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J O R D A N  B I A L G E B R A S  A N D  T H E I R  R E L A T I O N  T O  L I E  B I A L G E B R A S  

V .  N .  Z h e l y a b i n *  UDC 512.554 

We develop the notion of Jordan bialgebras and study the way in which such are related to Lie 

bialgebras. In particular, it is shown that if a Lie algebra L (J )  obtained from a Jordan algebra 

J by applying the Kantor-Koecher-Tits  construction admits the structure of a Lie bialgebra, 

under some natural constraints, then, J permits the structure of a Jordan algebra. 

Hopf algebras [1] that  exemplify associative bialgebras take on considerable importance in the theory 

of associative algebras. Those are associative algebras on which the structure of an associative coalgebra 

is given so as to fit in well with the initial multiphcation. Hopf algebras are closely connected with objects 

such as quantum groups and Lie bialgebras. The latter were introduced in [2], where they aimed at a 

study of solutions for the classical Yang-Baxter  equation. Like associative bialgebras, Lie bialgebras are 

Lie algebras with Lie comultiplication which is a 1-cocych. The notion of a Lie coalgebra was defined in 

[3]. The definition of a coalgebra related to a certain variety of algebras was given in [4]; in particular, a 

Jordan coalgebra was defined as one whose dual is a Jordan algebra. In [5], based on the analogy with the 

known Kantor-Koecher-Ti ts  construction as it applies to ordinary algebras, we established the relationship 

between Jordan coalgebras and Lie coalgebras. 

In the present article, we define Jordan bialgebras and study the way in which they are related to 

Lie bialgebras. In particular, it will be shown that if a Lie algebra L(J )  obtained from a Jordan algebra 

J by applying the KKT construction admits the structure of a Lie bialgebra, then, under some natural 

constraints, J affords the structure of a Jordan bialgebra. 

1. A S S O C I A T I V E  A N D  J O R D A N  B I A L G E B R A S  A C C O R D I N G  T O  D R I N F E L D  

Let (~ be a field. For linear spaces U and V over ~, denote by U | V their tensor product over ~. 

On the space V | V, define a linear map r by setting r ( ~  a~ | bl) = ( ~ i  b~ | a~). As usual, id is the 

identity map of V, and we write V* for the space of all linear functionals on V. For elements f E V* 

and v E V, ( f ,v)  expresses a value of the linear functional f at v. Let p : V * |  - ~ ( V |  be 

a linear map defined by (p ( f  | g), ~'~i,j a, | bj) = ~ i , i ( f ,  ai)(g, hi). Similarly we specify the linear map 

pt : V* | V* | V* , (V | V |  V)*. 

De f in i t i on .  A pair (A, A), where A is a linear space over # and A : A , A | A is a linear map, is 

called a coalgebra. 

If the pair (A, A) is a coalgebra, the map A is referred to as comultiplication. For an element a in A, if 

A(a) = ~ ati | aji, we write A(a) = E ~  a(t) | a(z), following Sweedhr (see [1]). 
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Consider the space A* and define multiplication on A* by setting 

(fg, a) = E ( f ,  a(D)<g, a(2)) , 
a 

where f ,  g E A' ,  a E A, and A(a) = ~ a  a(1)| The space A* with the assigned multiplication is then an 

ordinary algebra over O, which we call the dual of the coalgebra (A, A). Obviously, ( f9,  a) = (P(f@9), A(a)). 

The dual A* of (A, A) determines the bimodule action (.) on A, defined as follows: f . a  = ~ ,  a(1)(f, a(2)) 

and a .  f = y']a(f,a(D)a(~.), where f e A* and A(a) = )"~a(1 ) | a(2 ). For any f ,  9 E A* and a E A, 

(fg,  a) = (f, g .  a) = (g, a .  f )  holds. 
Now let A be some algebra with comultiplication A and let A* be its dual. The algebra A induces the 

bimodule action (*) on the space A*, defined by ( f  * a, b) = (f ,  ab) and (b �9 f ,  a) = (f ,  ab). Consider the 
space B(A,  A*) = A (9 A*, on which we define multiplication (*) by setting 

(a+ f ) * ( b + g )  = (ab+ f . b + a .  g) + ( fg  + f . b+ a*  g). 

Then B(A,  A ~') is an ordinary algebra over O. 

Suppose that M is some variety of e-algebras and A is an algebra in M, with comultiplication A. A 

pair (A, A) is then called an M-bialgebra - -  in the sense of Drinfeld - -  if the algebra B(A,  A*) belongs to 

M. In this case, (A, A) is an M-coalgebra (see [41). 

In what follows, associative and Jordan bialgebras as are defined by Drinfeld will be called D-bialgebras. 

Let A be an associative O-algebra. On the space A|  define the action of A by setting a(b| = (b| 
and (b | c)a = (ba | e). Under that  action, A | A is an associative A-bimodule. If a E A and b E A | A, 

we put [a, b] = ab - ba. 

T H E O R E M  1. Let A be an associative O-algebra with comultiplitation A. Then the pair (A, A) is 

an associative D-bialgebra if and only if (A, A) is an associative coalgebra and A satisfies the equalities 

A(ab) -- A(a)b + aA(b), (1) 

[a, =  aCa)l). (2) 

Proof .  Let (A, A) be an associative D-bialgebra. Consider the algebra B(A,  A*). Since it is associative, 

for any elements a, b in A and f in A* we have ( f , a ) , b  = f , (ab ) .  It follows that ( f . a ) b + ( f . a ) . b  = f . (ab) .  
Consequently, if A(a) = ~'~ a(D | a(2 ) and A(b) = ~ b  b(1) | b(2), then f .  (ab) = ~ a  a(Db(f,a(2)) + 

Eb br 
Let g be an arbitrary element in A*. In view of the latter equality, then, we obtain 

<p(9 e / ) ,  a(ab)) = <9, f" ab) = <P(9 * / ) ,  ar + br  abr 
a b 

Since the space p(A* | A*) is dense in (A | A)*, it is clear that A(ab) = A(a)b + aA(b), and the first 
equality is thereby proved. 

The second equality is obtained by applying a similar argument to (a * f ) ,  b = a ,  ( f ,  b). 

Conversely, assume that (A, A) is an associative coalgebra and that  A satisfies (1) and (2). We show 

that B(A,  A*) is an associative algebra. Let f,  g and a, b be arbitrary elements in A* and A, respectively. 

Suppose A(a) = ~ a  a (1 ) • a (2 )  and A(b) = ~ b  b(1)@ b(2). In view of (1), then, f .  (ab) : ~ a  a(1)b(f, a(2)) + 



Ebb(1)(f ,  ab(2)). It follows that f . (ab)  = ( f . a ) b + ( f . a ) . b .  Therefore, f . ( a . b )  = ( f . a ) . b .  

equality ( a .  b) * f = a .  ( b .  f )  is derived similarly. Since 

a b 

The 

and 

a b 

by (2) we obtain (a. f)b -t- (a �9 f ) .  b = a( f .  b) + a .  ( f  �9 b). This gives (a * f ) .  b = a .  ( f .  b). 

The equalities ( f .  g ) .  a = f * (g * b), (a * f )  * g = a .  ( f .  g), and ( f .  a) * g = f * ( a .  g) can be proved 
similarly. 

Now, it is rather obvious that  B(A, A*) is associative. Consequently, (A, A) is an associative D-bialgebra. 

It should be observed that  Theorem 1 is an associative analog of Theorem 2 in [2] and that  the equality 

[a, ~-(A(b))] -- -7-[b, rA(a)]  is equivalent to 

E a ( t )  @ a(2)b - ha(l) @ a(2) = E b ( 2 )  @ ab(1) - b(2)a @ b(1), 
a b 

(3) 

where A(a) = E ~  a(1) | a(2) and A(b) = E b  bo) | b(2). 

We give examples of associative D-algebras. Consider the ring @[z] of polynomials in one variable. On 

the space ~[z], define A by setting A(1) = 0 and A(z'*) = ~'~$=1 zl | z'*+l-i" Then 

n 

i = 1  i = 1  

n- t-m rn 

i=rr*+ 1 i=1  

It is not hard to infer, then, that  the pair (q~[z], A) is an associative coalgebra. If m >_ n, then 

~--~ ; g r a + l - - i  ~ ~ n + i  _ X r n + n + l - - i  ~ ~:i __ Xi ~ ~gm+n+l - - i . . l_  

i = 1  i = 1  

~ | : + . + ~ - i  _ ~ : + . + ~ - i  | =~ _ : + . + l - ~  | ~. = 

i = n + l  i = 1  i = n + l  

i=1  

Therefore, (r A) is an associative D-bialgebra by Theorem 1. 

Let A be an associative algebra and z and y be linearly independent elements of A. Assume z 2 = 

y2 _ ~y = yz = 0. Define comultiplication A on the space A by setting A(a) = It, a], where a E A and 

r = z | y - y @ z. Then A(ab) = A(a)b + aA(b). Verification of the equality In, rA(b)] = -~'([b, vA(a)]) is 

overt. Comultiplication A is coassociative, that  is, (A | id - id | A)A(a) _-- 0 for all a E A. Indeed, the 

condition on z and y yields A(z)  = A(y) = 0, and so 

(A | id - id @ A)A(a) = 

a ( ~ )  | y - ~xCy~) | �9 + �9 ~ a ( ~ y )  - ~ ~ a ( ~ )  = 



- z @ z a y |  y @ z a z @ y +  z @ y a y @ z - - y |  

z | 1 7 4  z | 1 7 4  - y | 1 7 4  y |  = O. 

This implies that, for n > 3, the algebra %,~ of n x n-matrices can be endowed with the structure of an 

associative D-bialgebra. If Z(%~) is the center of %,,, then A(Z(%n)) = 0. 

In the above-given examples of associative 

for any central element z. If the latter equality 
is cocommutative on its center. 

D-bialgebras, comnltiplication A satisfies A(z) = r(A(z))  

holds for some D-bialgebra, we say that  its comultiplication 

We bring in a definition of a Lie bialgebra in terms of comultiplication. Let L be a Lie algebra over 

%. Consider the linear space L | L. The space L @ L, as is known, is a Lie L-bimodule provided that  the 

action of L on L @ L is defined by [11 @ 12, I] = [11, 1] @ 12 + 11 @ [12,/]. Suppose that on L, comultiplication 

A is given. The pair (L, A) is a Lie biaigebra if and only if (L, A) is a Lie coalgebra and A is a 1-cocycle, 

that is, it satisfies A([a, b]) = [A(a), b] + In, A(b)] (see [2]). 

For Jordan D-bialgebras over a field % of characteristic not 2, 3, an analog of Theorem I is the following: 

T H E O R E M  2. Let J be a Jordan %-algebra with comultipLication A. Then the pair (J, A) is a Jordan 

D-bialgebra if and only if (J, A) is a Jordan coalgebra and A satisfies the following equalities: 

(A @ id - id @ A)A(a 2) = 2(1 @ a @ 1)(A | id - id @ A)A(a) + 

2(1 @ 1 | a - a @ 1 @ l)(id | r)(A @ id)A(a) + 

2(A(a) @ 1 -- 1 @ A(a))(id @ r)(A(a) @ 1), (4) 

(A @ id + id @ A + (r @ id)(id | A))(I  | a + a | 1)A(a) =- 

2((1 | a @ 1)(id | A)A(a)  + (a | 1 @ 1)(id @ r) (A @ id)A(a) + 

(1 | A(~))(id | r ) (A(~)  | 1)) + (A | i d ) a ( ~ ) ,  (5) 

~ ( ~ b )  - ~ ( ~ ) ( b  | 1) - ~(b)(1 s ~ )  + 2~(b)(~  | ~) - 

2A(ab)(a | 1) + 2(A(a)(b| 1))(a @ 1) + 

2(~(~) (1  | b))(1 | ~) - 2~(~)(1  ~ ~b) = o. (6) 

Proof .  We follow the same line of argument as was used to prove Theorem 1. If 1 is unity in J ,  then 

(6) yields A(1) = 0. 

Let (A, A) be an associative D-bialgebra. Consider an adjoint Lie algebra A(-) (an adjoint Jordan 

algebra A (+), 1/2 E %). On the space A(-) (A(+)), define comultiplication A(-) (A(+)) by setting A(-)(a)  = 

A(a) - r (A(a))  (A(+)(a) = ~(A(a) + r(A(a))).  Then the pair (A(-), A(-))  is a Lie biaigebra ((A(+), A(+)) 
is a Jordan D-bialgebra). 

2. J O R D A N  D - B I A L G E B R A S  OF T Y P E  A (+) 

Let % be a field of characteristic ~ 2 and let (A, A) be an associative D-bialgebra. Our present goal is 

to show that a Lie algebra obtained by applying the Kantor-Koecher-Tits construction to A (+) admits the 

structure of a Lie bialgebra. 

We recall how the KKT process goes for Jordan algebras. Let J be a Jordan %-algebra with unity 

I. For an element a E J ,  denote by a' an operator of right multiplication by a. The linear subspace of 



End4(J)  generated by operators a' is denoted R(J).  The linear map d : J ~ J is called a derivation 

of J if (ab)d = adb + a(bd) for any elements a and b in J.  If a, b E J,  put In', b'] : a'b' - b'a' and 

a ~7 b = (ab)' - In', b']. It is well known that a linear combination of operators of the form [a', b'] is a 
derivation of J .  Such derivations are called inner. 

Let Der (J) (Intder (J)) be a linear space of all derivations (inner derivations) of J .  Then the space 

Der (J)  is a Lie algebra under commutation and, moreover, Intact (J)  is an ideal in Der (J) .  Now let D be 

a Lie subalgebra of Der (J)  containing Intder (J)  and let J be an isomorphic copy of the space J.  Consider 
the linear space 

L(J) = .7 R(.r) D J. 

First, on the space L(J),  define the linear map e by the rule e(a + b '+ d + ~) : e - U +  d + ~, where a, b, c E J 

and d E D. 

Next, define multiplication [, ]L on L(J)  by setting 

[al + + bl,  a2 + V: + b ]L = alV2 - a2 'i + bit(V2) - 

al g7 t,2 - a2 g7 bl + V1V~ - V~Vt, 

where a~, bi E J and V~ E R(J)  ~ D, i = 1, 2. Then the space L(J)  with the assigned multiplication will 

be a -1 ,  1-graded Lie algebra. Denote by Li components of L(J),  where i = -1 ,  0, 1. Write U for a simple 

three-dimensional subalgebra of L(J)  generated by elements 1, 1', and i .  The map e : L(J)  , L(J)  is an 

automorphism of L(J). 

Assume that,  on the space L(J), comultiplication AL is defined. We say that A L agrees with the grading 

of the algebra L(J)  if A(Li)  C ~ j+k=i  Lj | L~. Let A be comultiplication given on the space J .  We say 

that  Az is associatedwith A if, for any element a E J, Az(a)  E E~  a(1)|174 + L~ |  D| 
where A(a) = )"~a a(D| a(~). 

Let A be an associative algebra with unity 1 and let A (+) be its adjoint Jordan algebra. Denote by Do 

an inner derivation of A given by a. The Lie algebra of all inner derivations of A is denoted Intder (A). Any 

element in Intder (A) is a derivation of A (+), and Intder (A(+)) C_ Intder (A). Suppose that  L(A (+)) is a Lie 

algebra obtained by applying the KKT construction to A (+) and to Intder (A). Write [, ]L to denote the 

bimodule action of the algebra L(A (+)) on the space L(A (+)) | L(A(+)); multiplication in A(+) is denoted 

(o). As usual, [, ] stands for multiplication in A(-). The following is then valid: 

T H E O R E M  3. Let (A, A) be an associative D-bialgebra and let (A(+), A(+)) be an adjoint Jordan D- 

bialgebra. Assume that  comultiplication A is cocommutative on the center of A. Then the algebra L(A (+)) 

can be endowed with the structure of a Lie bialgebra with comultiplication AL, such that  A L agrees with 

the grading of L(A(+)), Az; is associated with A(+) and AL(U) = 0. 

Proof .  By R [D] we denote a linear map of the space A into R(A (+)) (Intder (A)), given by R(a) = a' 
(D(a) = Do). Let a, b E A, A(a) -- ~ a  a(1) | a(2), and A(b) = E b  b(x)| b(2)" In view of (3), then, the 

space L(A (+)) | L(A (+)) satisfies the following equalities: 

a b 

(7) 

Z Da(~) | Da(2) b - Dba(,) ~ Da(~) = Z Db(2) | Dab(~) -- Db(3)a ~ Db(~), 
a b 

(8) 



a(1) | (a(2)b)' - ba(,) | a~2 ) -" ~ b(~) | (ab(x))' - b(2)a | b~,), 
b 

(9) 

a~1 ) | a(2)b - (bact))' | a(2) = ~ b~2 ) ~ ab(x) - (b(2)a)' | b(x), 
a b 

(10) 

~a(1) | Da(~)b -- ha(l) | D~(~} = ~ b(2) @ Dab(~) -- b(~)a | Db(,), 
a b 

(11) 

• Da~,) | a(~)b - Dba(~) | a(2) -- ~ Db(~) | ab(z) - Db(,)a | b(1), 
a b 

~_~(~) @ a(2)b - -~a(l ) | a(~) = ~_b(~) | ab(1) - b(~)a | b(~), 
a b 

(13) 

a(1) @ a(2)b - ha(1) @-d(2) -: ~ b(2) @ a--b(1) - b(2)a | b(1). (14) 
a b 

These were obtained by applying to both parts of (3) the operators R | R, D @ D, id @ R, R @ id, id @ D, 

D | id, e | id, and id @ e, respectively. 

If z, y 6 L(A(+)), we put {z, y} = z | y - y @ z. Obviously, [{z, y}, zlL = {[z, zlz, y} + {z, [y, zlz }. Now 
1 

let a 6 A and A(+)(a) = 5 ~ a  a(1) | a(2) + a(2) | a(1). Then com~tiplication AL is defined by setting 

, 1 

1 Do,,, ) + 
(~ tg 

, _ 1 ~({~(~.) ,D,r  + {D,,,} at1)}), = + + 

AL(Da) = ~-'~({a(i),~(2)} - {a(~), a-(1)} - {a~1), a~2)} - ~{D~,,,, D~,=,}). 

Since A is cocommutative on the center of A, the map A5 is well defined. The map A L agrees with the 

grading of the algebra L(A(+)), AL is associated with A(+), and AL(U) = 0. For any element a 6 L(A(+)), 
the equality (r | r = AL(~(a)) holds. 

We give a number of technical lemmas which help us prove Theorem 3. 

L E M M A  1. For any a, b in A, 

ALC[a, b]L) = [AL(a), b]L + [a, ALCb)IL 

and 

Proof. Let us derive the first equality. Suppose n(a) = Y]-a a(x) | a(2) and A(b) = ~b b(1) @ b(2). We 
state, first, that a D-bialgebra (A, A) satisfies the equality 

4A(+)(a o b) = 4(A(+)(a) o (b @ 1) + A(+)(b) o (1 | a)) - A(-)(a)(id @ Db) + A(-)(b)(D~ @ id). 



Indeed, by the definition of At+), 4AC+)(a o b) = A(ab) + A(ba) + v(A(ab)) + v(A(ba)). Therefore, 

4A(+)Ca o b)=  E a ( t ) b |  E b ( D |  E b ( D a |  E a ( 1 )  | ha(2)+ 
a b b a 

E a(2) | a(1)b + E ab(2) | b(l) + E b(2)| b(1)a + E ba(2)~ a(1). 
a b b a 

By (3), we obtain 

Similarly, 

|  c,b = | Ioc,.bl + ~174 = 

a(,) | [a(,), b] + ~ a(2)b| + ~'_b(,)| ~".ab(,)| 
a a b b 

~-~a<t) | ha(2) = ~--~ a(1) | [b,a(u)] -t- ~_b(2) |  ~-~ bc~)a | bet ) + ~_ba(1)| 
a a b b a 

This gives the desired equality. 
Now, take elements [AL(a), b]L and [a, AL(b)]L. Since 

[ 2 h L ( a ) ,  b ] L  ---- - -  E ( { G . ( 1 ) ,  a.(2 ) o b} + { a t 2 ) ,  a(1 ) 0 b})  - 1 ~({~(2) ,  [b, ~c~)]} + {[b, a(2)], ~(,}) 

and 

1 
[~, 2n~(b)]L = ~({bC~ ), be2) o ~} + {be2 ), b(~) o ~}) + i ~({b(~) ,  [~, bc~)] } + {[a, bC2)], bC~))), 

b b 

the above equality yields [AL(u), b]L --k [a, AL(b)] L = A(+)(a o b) - A(+)(b o a) = 0. The first equality is 
proved because [a, b]L = O. The second equality is easily obtained from the first by applying the map e | e. 

L E M M A  2. For any a and b in A, we have 

Ar([a, b']L) = [AL(a), b']L + [a, AL(b')]L 

and 
:,~([~, b%) = [:,~(~), b']~ + [~, A~(b')]~. 

Proof.  To prove the first equality, let A(a) = ~'~ a(1 ) | a(2) and A(b) = ~b  b(1) | b(21. It is then clear 
that 

4AL(a o b) = E ( { a ( t ) b ,  a~2)} -t- {a(2), (a(t)b)'} -'1- {a(D, (ba(2))'} -I.- {ba(2), a~1)],.)+ 
G 

1 ~({ac2), Do,.,d + {D~(., aCl)b} + {~(2), Do,,,) + {D,.~.,, ~Cl)})+ 
2 

~ ( { b ( : ,  hi2 )} + {b(~), (b(~:)'} + {b.), (,~bc~))'} + {~bc2), b~l)})+ 
b 

1 E({b(~), Db(,/,} + {Db(,), ab(t)} + {ab(2), Db,,)} + {D~b(,,, bet)} ). 2 
b 

Since [a, b']L : a o b, and for any elements z and y in A, 4[z', Y']L = D[~,y] holds, it is routine to verify that 

4(AL([a, b']L) -- [AL(a), b']L -- [a, A L(bt)IL ) --- 



Y]({ '~( : , ) ,  (~c, . ) ) ' ]  - Tb"(,.), ':'~,)} + {':'(,.), (ace)b)'} - {'~c~) b , ' '~ l ) } )+  
G 

1 E ( { a ( 2 ) ,  Db,L(,)} - {D,,r ba(1)} + {D,(,,~, a(,)} - {a(2)b, D,(,, })-4- 
2 

G 

~ ( { . b ( 1 ) ,  b~)} - {b(2), (ab(1))'} + {bc2)a, b~x)} - {b(~), (b(2)a)'})+ 
b 

1 
E({b(2) ,  D~br - {Dbc, ) , bcl)a} + {Dbr br - {bc2)a, Dbr 

b 

Equalities (9)-(12) imply 
A~([., b'lL) = [AL(a), b']L + [~, A~(b')]L. 

Applying the map e | e to both sides of the latter yields the second equality. 

L E M M A  3. For any a and b in A, the following equalities are satisfied: 

AL([a, DblL) ---- [AL(a), DblL + [a, AL(D~)]L , 

As Oh]z) = [As DblL -4- [~, AL(Db)]L, 
I I ~L([~, DdL) = 

~ ( [~ ' ,  b'lL) = [ ~ ( ~ ' ) ,  b']~ + [~', ~ ( b ' ) ] ~ ,  

AL([D~, Db]L) = [A/~CD~), DblL + [D=, AL(Db)IL. 

Proof .  Let A(a) = ~-~ a(1 ) | a(2)and A(b) = ~ b  b(~)| b(~). Then 2A(+)([a ,b])~ ~_,~(a(1)b | a(2)+ 
a(~) | a(~)b - a(1) | ba(~) - ba(~) @ a(1)) + ~_,b(b(1) | ab(~) + ab(2) | b(D - b(ua | b(~) - b(~) | b(~)a). Therefore, 

~,',L([a, b]) = ~({ac, . )z , , , : ,~)}  + {':'c',), (ac~)z')'} - {acl), (~ (~ ) ) ' }  - {~(',-),  aS. ) } )+  
Ill 

1 E({a (~ ) ,  Doq,,b} + {Da(,), a(,)b} - {Dba(,,, a(x)} - {ba(=), Da(,)})+ 
2 

~({~c~), (~c~))'} + {-~(~), ~ ) }  - {~(~)~, ~5)} - {~(2), (~c~)-)'})+ 
b 

E({ab(2) ,Dt ,r  + {D~ar b(~)} - {b(2), D~(,)~} - {D~r (b(Da)}). 
b 

Since [a, Db]L - -  [a, b], and for any z and y in A, 4[z', Y']L = D[~,~], we can verify it overtly that 

2(AL([a, Db]L) -- [AL(a), DblL -- [a, AL(Db)ln) = 

~({~c~) ,  ~,)} + {ac~), (~(1))'} - {ac~), (~(~)~)'} - {~(,), ~ ) } ) +  

1 E({ac~) ,  D~,,,(,, } + {D=r bacl)} - {Da(,,~, acx)} - {ac~)b, D~(,)})+ 2 

b 

1 E({bc~)a  ' D~(,)} + {Da(,)~, bc~)} - {b(~), D~,(,, } - {D~(,), abe,)}). 2 
b 



From (9)-(12), we obtain the equality 

A~([a, Db]L) = [Az(a), Dv]L + [a, A&(Db)]L. 

If, now, we apply the map �9 | e to both sides of the latter we arrive at the second equality envisaged above. 
Proofs of the last three equalities follow the same route as is one for the first, in which case use must be 
made of (7), (8), (13), and (14). 

L E M M A  4. For any a and b in A, the following equality is satisfied: 

~ ( [ ~ ,  ~]~) = [zx~(a), ~]~ + [~, zx~(~)]~. 

Proof .  Let a,b 6 A. Then [a,b]z = (aob) ' -  [a',b']L. For any c 6 A, we have Az([c,1]z)  = [A~(c), ]']z 

and Az( [c ' , l ] z )  = [ A z ( d ) , l ] z .  Since (aob)' = [(aob),T]r~ and aob = [a,b']z, it follows that Az((aob) ' )  = 

[AL([a,b']z),i]Z. In view of Lemma 2, AL((a o b)') = [[Az(a),b']z,T]z + [[a,A~(b')]L,i]L, and by the 

Jacobi identity, we obtain 

~ ( ( ~  o ~)') = [[s i ]z ,  ~']z + [a(~), [~', T]z]~ + [[~, YE, ~ (~ ' ) ]~  + [~, [~(~'), IE]~.  

Consequently, 

and by Lemma 3, 

This gives the desired equality. 

L E M M A  5. A pair (L(A(+)), AZ) is a Lie coalgebra. 

Proof .  Denote by A* and L* the duals of coalgebras (A, A) and (L(A(+)), AL) , respectively. Clearly, 

L* is a -1 ,  1-graded algebra. Let L 'x ,  L~, and L~ be components of L*. It is not hard to see, then, that 

L~ = V ~ W, where the spaces V and W are isomorphic to, respectively, A* and Intder (A)*. It is also 

evident that  L* I and L~ are isomorphic to the space A*. For each functional w in W, define the functional 

in A* by setting (~, a) = (w, D,).  

We show that  L* is a Lie algebra. Denote multiplication in L* ((A*)(-)) by [, ], ([, ]). By the definition 

of AL, L* is anticommutative, and the following relations hold: [L*t,L~],  C L~, [L*,L*], = 0, and 

[Li, L0] . C_ Li ,  where i = -1 ,  1 and j = -1 ,  0, 1. The inclusions [V, W],  C_ V, [V, V], C W, and [IV, W], C_ 

W are also obvious. 

Let wl, w~, w3 6 W, a 6 A, and A(a) = E .  a(,) | a(2). Then ([[wx, w2]., w3]., D. )  = " 1 - i  EA<[w~,~0~]., 
D~(,)>(w3, D.(.)>- <[wl, w2]., DG(~))(w3, D.o))). If A(a(1)) = E.(,)a(1)(1)| a(i)(2)and A(a(2)) = 

1 ~'~(~ a(~)(,)@ a(2)(2) , then ([[w,,w2].,wz]., D.) = ~ E . ( ( ~ ,  a(1)(I))(~'~2, a(x)(2))(~3, a z ) -  (~, 
~(1)(~))<~,~(~)(,~)(~, ~ ) -  (~, ~(,)(,))<~, ~(~)(~)(~, ~,)+ (~, a(2)(~))<~, ~(~)(,~><~,~,)). Con- 
sequently, 16([[w,, w~]., w3]., Da) = ([[~'[i, w'~], ~], a>. Therefore, 

where J(wl,  w2, w3) and J(~'11, ~'~2,~33) are Jacobians in the algebras L* and (A*)(-), respectively. Since 

J(wh w2, w3) = 0, we have J(wl,w2,  w3) = O. 

For vl, v2, v3 6 V and u 6 L*_113 LI, the equalities J(vl, v~, v3) = O, J(vl,  v~, w3) = 0, J(Vl, w2, w3) = O, 
J(u, v~, v3) = 0, and J(u, w2, w3) : 0 are to be proved similarly. 



Let v G L*_~, u E L~, w E L~, and a G A. Then J ( v , u , w )  = O. Indeed, by the definition of A~, 

1 i i 
([Iv, u]., w]., a'> = ~ E ( < [ v ,  u]., a(2)> <w, Da. ,  ) - <[v, u]., Da m )(w, a(a))+ 

G 

<[., ~]., D.(.,><~, .~)> - <[~, .1., ~i~))<~, D.,~,)). 
If w E W, repeating the above argument, we have 

([Iv, '& ,  w]., a') = 

8 

Therefore, 

([[,, .1., ~]., a ' )  = ~ ~ ( ( ~  o . ,  a ( 2 ) ) ( ~ , - 1 )  - (~  o -,-(1))(~,.2)) = - ( [ .  o . ,  ~],.),  
Q 

where 2v o u = vu + uv. Likewise we obtain ([[v, w]., u]., a') = - �88 o u,a) and ([ v, [u,w]. l . ,a ')  = 
- l ( v  o [u,~],a) .  Then (J (v ,u ,w) ,a ' )  = 0. The case w E V can be proved similarly. Repeating the 

argument, we infer that  ( J (v ,u ,w) ,Da)  = 0. Thus J ( v , u , w )  = 0. The equality J ( v , u , w )  : 0, where 

v G L*_tUL ~, u E V, and w E W, is derived in a similar way. 

Let v, u E L~ and w E L*_ t" Then [[v, to],, u], E L~. Reasoning as in the two cases envisaged above, we 

h a v e  

([[~. ,,,].. ,,1.. ~) = ( 4  [ , , ,  [.,. ,,,]] - , ,  o ( , ,  o ~,). ,~) 
for any a G A. Consequently, 

( J ( ~ ,  ~, ~),.) = 

(~[~, [~, ~ 1 ] - .  o (~o ~ ) -  1[., % ~,]1 + ~ o  (~o w), ~) = 

1 o(v w ) + v o ( u o w ) , a ) .  ( ~  [[~, ~], ~1 - ~ o 

Since �88 v], w] - u o (v o w) + v o (u o w) = 0, it follows that  J(v, w, u) = 0. The equality J(v,  w, u) = O, 

where v, u E L* - t  and w E L~, can be proved similarly. 

Finally, since [Li,L~] . = 0, where i = - 1 , 1 ,  we have J ( v , u , w ) .  = 0 for any v ,u  E L* and w E L~). 

Consequently, L* is a Lie algebra. Therefore, the pair (L(A(+)), AL) is a Lie coalgebra. Tha t  (L(A(+)), A~) 

is a Lie bialgebra is implied by Lemmas 1-5. Theorem.3 is thus proved. 

3. L I E  B I A L G E B R A S  A S S O C I A T E D  W I T H  J O R D A N  A L G E B R A S  

Let (~ be a field of characteristic ~ 2 and J a Jordan ~-algebra with unity I. Suppose that  D is some 

algebra of derivations of J containing Intder (J) ,  and L is a Lie algebra obtained from J and D following 

the KKT process. Denote by U a subalgebra of L generated by 1, 1', and $. Multiplication in L is denoted 

[, ]. Suppose that  a pair (L, AL) is a Lie bialgebra. Then the following is valid: 

T H E O R E M  4. Assume that the characteristic of % is not 2, 3, comultiplication A L agrees with the 

grading of L, and A(U) = 0. Then J admits the structure of a Jordan D-bialgebra with comultiplication 

A and, moreover, AL is associated with A. 
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First we argue for some properties that characterize An. If z , y  E L, then, as above, put  { z , y }  = 

z | 1 7 4  

L E M M A  6. Let comultiplication An satisfy the conditions of Theorem 4. Then, for any a in J and d 

in D, the following equalities ate true: 

j 

i j 

i j 

An(d)= ~(&, ,~ , ) -* :  |  ~ d l j  | d2,, 
i j 

where ai, bi,cj, z l ,yi  E J and dj ,d l i ,d2j  G D. 

P r o o f .  Let a E J .  Because comultiplication An agrees with the grading of L, we have 

i ~ j t 

where all ai, bi, ej, , f~,cj,gz G J and di ,hi  E D. Since An(a) : - r ( A n ( a ) ) ,  it is clear that An(a)  = 

y~i{a/,b~} + ~_,j{cj,dj}. The equalities [a, 1] = 0 and An( l )  = 0 give us An(In, I]) = [h n (a ) , l ]  + 

[a, An(l)] = O. This yields 
~ |  ~b,| (,) 

i i 

To both parts of this equality we apply the map R | R to obtain ~-~ a~ | b~ = ~ i  b~ | a~. 

Sow we ta~e an element a'. Since a' = [a,~] and an(~ )  = 0, we have ~n(a ' )  = JAn(a), ~ ]+ [a ,  A~(~)] = 
~ ,  {a~, ~} + ~:,{a~, b~} + ~.{c~., dj } = ~,{a~, ~} + ~ {c~, dj }. The third equality can be proved similarly. 

Let us derive the fourth equality. Let d ~ D. In the same way as above, we o b t a ~  

AL(d) -~" E {~i'~i} § E ~1~ | ~t~ § E{lll~,di} § E dlj | 
i ~, t j 

where z i ,y i ,vk ,  u t ,w t  ~ 3" and d~,dxj, dzj G D. The pair (L, An) is a Lie bialgebra and [1,d] = O, and so 

[1,An(d)] : 0. Hence, 

~(*, ,  ~3 + ~(~,  | ~ + ,; | + ~(~ , ,  ~,~ : 0. 
i k l 

Consequently, ~ i  zi | V~ + ~ v~ | u~ = 0 and ~t{wt ,d~}  : 0. If, now, to both parts of the first equality 

we apply the map R | id we obtain E ~ z :  | V~ : - Z ~  v~ | u~. Since Ez{w~,dt}  = [Z~{w~,d~},l], it 

follows that ~t{w~, d~} : 0, whence the desired equality. 

Now, define comultiplication A on the algebra J.  Let a ~ J .  In view of Lemma 6, An(a  ) : ~ { a ~ ,  b~} + 

~ j { c i ,  dj}. We then put A(a) = ~-~i a~ | hi. By (,) ,  comultiplication A is cocommutative. Let 3.* be 

the dual of the coalgebra (3, A). The algebra 3.* is commutative. Let L* be dual to the coalgebra (L, A). 

There is no loss of generality in assuming that L* = J* ~ R(J)* ~ D* ~ J'~, where ~"  is an isomorphic 

copy of the space J*. It is easy to state that there exists an isomorphism between spaces 3.* and R(J)* ,  
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for which the image of an element f from J* is denoted f ' .  Consider the algebra B = B(L, L*), introduced 

in Sec. 1. Obviously, L and L* are subalgebras of B, in which case multiplications on L and L*, induced 

by multiplication in B, coincide with the initial ones. Denote multiplication in B by [, ]. Since the pair 

(L, AL) is a Lie bialgebra, B is a Lie algebra. Write x for the projection of the space B onto L*. By the 

definition of multiplication in B, we have (x([/*, /]), I,) = (P, If, 11]) for any elements/* 6 L* and I, 11 6 L. 

L E M M A  7. Let f ,  9, h G J* and a 6 J .  Then ([h', If ' ,  gq],a') = ((f, h ,g) ,a) ,  where (f,  h, 9) is an 
associator of elements f ,  h, g in the algebra J*. 

P roof .  Let a 6 .7, A(a) ---- ~ .  acl ) O at2), ~(s = ~a s ~ {I(I)(2), and A(~(2)) = ~a {~(2)(1) @ 
a(~)(2). By the definition of A and Lemma 6, then, AL(a')  ---- ~a{u(1),~(2)}-b ~-'~i{c~,di}, where c{ 6 J ,  

dl 6 D, and Ar.(d~) = ~ ( { z q , ~ q }  - z~# | l / i)  + v for z{~, !/q @ .7 and v 6 D | D. Consequently, 

, ~ l 
(id | AL)AL(a ') = ~ ~(I) ~ {G(2)(2), (2)(i)} - -  E a($> ~ {G(1)(1)' s )-~ 

a 

whereu6 R(.7)|174 D|174 L|174 L|174 
Induce a linear map ~ on the tensor cube of the space L, putting ~(z |  = y | 1 7 4  Since (L, AL) 

is a Lie coalgebra, we have (id + ~ + ~a)(id | AL)AL(a') : 0 (see [3]). From this equality, we obtain 

i j  a 

If to the latter we apply the map id @ R @ Rc we see that  

~-'-~, , , ~ ( '  ' , , , 
c~ | z~y @ yq = - . a(2)(2 ) 0 a(1) | a(2)(i) a(1)(2) @ a(I)(i) @ a 2)) 

i,j a 

Therefore, 
? l l I 

<[h', If', g']], ='> = - ~(o~(h' | | g ), c, | =q | yq> = 
id 

~ ( p l ( h  ~ f | 9),.(i)(2) | -(I)(i) ~ -(2~ - a(2)(2~ ~ a(1) | a(.(1)> = <(I, h, 9), ~>. 

Consider the space C "- J (~ J-'; with multiplication ( .)  given by 

(a -I- y )  * (b -}- ~') : (ab+f.b+g.a)+(fg+f.b+g.a), 

where a, b 6.7, f, g 6 J*, (f �9 b, a) = (f, ba), and (f, a. g) = (fff, a). For elements z, y, z E C, (z, y, z) is an 

associator in the algebra C. Denote by A the projection of the space C onto J*. 

LEMMA 8. Let a, b 6 .7 and f, g 6 .7". Then the algebra B satisfies the following equalities: 

If, g] = (f g)' - If', 9'], (15) 

[f, 9'] = fg, (16) 

[7, g'] = - f--9, (17) 
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In, f] + [~, 7] = 2[a', f'], (18) 

(Y, ~, ~) = [~, [~ ' , /% (19) 

(?, y, ~) = [[/', a'], y], (20) 

(7,-,  y) = [-, If', r (21) 

(a,7, b) = [Y, [.', Vll. (22) 

Proof .  Let A(a) = ~[:~a(1)| a(2) and A(b) = ~[:~b(1)| b(2). By Lemma 6, we have AL(a) = 

and AL(b') = E~{b(1),b(~.)} + E ,{e ; ,  Di} , where c~, e i 6 S and d/, D i 6 D. 
We prove (15). Take an element u = [1,~] - (fg)'+ [f',g']. Then 

(u,a') --- ([f,~],a') - ((fg)',a') = ~_j(f, ao))(g,a(2)) - (fg, a) ---- O. 
f$ 

Likewise we obtain (u,d) = 0 for any d E D. Therefore, [f, ff] = ( fg) ' -[ f ' ,g '] .  Equalities (16) and (17) are 
to be proved similarly. 

We derive (18). By the definition of multiplication in B, we have [a, f] = ( a - f ) ' +  ~ i  (f, ci)di + x([a, f]) 

and [a,7] - - ( a .  f ) '  + E i ( f ,  cl)c~ + ~r([~,T]). Let u = r ( [a , f ] )  + (x[~,T]). Then u e R(J)* + 19". If 
v E R(J)* and d fi D, then (u.v + d) : - 2 ( f ,  ad) = 2(x([a', f ']),  v + d). Therefore, u = 2~r([a', f ']).  On the 

other hand, [a', f ']  = ~ i  0 t, c~)d~ + r([a ' ,  f ']).  Consequently, [a, f] + [~, 7] = 2[a', f '] .  

Take an element [b, [a', f']]. It is clear that 

[b, [a', f']] = E(f, c,)bd~ + E(f, aDj)ej + ~'([b, x[a', f']]), 
j 

and for any c e 3", we have ('r[b,x[a',f']],'~) = (f', [[~,b],a']) = (,x((7, b,a)),~). Therefore, [b,[a',f']] = 

E, if, c,)bd~ + Ej (f, aDj)eJ + ,x((7_f, b, a)). 
Alternatively, since ba : [b, a'] and the pair (L, ~L) is a Lie bialgebra, we have 

~ (b~) = ~ ( b  m, (%.) '~  + ~ ( a m b ,  "5)} + ~ ( e ~ ,  ~ - ~ ( c , ,  (b~)'~ + . ,  
b a 1 i 

where = Z R(J) @ D + D | R(J). Therefore, 

Afbo) = y: oc,b | o m +  Z % | ohm - y: o~ | e~ - ~: ~, | ~ 
a b j i 

Hence, 

(L b,.) = Z ( : ,  c,)bd, + Z ( S ,  aDj)ej + ,X((?, b,.)) = [b, [~ ' , /% 
i i 

Equality (19) is thus proved. 

We prove (20) and (21). By the definition of multiplication in B, [],a ']  = f . a  + x([7,a']).  Therefore 

~'([7, at]) E ~X" and, moreover, r([7,a ' ])  = ,X(7 * a). Consequently, [7,a'] = f .  a + ,x(f * a). Similarly, 

[f ' ,a]  = f . a  + ,x(7*a).  Using (17), it is not difficult to show.that 

[f'-g, a'] -- [f', [~, a']] -- (fg).a + ,X((Tg* a)) -- f . (g. a) -- ,X(7-f * (g" a)) -- f,x(y,a). 
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The expression that fills the right part of this equality is equal to (7, O, a). Likewise we obtain (7, 9, a) : 

[(fg)',a] + [f',[g',a]]. In view of (17) and the Jacobi identity, we have [ ~ , a ' ] -  [f'[~,a']] = t t : ' , o ' l ,~ l  
Consequently, (f ,  if, a) = [[f', a'], ~]. Since the algebra C is commutative, (f ,  a, if) + (a, ~, f )  + (g, f ,  a) = 0. 
Therefore, 

(f, a, g) -- [(Jf)', a] -- [if, [g', a]] -- [(fJ) t, a] -4- [9 t, [ff, a]] ---- [a, [ft, 9']]. 

Equalities (20) and (21) are thus proved. 

And, finally, we derive (22). Since the pair (L, AL) is a Lie biaigebra, we have AL([a',b']) = 

E ~ ( { ~ I ) ,  ~ - ~ )  - {a<l ) ,~-~)) )  - E ~ { a b ~ : , b - ~ )  - {br162 + =, where ~ Z R(J)  @ R(S) + O | D. 
Therefore If, [a', b']] -- E~(f, a<~))ba<~) - if, ~r - (f, bf~))ab<1) + (f, abc2))b~) + ~([7, [a', b']]). Since 
:r([7, [a', b']]) q j-'V, we have ix([7, [a', b'l]),E) = (A((a, f ,  b)), E). Using the last two equalities, we arrive at 
(22). 

P r o o f  of Theorem 4. Comultiplication AL is associated with A. We show that B(3, J*) is a Jordan 
algebra. It is not difficult to state that there exists an isomorphism of algebras C and B(.I, 3"), under which 

the image of the subalgebra J* is J*. We prove, first, that J* is a Jordan algebra. In view of Lemma 7, it 
suffices to show that, for any f E J*, 

[(f~)', f'l = o. (,,) 

From (15), (16), (17) and the Jacobi identity, we obtain [ ( fa) ,  f,] : [[f, f] ,  f'] : [[f, f'], 7] + [f, [7, f']] -- 
[f2,f]  - [ f , f  ~] "-- -2[ ( f2)  ', f '].  Consequently, 3[(f2) ', f ' ]  -- 0, and so [(fay,  f,] _. 0. Thus, J* is a Jordan 
algebra. Therefore, J* is a Jordan subaigebra in C. 

Now we show that C is a Jordan algebra. To do this, it suffices to prove the validity of the following: 

(f~, a, 7) = o, 

(aL f ,  a) = 0, 

(/~, b, a) + 2(7-~,  b,?) = 0, 

(~, ~, 7) + 2 ( 7 .  a, ~, a) = 0, 

(a ~, b,7) + 2 ( 7 .  a,b,a) = 0, 

where a,b E J and f , 9  E J*. The first equality follows from (21) and (**). Since J is a Jordan algebra, 
the second equality is implied by (22). 

Let us prove the third equality. In view of (19), ( p , b , a )  : [b, ta ' ,(/2) ']l .  By (15) and the Jacobi 

identity, we obtain [a', (f2),] = [a', [f,711 = [[a',/1,?1 + [/, [a', f]l. By the definition of multiplication in B, 

we have [[a', f ] ,  7] = [a.  f ,  f]  + [[~([~', f]) ,  71 and If, [~', 7ll = - I f ,  a .  f]  + If, [=([~', 7])1. It is easy to see that 
~'([a', f]) = f *a  and x([a', f])  = - a  s f .  Therefore, by (18) and (15), [a', (f2),] = 2[ (a- f ) ' ,  f'] + I f . a ,  7] - 
If, j ' s  a] -- 2[(a- f ) ' ,  f ' ]  - 2[(f s a)', f '].  Consequently, [b, [a', (/~)'ll = 2[s, [(a . / ) ' ,  /'11 - 2[b, [(/�9 a) ' , / ' l l .  
nut,  by (19) and (21), we then have 

[b, [a', (f~)']] = - 2 ( a .  f ,  b, f )  - 2(f  �9 a, b, f )  = - 2 ( 7 ,  a, b, 7). 

The fourth and the fifth equalities can be proved similarly. In this way C is a Jordan algebra, and so 

too is B(J,  J*). Consequently, the pair (J, A) is a Jozdan D-bialgebra. Theorem 4 is thus proved. 
Acknowledgement. I am deeply indebted to Prof. Shestakov, who initiated the present investigation. 
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