these
effects are known to reduce ductility and hence, most
likely, also promote cavity formation. The above con-
tinuum analysis for an isolated inclusion predicts an
interfacial stress dependent only on the surrounding
strain state and negative pressure but not on the size

0,y = Y(€P) + o
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Fig. 7T—Ashby’s model of the production of a secondary plas-
tic zone to dissipate the elastic shear stresses arising from
the interfacial displacement incompatibility upon plastic
straining of the matrix.

of the particle. We will see below that the particle size
effects are a result of particle interactions which occur
at large local second phase concentrations and at large
plastic strains.

1.3 Critical Stress Criteria Based on
Dislocation Models

In a study of enhanced work hardening due to non-de-
formable inclusions Ashby'* proposed a plastic accom-
modation model of displacement incompatibilities which
develop between a homogeneously shearing continuum
and a rigid inclusion. This model which is particularly
useful in the understanding of inclusion interactions is
based on Eshelby’s®® approach for considering transfor-
mation problems. It is illustrated in Fig. 7. In a thought
experiment the non-deformable spherical inclusion of
radius p shown in Fig. 7(a) is removed and replaced by
a sphere of parent material. The continuum is plastic-
ally sheared by an amount ¥ which distorts the sphere
of parent material into an ellipsoid as shown in Fig.
7(b). The distorted ellipsoid is now removed and the
non-deformable sphere is to be re-inserted. This re-
quires the elimination of the displacement incompatibil-
ities of 2 maximum amoung of yp/2. For small shear
strains such incompatibilities could be accommodated
in the matrix by local elastic deformation. ¥ the inclu-
sion is very small and if the surrounding material lacks
operable dislocation sources the elastic stresses could
rise until the ideal shear strength is reached at the in-
terface and dislocation loops are punched out to form a
plastic accommodation zone shown in Fig. 7(c). This
plastic accommodation zone reduces the shear stresses
around the inclusion. The interfacial normal stresses,
however, continue to rise to form a cavity across the
principal tensile direction when the interfacial stress
reaches the interfacial strength. Although this model
is not a fully acceptable upper bound flow field for the
reasons already given above, it is simple and lends it-
self to the incorporation of many important details.
Therefore, we will develop it further,

We assume, together with Ashby, that the ideal shear
strength is reached at the interface before the ideal co-
hesive strength of the interface (Kelly, Tyson, and
Cottrell®® have discussed the atomic bonding require-
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Fig. 8—(a) Idealization of the cylindrical plastic punching by
a cylinder elastically or plastically extended in a rigid cavity
against wall friction; (b) Plastic punching between two inter-
acting particles.

ments in different materials for this condition to be
satisfied) and that circular loops are punched out and
moved away from the spherical inclusion against an
effective shear drag k;. We simplify the problem by
considering the dislocation loops as a continuously dis-
tributed dislocation density and idealize the model as a
cylindrical punch indenting an elastic-plastic cylinder
either into or out of a cylindrical hole in a rigid semi-
infinite medium against a wall frictional drag of amount
k. which can be taken as the critical resolved shear
stress of yielding of a single crystal, as shown in Fig.
8(a). We find it necessary to distinguish a number of
important alternatives. .

a) Very small spherical inclusions {p < 100A): The
idealized model is as shown in Fig. 8(z). The cylinder
of radius p/v2 is extracted outward (punched outward)
by interfacial normal surface tractions o,, against only
a wall friction, it contains no dislocations inside, hence
is incapable of undergoing internal plastic relaxation.*

*The radii of the cylindrical secondary plastic zones are chosen to be o2 to
have their intersections with the spherical inclusion take place where both the
shear traction 6,9 and the shear stress 6, is maximized on the circumference.

The normal stresses become dissipated by the wall fric-

tion k¢ over a length 1/2 which we term the secondary

plastic zone. Choosing coordinates x as shown in Fig.

8(a) the differential equation for the change of the nor-

mal stress along the cylinder is
do ZHkS

o 0

(7]

METALLURGICAL TRANSACTIONS A



where

dy
0'=E"—Z—x— [8]

The boundary conditions are  =du/dx = 0 at x = 0 (i.e.
g = 0, at x = 0). which gives immediately

6= —3 g 19}

The extent of the secondary plastic zone is obtained
from the displacement incompatibility at the interface,
i.e., u = yp/2 at x = A/2, and is

A vE
= — = 10
7 " Yarzn, [0l
This gives finally the interfacial tensile stress at x
=2/2 as
6v6
0’7,7. =k0 1+ —;}’_l_ W), [11]

where the first term represents the contribution of the
distant field and the second term the interfacial stress
due to the secondary plastic zone. In Eq. [11] &, is the
yield stress in shear of the polycrystal and m the well
known Taylor factor, i.e., k,/ks = m/V3 , where m is
generally taken as 3.1. This stress is again indepen-
dent of size of the inclusion but increases relatively
rapidly with increasing plastic strain as shown in Fig.
9. A cavity would form after a critical plastic strain
Y when the interfacial stress equals the interfacial
strength o;, i.e., when

'}‘ym O'i 2
e = 678 (j;; 1)

As discussed in Sec. 1.1 reaching the interfacial
strength is necessary but not sufficient for cavity for-
mation. The latter requires also that there be enough
elastic energy stored in the region to provide for the
energy of the free surfaces, i.e., the ratio

(a — a;)1p?
—_—— <
of \(2mp°
B(ﬁf( 3 )
where the numerator is the surface energy of the cav-
ity and the denominator the elastic energy that can be
released by a cavity. In Eq. [13] o is the surface free
energy of the cavity, o, the interfacial energy, and the
factor 8 of the order 0.5 is to account for the sharply
decreasing tensile stress away from the interface.
Considering that (o — ;) ~ 0;b/4 (where b is a lattice
dimension), and that o; /E ~ 0.1 one finds that cavities
can only open up when
p. 3 E

b>20

(12}

[13]

— =~ 15. [14]
3

For weaker interfaces the critical size increases. For
smaller inclusions stable cavities cannot form sponta-
neously: upon reaching of the interfacial strength the
small inclusion will separate from the matrix a certain
distance of atomic dimensions to relieve part of the
elastic energy, but long range forces will still act
across the interface. As already mentioned above, as
straining continues and the displacement incompatibil -
ity between matrix and inclusions increases, the in-
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Fig. 9—Change of interfacial stress with increasing distant
plastic strain for an elastic plug and a plastic, strain hard-
ening plug.

clusion can still be slowly separated from the matrix
in a gradual and stable manner. In some cases the in-
clusions may only be very poorly adhered to the ma-
trix, and it can be assumed that 6; =~ 0. Then the ten-
sile incompatibility can be accommodated at the inter-
face from the beginning by the formation of a cavity
without punching out any secondary plastic zone.

To meet the condition given in Eg. {14} the inclusion
must have a diameter of 75 to 100A or over. For sig-
nificantly larger inclusions it becomes more and more
likely that some retained primary dislocations tangled
around the inclusion act as sources and that the punched
cylinder can undergo internal plastic relaxation as well.

b) Large spherical inclusions (p > 100A): With in-
ternal plastic relaxation inside the punched cylinder
the idealized model is still as shown in Fig. 8(a), giv-
ing rise to the same differential equation for the change
in the normal stress o by Eq. [7]. The stress-strain
law now is non-linear and may be taken as

€ 1 du oV
€ e, dx T (+)
where €, and Y, are the yield strain and yield stress
in tension respectively, and where the exponent » can
be anywhere from 2 to 8 representing decreasing ca-
pacities for strain hardening.
The solution of Eq. [7] together with the new non-

(15]
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linear constitutive law, and the same boundary condi-
tions as before can be obtained readily analytically for
any exponent z and leads to (see Appendix)

1 1
7 \" V6 (n+1) v ”*I:I
0., =k — A LI A A
N [ R CLIA S
where again the first term represents the contribution
of the distant field. The secondary plastic zone now
becomes

[16]

m <\/§(n+1) ¥ )Wh

PovE T m Ty

The increase of stress with plastic strain due to
punching of the secondary plastic zone is now consid-
erably slower than in the previous case where plastic
relaxation inside the punched out cylinder was not pos-
sible. Fig. 9 shows the rise of the portion of the inter-
facial stress resulting from the punching of the secon-
dary plastic zone for the case without relaxation and
one where the hardening exponent » = 2.5 correspond-
ing to copper. As the strain hardening rate becomes
less with increasing exponents », the rate of rise due
to this component would become progressively less.

It is of interest to compare the above solution for
the dislocation loop punching model with the continu-
um solution. When the hardening rate decreases as
n — « the interfacial stress concentration gpes asymp-
totically to

lim (7)) =1+ V3

n—> o oo
This value is 89 pct higher than the lower limit given
in Eq. [6] to which it should correspond. Although this
solution is not to be preferred to the continuum solu-
tion discussed in the preceding section, it gives a re-
sult well within a factor of 2 of the latter, and will be
useful to investigate effects of inclusion interaction.

c) Interacting Inclusions: Many investigators have
reported that in a given sample large inclusions appear
to produce cavities sooner than small ones—a particu-
larly well reported case being that of Palmer and
Smith.'® Some of the previous explanations of this ef-
fect appear to be erroneous such as for instance the
energy explanation of Gurland and Plateau'* which
was discussed above to be only a necessary condition
for cavitation. The explanation advanced by Palmer
and Smith that large inclusions may act as more ef-
ficient sinks for embrittling impurities could certainly
be valid but cannot likely be responsible for this phe-
nomenon in all cases. It is reasonable to expect that
the effect may have its origin in interaction between
inclusions. From dimensional analysis it is clear that
the stress concentration cannot be dependent on inclu-
sion size for the case of an isolated large inclusion
(surface energy restrictions being unimportant) in an
infinite medium where there is only one length dimen-
sion. When inclusions are in very finite media or when
many inclusions are present in a body so that their
spacing becomes of the order of their diameter a new
length parameter appears in the analysis. It can be
readily seen, however, that even in this case the stress
concentration will be dependent only on the ratio of in-
clusion size to spacing. I all inclusions are of the
same size this would make the stress concentration

2 [17]

(18]

832-VOLUME 6A, APRIL 1973

dependent only on the volume fraction of second phase
but not directly on the inclusion size. It is clear, there-
fore, that an inclusion size dependence of the stress
concentration can occur, at a given volume fraction of
second phase, only if local variations of volume frac-
tion exist, making it possible for some larger than
average inclusions to be near neighbors at a spacing
equal to or smaller than the average spacing. The sit-
uation is sketched out in Fig. 8(b) where the ratio of
the net particle distance to the particle size is given

by the local volume fraction ¢ of second phase. As-
suming that the interior of the punched cylinder of the
secondary plastic zone can undergo plastic relaxation
as in the previous case so that a constitutive equation
of the type given in Eq. [15] is valid, the interfacial
tensile stress can be calculated analytically for a fixed
p/A by the previously outlined approach only for an ex-
ponent of # = 2 (see Appendix). A much simpler approx-
imate method can be used, however, to obtain the inter-
facial stress for any exponent n by breaking down the
contributions to the interfacial stress into three
sources: a) the strain hardening contribution resulting
from the extension of the cylindrical zone as if it were
an isolated tension specimen, b) the plastic drag con-
tribution rising linearly from the center of the cylinder
to the interface, and c¢) the contribution of the distant
flow stress. This gives for the interfacial stress

VT Y

W )" 19

(see Appendix), where the well known expression (see,

e.g., Brown and Embury®*) for the ratio of the net par-
ticle spacing to particle radius in a plane

1_‘/31_‘/_8_
p Vi 3

was used for a local volume fraction ¢ of second phase.
The change of the interfacial stress with increasing
plastic strain is plotted in Figs. 10(a), and 10(d) for
two values of n representing those for copper (n = 2.5)
and steel, (n = 4) and for a variety of values of the vol-
ume fraction ¢. As can be seen from the figure for
small volume fractions there is no interaction between
inclusions.

We now consider first that all particles are of con-
stant size but are distributed randomly in space or on
any planar section. If the area allocated per particle
is a, then the probability of finding » particles in an
area of size A is given by a Poisson distribution as

P(n,a)= %(%)n exp <— %)

Considering that the chosen area A together with »
corresponds to a new volume fraction

Opy = ko | V3

(20]

[21]

2
C = an [22]

for a particle radius of p, we can obtain readily the
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Fig. 10—Dependence of interfacial stress on local volume
fraction of second phase particles, (a) for copper, n = 2.5, (b)
for 1045 steel, n = 4.

probability for finding a local volume fraction ¢ in
integer multiples of the average volume fraction ¢
by letting the area A gotoa, i.e.,

P(c/e =%(ﬁ:)v (—g =0,1,2,3...)

To obtain the probability for finding any arbitrary

(23]
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non-integer local volume fraction between ¢ and ¢ +dc
we merely let n = ¢/¢ become a continuous variable
by introducing the gamma function to obtain

AP (¢ /) = D(oin/l“(n+ 1)
fdn/ T +1)
[}

(where n = Z:) [24]

This leads finally to the probability of having a local
volume fraction variation equal to or greater than c as,

fojdn/l"(n+ 1) .
1-Plc/t) = L& =0.4412 [ T’(?TTY’

fdn/T(n+1) c/e

[25]

where the integrals in the numerator and denominator
are the incomplete and complete Neumann functions
which can be readily evaluated (see E. H. Erdelyi,

et al. %)

This probability is plotted in Fig. 11 as a function
of the volume fraction ratio ¢/¢. To find the depen-
dence of the plastic strain on the local volume fraction
of second phase we equate the interfacial stress in Eq.
[19] to the interfacial strength o;. With increasing
plastic strain vy, the separation condition is reached
first for closely spaced large inclusions (large local
volume fraction of second phase) followed by inclu-
sions with decreasing size and increasing spacing.
The fraction f of the separated inclusions of the total
population is then given directly by the cumulative
probability of finding regions of local volume fraction
having a value in excess of that for which the current
plastic strain is sufficient for cavity formation, i.e.,

fl) =1=P(c/e) =1 - P(c/()/0. [26]

The application of this approach to inclusions in
steel and copper is discussed in the accompanying
paper by Argon and Im.*

Finally, it is of interest to prescribe when inclu-
sions can be considered non-interacting, and when
their interaction must be taken into account. Interac-
tion between particles occur when the secondary plas-
tic zones of neighboring particles in the plane of
punching touch, i.e., when A/p of Eq. [17] equals that
of Eq. [20]. This gives a critical strain ratio
(V/Vy)crit. above which interactions must be con-
sidered.

() vty W VD)™

The dependence of this critical strain on the volume
fraction of second phase is shown in Fig. 12 for two
strain hardening exponents.

2. EXPERIMENT

A direct experimental verification of the approximate
analyses presented above was found desirable. Since no
meaningful and reliable method of direct interfacial
stress measurement could be conceived, it was consid-
ered useful to measure the plastic strain distribution
around non-deforming inclusions to compare them
with the strain distributions obtained for the limiting
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Fig. 11—Probability (1 ~ P (c /c)) of finding a local volume
fraction of second phase particles in excess of ¢, when the
overall average is c.
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non-hardening and linear behaviors plotted in Fig. 6.
To do this, a model experiment was designed in which
the plastic strain distribution in a soft copper matrix
could be measured around a hardened cylindrical cop-
per-beryllium inclusion which could be heat treated to
have a yield strength about 10 times that of the copper
matrix. The model specimen was prepared by drilling
a central 0.25 in. hole almost through a 2.5 in. diam
OFHC copper cylinder. This piece together with a
graphite funnel containing an amount of castable charge
of Cu-Be alloy was placed into a vacuum furnace where
the specimen and the inside of the drilled lble was evap-
oration-cleaned by maintaining the assembly 100°C be-
low the solidus point of the alloy for 45 min. The tem-
perature was then raised to cast the charge in place.
After this the specimen was cooled to 800°C and main-
tained there for two h to homogenize the alloy followed
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Fig. 12—The dependence of the critical strain ratio for par-
ticle interactions as a function of local volume fraction of
second phase for two hardening exponents.

by quenching and tempering at 300°C for two h to obtain
peak hardness. The cylindrical bar with the Cu-Be core
was then machined into two 1.75 in. square blocks of 1.5
in. thickness with the cylindrical core running along the
short length and through the center of the square faces.
All faces of the blocks were then polished and one of the
square faces was provided with a fine, scratched
square grid of 0.017 in. spacing running parallel to

the edges of the block. The two blocks were then put
together face to face so that the grid remained be-
tween the blocks. The pair were then compressed

10 pet in a plane strain compression jig as shown in
Fig. 13. The compression faces and the two outside
faces touching the jig were coated with a MoS, spray

to reduce friction. This prevented barelling of the
specimen. After compression the blocks were re-
moved from the jig, taken apart to reveal the inter-

nal grid, which was then measured to compute the
distribution of the lateral strain parallel to the prin-
cipal extension direction. This distribution of the
measured normal strains is shown in Fig. 6 for com-
parison with the theoretically determined bounds for

the strain distribution. The actual measured strains
are greater than the plastic strains near the inclusion
but become smaller than the plastic strains at greater
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Fig. 13—Experimental arrangement for determining local

plastic strains in a copper block with a hardened, cylindri-
cal Cu-Be ‘“‘inclusion’’.

distances. Since the inclusion was not rigid but actu-
ally had a fairly high compliance and showed signs of
some plastic straining these departures from expected
behavior are considered not surprising. In any event
the experimental distribution lies nearer to the plas-
tic non-hardening solution than to the linear solution.
This lends support to the bounding analysis discussed
in Sec, 1.2.

3. DISCUSSION

The various approximate analyses presented above
show that for very small inclusions where no local
diffuse plastic relaxation is possible because of the
complete absence of dislocations in the surroundings,
the shear stresses on the inclusion interface can be
relieved by punching out dislocation loops as suggested
by Ashby.'* This cannot relieve the interfacial tensile
stresses which may reach the interfacial strength.
When the inclusion diam is less than about 100A there
is insufficient elastic energy stored in the surroundings
of the inclusion and cavities cannot form upon reaching
of the interfacial strength at the interface. When the
inclusion diam exceeds this cut-off limit, stable cavi-
ties can form. In this range of increasingly larger in-
clusions, however, local plastic relaxations become
more and more likely and a continuum analysis for the
stress concentrations becomes appropriate. All such
continuum analyses give a rather mild stress concen-
tration factor which for a pure shear mode of deforma-
tion is only of the order of V3, 7.e., the interfacial
stress is of the order of the local equivalent flow
stress in tension. When the volume fraction of second
phase is small so that the secondary plastic zones of .
particles do not touch, then the particles act in isola-
tion and the interfacial stress is independent of the
particle size but depends only on the local flow stress
and any local long range triaxial stress. When the vol-
ume fraction is large or when the shear strain is large
so that the secondary plastic zones of particles touch,
the particles interact. If the particles are of uniform
size and quasi-uniform spacing, the interfacial stress
becomes in addition to the plastic strain, dependent
also on the volume fraction of the second phase but re-
mains still independent of the particle size, i.e., at
constant volume fraction any increase in particle size
is balanced by a proportional increase in particle

METALLURGICAL TRANSACTIONS A

spacing. The interfacial stress becomes particle size
dependent only if there are significant local variations
of volume fraction of second phase from point to point
for a given average second phase volume fraction.
Such variations of volume fraction actually exist in
many inclusion bearing alloys and can account for the
often reported effects of particle size on local strain
for cavity formation in the case of non-deformable in-
clusions. Experimental evidence for such effects will
be presented in the accompanying paper by Argon and
Im."

The interaction of secondary plastic zones around
particles discussed here is, however, not the only pos-
sible explanation for particle size effects in void for-
mation. Cox and Low™ have discussed other possibili-
ties for plastically deformable inclusions and for brit-
tle, inclusions, having a variability of strength based
on statistically distributed flaws.

We close with a note of caution that our analysis ap-
plies only to nearly non-deformable, equiaxed inclu-
sions. Therefore the results must not be applied in-
discriminately to cases of deformable inclusions which
could present qualitatively different behavior.

APPENDIX

A.1. Interfacial Stresses Around Large
Spherical Inclusions

The first integral of the differential equation for the
normal stress along the secondary plastic zone (Eq.
[7]), gives

2V/2 R

S

o

where x is measured from the end of the secondary
plastic zone. Using the non-linear constitutive equa-
tion of Eq. [15] gives

€ 2\/—2_1?8?6 C)"

o(x) = x+ C [A-1]

— = + = A-2]
€y Yop Y, [
which when integrated gives the displacement u, also
measured from the end of the secondary plastic zone

as

€yYop el 4
= — + D A'B]
U T E D) [
where
_22hx € [A-4]
Yop Yo

When x=0, £ = C/Y,and u = 0. This gives

+ _Y'C.O—>n+l B (_%)nu]
[4-5]

The other boundary condition is that u = yp/2 when

x = A/2. This gives
¥ €,Y,p V2B A . _C_>n+1_ —g—)ﬂﬂ]
YO YO
[A-6]

2 7 22k n+1) Yop
from which the integration constant C could be deter-

€yYop
2V2 R (n+1)

U =

2V2 kg
[< Yop -
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mined as a function of the yet unknown extent of the
secondary plastic zone A/2. The secondary plastic
zone can then be obtained by substituting C(x/2) into
Eq. [A-1] and setting 0 = 0 at x = 0. This, however,
tells immediately that C = 0, which can only be satis-
fied if A is chosen to satisfy Eq. [A-6] for the special
value of C = 0, This gives the extent of the secondary
plastic zone as

1
A _ P V6 (n+1) y \*T
2‘2{2*m( m ‘Jy‘)

where m = V3 &y /b, and € = yy/\fB— was used in the
evaluation,

We now obtain the interfacial stress due to the
punching out of the secondary plastic zones as

0=ke/3 (_-—Wi:: 2 (%))ﬂ

The distant stress governing the distant plastic
strain will also appear across the boundary and must
be added to the above stress to obtain the total inter-
facial stress. This stress is ko(y/'yy)l/" giving for
the total interfacial tensile stress o,., finally,

[A-7]

[A-8]

1

Oy = ko [(gy_)” + ﬁ(_@%ﬂ yy_y)"_‘] [A-9]

A.2. Interacting Inclusions

When the secondary plastic zones of particles touch
at large volume fractions of second phase, or at large
plastic strains, the interfacial stress becomes depen-
dent also on the local volume fraction of second phase.
For this case analytical solutions are difficult to ob-
tain and it is more instructive to resort to approxi-
mate solutions, An approximate solution can be ob-
tained readily by dividing the interfacial stress up
into three parts. The first contribution to the inter-
facial stress comes from considering the cylindrical
interconnecting plastic zone between particles as shown
in Fig. 8{(b) as a round tensile bar which has undergone
a plastic extensional strain of yp/A which results in a
stress of

1 1

n n

0,= Y, (<) :\/'3_k0<%77y—\/'3_) [A-10]
y

The second contribution comes from the plastic
shear drag on the extending cylinder along its walls
which is

A

0, = ksfz“(;) [A-11]
where the shear drag along the wall 2, = V3 k,/m, can
be taken as the critical resolved shear stress for slip
in a single crystal, which is the polycrystal yield
strength in shear %, divided by the Taylor factor for
shear, i.e., m/V3 =3.1/V3 .

The third contribution comes from the boundary
tractions governing the distant field. This contribution
is
1
n

0, = ko(7v/vy) [A-12]

The sum of all three contributions gives the total
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interfacial tensile stress and is the quantity in Eq.

19].

[ 1-‘]m analytical solution for the dislocation loop punch-
ing component of the interfacial stress, i.e., compo-
nents 1 and 2 above, can be obtained again readily for
n = 2, by substituting Eq. [A-6] into Eq. [A-1] and let-
ting x = A/2. This would give the interfacial stress as
a function of A/p which now, as shown in Fig. 8(b) is
governed by the local concentration of second phase c.
The end result is obtained readily as

y 1/2 6 /2
orr = ko [(Z) ' W(B‘)
2V3m? (v/vy) 1
X<1 ’ \[_T/”T—L ) ?ﬂ -
where

A J?ﬂ_ _‘/_8_
p ~¥3C 3

is the ratio of the net distance in the plane of plastic
punching to the radius of the particle.

For other n values an approximate solution of the
equations in Appendix A.1 is possible for the interact-
ing particles. For given values of (y/yy), (A/p), and n,
the value of C/Y, can be obtained from Eq. [A-6] by
curve plotting. The interfacial stress resulting from
the first two contributions can then be obtained from
Eq. [A-1] for x = A/2. To this the contribution from
the distant field given by Eq. [A-12] must still be added.
Interfacial stresses obtained in this somewhat more
exact manner are usually about 5 pct smaller than
those computed from Egs. [19] and [20].

[A-14]
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