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S H M E L ' K I N  E M B E D D I N G S  F O R  A B S T R A C T  
A N D  P R O F I N I T E  G R O U P S  

N .  S. R o m a n o v s k i i *  UDC 512.5 

The Magnus embedding is well known: given a group A = F/R,  where F is a free group, 

the group F/[R, R] can be represented as a subgroup of a semidirect product AT,  where T is 

an additive group of a free ZA-module. Shmel'kin generalized this construction and found an 

embedding for F/aJ(R), where ]2(R) is the verbal subgroup of R corresponding to a variety ]~. 

Later, he treated F as a free product of arbitrary groups, and on condition that R is contained in 

a Cartesian subgroup of the product, pointed out an embedding for F/V(R) .  Here, we combine 

both these Shmel'kin embeddings and weaken the condition on R, by assuming that F is a free 

product of groups Ai (i E I) and a free group X ,  and that its normal subgroup R has trivial 

intersection with each factor Ai. Subject to these conditions, an embedding for F / Y ( R )  is found; 

we call it the generalized Shmel'kin embedding. For the case where ]2 is an Abelian variety of 

groups, a criterion is specified determining whether elements of AT belong to an embedded group 

F / Y ( R ) .  Similar results are proved also for profinite groups. 

I N T R O D U C T I O N  

The  Magnus embedding is well known; see [1]. Given a group A = F/R, where F is free, that embedding 

allows the group F/[R, R/ to be represented as a subgroup o fa  semidirect product AT,  where T is an additive 

group of a free ZA-module. In [2, 3], Shmel'kin generalized this construction and found an embedding for 

a group F/V(R) ,  where V(R) is the verbal subgroup of R corresponding to a variety V. In [4], Shmel'kin 

treated F as a free product of arbi t rary  groups, and with the requirement that  R is contained in a Cartesian 

subgroup of the product, pointed out  an embedding for F /V(R) .  

In Sec. 1 (Thin. 1), we combine these two Shmel'kin embeddings and weaken the requirement on R, by 

assuming tha t  F is a free product of groups Ai (i E I) and a free group X, and tha t  its normal subgroup R 

intersects triviality with each of the factors Ai. Subject to these conditions, an embedding for F /V(R)  is 

found, which we call the generalized Shmel'kin embedding. Such a generalization seems important  by reason 

of the fact tha t  in dealing with the group F /P (R) ,  it is often necessary to treat  some one of its subgroups 

H /V(R) ,  where H > R. By the Kurosh theorem, the group H,  in our case, factors into a free product of 

groups conjugate to subgroups in Ai and a free group. Obviously, w.r.t, this factorization, the subgroup R 

again satisfies the condition above, which permits us to apply the embedding construction also to H/ ] ) (R) .  

In Theorem 2, we specify the criterion determining whether elements of AT belong to an embedded group 

F/V(R) ,  with V an Abelian variety of groups. This generalizes the relevant cri teria obtained in [5] and [6] 

for the factor group of a free group, and in [7] for the factor group of a free product .  

*Supported by RFFR grant No. 99-01-00567. 

Translated from Algebra i Logika, Vol. 38, No. 5, pp. 598-612, September-October, 1999. Original article submitted 
October 20, 1998. 

326 0002-5232/99/3805-0326 $22.00 (~) 1999 Kluwer Academic/Plenum Publishers 



In Secs. 2 and 3, we are concerned with the generalized Shmel'kin embedding in a class of profinite 

groups. Here, F is taken to be a free product  of profinite groups Ai (i E I )  and a free profinite group 

X,  and V is an arbi t rary  variety of profinite groups. As in the case of abs t rac t  groups, we point  out an 

embedding for F / ] ; ( R )  (Thin. 3), and for 12 an Abelian variety, specify the criterion determining whether 

elements of  A T  belong to F/] ; (R)  (Thm. 4). Previously, the Magnus embedding for the factor group of a 

free profinite group was studied in [8], and the Shmel 'kin embedding - -  in [9]. 

1. G E N E R A L I Z E D  S H M E L ' K I N  E M B E D D I N G  F O R  A B S T R A C T  G R O U P S  

1.1. I f  a group G acts on a group H,  we say tha t  H is a G-module. For a given variety ]; of  abs t rac t  

groups, there exists a free G-module with basis {zl I i E I}  in ];. As a group, this module is free in V with 

basis {z~ [i G I ,  g G G}; the action of G is defined in the obvious manner.  Below, for the group elements 

a and b, b a and b ~-1 stand for a - lba  and bab - : ,  respectively. 

L E M M A  1. Let G > A be groups; V a variety of groups; T a free G-module in ];, with one free 

generating element t; ~o : G --* H an epimorphism; S some H-module  of ]2 ( t reated also as a G-module);  

L - H S  the respective semidirect product. Suppose that  the homomorphism r  A --* L is given so tha t  

Then the map  

a r  --- a~o- s~, s~ E S (a E A). 

~ - 1  __. s~ (a e A) 

extends to an homomorphism of the G-module T, generated by elements ~a--i (a ~ A), onto a G-module  

generated by sa (a E A). The first of these modules being a group is a retract  of the group T free in ];. 

P r o o f .  Let t A be an A-submodule of T generated by an element t. Then T being a group is a ];-free 

product of groups tA, (gA)g, (i G I) ,  free in ];, where {g~ [i G I}  is a system of representatives of  the right 

cosets of G w.r.t .  A other than A. Let TA be an A-module generated by elements ~a-1 (a E A). In view of 

the formula 

(~a-:)a' = taa'-:. (i~'-:)-:, (I) 

TA being a group is generated by the set U : {t ~-  1 [ 1 ~ a G A}, and it is a retract  of the group t A free in 

]2, for the basis of the latter group is obtained by adding to U one element t. The  group T, too, is a retract  

of T, and its basis is constituted by the set 

{ in-: ,  /(a-1)g, [ 1 r a E A, i E I},  

which is complemented to a basis of T by the elements t, t g~ (i E I ) .  

Consider in S an A-submodule SA generated by elements sa (1 ~ a E A). Since 

we have 

so , )  = s . o , ,  

= (2 )  

This formula implies that  SA is generated as a group by elements s~ (1 ~ a E A), and S is generated by 

s~, s~ ~ (1 ~ a E A, i E I ) .  Since T is free in ];, the mapping of its basis 

( leaeA,  e l) 
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extends to a group homomorphism, which is a module homomorphism in view of (1) and (2). The lemma 

is proved. 

T H E O R E M  1. Let F -- (i~z Ai) * X be a free product of nontrivial groups Ai (i E I)  and a free 

group X with basis {zj [j E J} (we do not exclude the case with A~ or X missing); R is a normal subgroup 

of F such that  R n A~ = 1 (i E I); A -- FIR.  Identify the groups A~ (i E I)  with their canonical images 

in A; denote by ~ the canonical image of an element z E X in A. Let V be a variety of groups and T 

be an A-module free in V with basis {tk ] k E I U J ) .  Consider a semidirect product M = A T  and an 

homomorphism r :  F --* M given by the map 

Then the kernel of 7- coincides with V(R), that  is, v yields an embedding of F / V ( R )  in M. 

Proof .  Since R r  _< T and T E V, we have ker ~" >_ V(R). We need to prove the inverse inclusion. 

Consider a group F/V(R)  and the Kaloujnin-Krasner embedding r of this group in a Cartesian wreath 

product R / V ( R ) I A ,  which is represented as a semidirect product AS, where S is a basis subgroup of the 

wreath product (cf. [10] and [11, Thm. 6.28]). We have 

a i r  ai .s~,, s~, E S (a, E Ai, i E I); z j r  = ~ j .  sj,  s i e S (j e J) .  

Notice that  S E V. For k E I U J ,  denote by Tk an A-submodule o f T  generated by an element tk- For i E I, 

denote by ~ an A-submodule generated by elements t~,-1 (a~ E A~). The subgroup of T generated by all 

(i E I)  and all T/ (j  E J )  is denoted T. The free group T of V factors into a V-free product of its V-free 

subgroups T~ (k E I U J) .  By Lemma 1, the group ~ is a retract of T~. For this reason, T factors into a 

V-free product of its V-free subgroups ~ (i E I)  and Tj (j E J) ,  each of which is an A-submodute. Again 

by Lemma 1, for every i e I,  the map ~ ' - x  --~ s, ,  (ai e Ai) determines an homomorphism ~i:  ~ --~ S 

of A-modules and the map tj --~ sj determines an homomorphism qj : T i --* S of A-modules, for every 

j E J .  Therefore, the homomorphisms ~k (k E I U J)  extend to an homomorphism ~ of the group 

into S, which is also an A-module homomorphism. The homomorphism cr and the identity map A ---* A 

yield an homomorphism "~ : AT ---.* AS  of semidirect products. By construction, r 7 = r In particular, 

ker ~- _< ker r : V(R). The theorem is proved. 
1.2. Here, we deal with a more specific case where ]2 is an Abelian variety, that  is, V is one of the 

varieties .A~; .Ao is a variety of all Abelian groups and .A~ (m >/ 1) a variety of Abelian groups of period 

m. Then T is the usual module over a group ring ( Z / m Z ) A .  The group M, in this case, is identified with a 

( A  01 ) .  A proof of the next theorem foUows essentially the same line as Proposition 1 group of matrices T 

in [12], but with substantial deviations in some places. 

T H E O R E M  2. Suppose that the conditions of Theorem 1 are satisfied and V = .An. The matrix 

iEl jEJ 

belongs to FT" if and only if the following hold: 

u~ E (A, - 1). (Z /rnZ)A (i E I), ~ u~ § ~-~(zJ - 1)vj - a - 1. (3) 

328 



P r o o L  A check that conditions (3) distinguish a subgroup in M is straightforward. Since the generating 

elements 

( a~ 01) ( 0 1 )  t i ( a i - 1 )  ( a i E A , ,  i E I ) ,  51tj ( j e J )  

for the group F~- satisfy (3), all elements of F~- also satisfy these. We need to prove the inverse: an element 

of M satisfying (3) belongs to F t .  First we define some new objects. 

a r i g h t  free (Z/mZ)F-module  S with basis {sk[k E It.J J}, a matrix group L = " ( F  0 )  " Consider 
S 1 ' \ ] 

and an embedding a :  F --~ L given by the map 

ai---* ( ai O ) ( a i E A i ,  i E i ) ,  z i -  ( z j  O 1 ) ( j E j ) .  
si(ai -- 1) 1 t 1 

The embedding a extends to an embedding (also denoted ~) of the ring (Z /rnZ)F in the ring 

Let v E Z F and 

We call the function 

( (Z/mZ)F 0 ) 
L = S Z / m Z  " 

( o) 
v~r = ~ sk " D1,(v) " 

m : ,  --. Dk( , )  (k e z u J )  

a partial Foz derivative. Notice that a = c(v), where 

~: (Z/mZ)F --. Z/~Z, 

is a triviallzation map, and the following formulas hold: 

ifai  E Ai (i E I),  then Di(ai) = ai - 1, Dk(ai) = 0 for k • i; 
D j ( z j )  = 1 (j E J) ,  Dk(zi)  = 0 for k # j; 

ifu, v E (Z/rnZ)F, f E F, then Dk(u + v) = Ok(u) + D~,(v), 
D~(uv) = D~(u)v + r Dk(f  - I )  = -Ok( . f ) f  -1. 

(4) 

Furthermore, for i E I, we have Di(v) E (Ai - 1).  (Z/rnZ)F.  A fundamental ideal A of the group ring 

(Z /rnZ)F being a right (Z/mZ)F-module  decomposes into 

~-~(A, - 1 ) - ( Z / m Z ) F  + ~-~(zj - 1 ) - ( Z / m Z ) F .  
~EI jE.r 

This sum is direct. Using (4), w e  obtain the following: 

ff v 6 (Ai - 1 ) - ( Z / m Z ) F ,  then Di(v) = v and D~(v) = 0 for k # i; 

if v = (z I -- 1)u 6 (z I - 1)- ( Z / m Z ) F ,  then Di(v) = u and D~(v) = 0 for k r j .  

For an arbitrary element v 6 A, therefore, its projection onto 

(A, - 1). (z /mz)F (i e z) 

coincides with D,(v), and one onto 

(~j - 1). (z /mz)F (i ~ J) 
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coincides with (zj - 1).  Di(v ). Hence, if v �9 (Z/mZ)F,  then 

iEI j E J  

T h e  canon ica l  ep imorph i sm F ---+ A yields the ring e p i m o r p h i s m  

( Z/ ,~Z)F -~ ( Z / m Z ) A ,  

and together with the map 

s~ --, tk (k �9 I u J), 

these de te rmine  a module epimorphism S ~ T and a ma t r ix  group epimorphism L ~ M.  We make the 

convention t h a t  all of these epimorphisms are denoted by one let ter  - - 7 -  Consider Fox derivatives dr = Dk~, 

from (Z/mZ)F into (Z/mZ)A. Since r = a .~,  for f �9 F we have 

f~ 

We e m b a r k  on the  p roof  of  the theorem.  Suppose t h a t  the  m a t r i x  

where t = ~ tkuk ,  satisfies (3). In the group  F,  there exists  an  element  f such t h a t  

, .(:  0 1)" 
Replace c by c(f~') -1. We have thereby reduced our problem to the case where c is a uni t r iangular  matrix,  

and 

~, + ~ ( ~ -  - 1 ) ~  = 0. 

iEI jEJ 
For an  e l e m e n t  u~ (i e I ) ,  in the ring (Z /mZ)F  we choose a p re image  vl tha t  belongs to  (A, - 1). (Z /mZ)F,  
and for  u i ( j  E J ) ,  choose an a rb i t r a ry  preimage v i .  Let  

iEI jE.I 

Since v~, = 0, we have v E k e r r  = (R - 1 ) - ( Z / m Z ) F ,  and  v is represented thus: 

v -- ~ ( r ,  -- 1)Sl, 
l 

where r, E R a n d  ft  E F .  Using formulas  (4) yields the equal i ty  dk((r , -  1)fl) -- dk(f[-lr, fz). Fur thermore ,  

Therefore, if  

then  

s = 1-[(sf ~,~/0, 
l 

d r ( f )  = d ~ ( ~ )  = a ~ ( ~ )  = ~ 7  = =~ .  

l{ence f r  = c. Theorem 2 is proved. 

330 



2. A B O U T  P R O F I N I T E  G R O U P S  

Recall that  a profinite group is a topological group represented as a projective limit of finite groups. 

From the topological standpoint,  profinite groups are characterized as ones that  are compact and totally 

disconnected. (For information about  profinite groups, see [13-16].), Below, when we speak about profinite 

groups, the terms a "subgroup," an "homomorphlsm," etc., are meant to bear connotations of the category 

of topological groups, that  is, respectively, a "closed subgroup," a "continuous homomorphism," etc. 

Suppose that  a profinite group A is represented as a projective limit of finite groups A~ ()~ E A), and 

K is a compact  topological ring. Then K A  = Um KA~ is called a group algebra over K of the profinite A. 

In each profinite group, there exists a system of generating elements such that  every neighborhood of 

unity contains almost all, that  is, all but  finitely many, elements of that system. A free profinite group X 

with basis {~j I J E J}  is a completion of an abstract free group with a basis {xj I J E J )  in the profinite 

topology defined by subgroups of finite index containing almost all elements of the basis. A free product 
of pro finite groups Ai (i E I)  is a completion of an abstract free product of these groups in the profinite 

topology defined by subgroups U of finite index such that  U contains almost all groups Ai and U N Ai is 

an open subgroup in Ai (i E I).  

A variety of pvofinite groups is a class of profinite groups closed under subgroups, homomorphic images, 

and direct (in the category of topological groups) products. The variety of profinite groups is uniquely 

assigned a class K of finite groups closed under subgroups, homomorphic images, and direct (in the category 

of abstract  groups) products. A corresponding variety of profinite groups consists of pro-K-groups only. 

As is the case with abstract  groups, the variety of profinite ones can be defined via identities. An identity, 
in this case, is an element of the free profinite group Xoo with a countable basis. The  identity v E Xoo is 

satisfied on a profinite group G if, for any homomorphism Xoo --* G, the image of v (value of v) equals 1. 

As distinct from the abstract case, every variety of profinite groups is defined by one identity. 

Let 1; be a variety of profinite groups, v its defining identity, and G a profinite group. The subgroup in 

G generated by all values of v is called a verbal subgroup and is denoted by ]2(G). If X is a free profinite 

group with basis {zj ] j  E J )  and V a nontrivial variety, then the factor group X / V ( X )  in which is the set 

{zi ]j E J}  embedded is a free group with basis {zi l J E J}  in ]2. A free ]2-produc~ of groups A, (i E I )  in 

the variety ]2 is the factor group of a free product of these groups w.r.t, a verbal subgroup corresponding to 

]2. Its Cartesian subgroup is the kernel of the canonical homomorphism onto a direct product of A~ (i E I).  

We show how Abelian varieties of profinite groups are structured. Each such variety [denoted .z[(f~)] is 

uniquely assigned the set 

where ~r is the set of all primes and a(p) either is a nonnegative integer or equals co. A class of profinite 

groups corresponding to this variety consists of finite Abelian groups the periods of primary components of 

which have the form po, where fl ~< cx(p) (p Ezr). A free one-generated group of the variety in question is 

an additive group of the ring Zn, which is a direct (topological) sum of the rings of p-adic integers Zp for 

cz(p) = oo and the residue rings Z/p(x(~')Z for a nonnegative integer a(p) (p E ~r). Free groups in a bigger 

rank are delivered as additive groups of direct sums of copies of the ring Zn- 

If a profinite group A acts continuously on a profinite B, then the group B is called an A-module. In 

this event we can form a direct product  of the groups A and B, which is also a profinite group; see [16, 

Lemma 1.3.6]. 

Let ]2 be some variety of profinite groups and A a fixed profinite group. Consider a class of A-modules 

contained in ]2. This class hosts free objects. A free profinite A-group with basis { z j i j  E ]}  in V is 
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constructed as follows. Represent A as a projective limit of finite groups Ax (~ �9 A), and for every ~ �9 A, 

consider a free group Xx with basis {z~x IJ ~ J, ax ~ Ax} in ]2. On Xx, the canonical action of the finite 

group Ax is defined, which we can translate into the continuous action of A. Then  X = lim Xx is a free 
, - - - . .  

A-group with basis { z i i j  �9 J}  in 1). (The set {z I [J �9 J}  is embedded in X in the obvious way.) If 12 

is an Abelian variety of profinite groups that  coincides with A(f2), then X is the usual topological module 

with basis { z / l j  E J} over the group algebra Zf~A. 

R e m a r k .  Lemma 1, without any changes, can be brought to bear on profinite groups, provided that  

G is assumed finite in its formulation. 

3. G E N E R A L I Z E D  S H M E L ' K I N  E M B E D D I N G  F O R  P R O F I N I T E  G R O U P S  

T H E O R E M  3. Let F -- ( �9 Ai) * X be a free product of nontrivial profinite groups Ai (i E I)  and a 
iEI  

free profinite X with basis ( z j  [ j  E J }  (we do not exclude the case with Ai or X missing); R is a normal 

subgroup of F such that R n A~ = 1 (i E I);  A = F / R .  Identify Ai (i E I) with their canonical images in 

A, and write ~ for the canonical image of z E X in A. Let ]2 be a variety of profinite groups and T a free 

A-module with basis {t~ [ k E I U J}  in ~. Consider a semidirect product M -- A T  and an homomorphism 

r :  F ~ M given by the map 

---, t~a~t71 = ,~ . t7 ' - ~  ( ~  ~ A .  i ~ X), ~ j  --, ~ . t j  ( j  �9 .D.  

Then the kernel of r coincides with V(R), that is, r yields an embedding of F l Y ( R )  in M. 

P r o o f .  It  is a simple mat ter  to verify that ker r < ];(R). To prove the inverse inclusion, it suffices to 

establish tha t  if ~: F --* G is an homomorphism into a finite group for which ker ~a > V(R), then it goes 

through r .  Note that ker ~ contains almost all subgroups A~ (i �9 I) and almost all elements zj  (j  E J ) .  

If we allow the application of the Kaloujnin-Krasner embedding to the wreath product  we reduce our 

problem to the case where G = B C  is a semidirect product (C a normal subgroup), C �9 ]2, R~ < C, and if 

7r: G ---, B is a canonical projection then the homomorphism ~ r :  F --* B is surjective. Since ker ~NAi  = Ai 

for almost all i E I,  the group F contains an open normal subgroup H such that  

k e r ~ r > H > R ,  H n A i < k e r ~ n A i ( i E I ) .  

Therefore, A ~ = F / H  is a finite group, and since H _> R, there exists a canonical epimorphism r : A --* A ~. 

Consider a free A~-module S with basis {s~ I k E I U J}  in 12. There is an homomorphism 7 : A T  ---, A ' S  

determined by the homomorphism r : A --* A ~ and by the embedding tk --* s~ (k �9 I U J ) .  Let 

Keeping in mind the remark in the preceding section and taking into account that ,  for any i �9 I,  the map 

die  --, ai~a (ai �9 Ai) is an homomorphism of the group A le  onto Ai~o, we can assert tha t  the map 

~ r  --. ~ ,  s~ ' ~ - ~  ~ ~ , ~  ( ~  e A~ i e Z), ~ r  --. ~ ,  ~ --. ~ (~ e ~) 

extends to an homomorphism ~r: A'S---,  G, where S is an A~-submodule of S generated by the elements 

By construction,  ~ - rT~r; so, ~ goes through r .  The theorem is proved. 
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Let ]2 = A(f~) be an Abelian variety of profinite groups. Then, as indicated in Sec. 2, T is a right free 

topological module (in the dassical sense) with basis {tk ] k E I U 7} over the ring ZaA. The semidirect 

( A  0 ) .  the homomorphism r is given by the product AT can be identified with a matrix group M = 1 ' 

map 

( ai 01) (~J  0 1 ) ( j E J ) .  

We establish the criterion for elements in M to belong to an embedded group F~-. A similar criterion was 

stated in [8] for the case where F --- X, A = FIR is a pro-p-group, and ~2 _-- A(p o~ is a variety of all 

Abelian pro-p-groups. 

THEOIFLEM 4. Assume that the conditions of Theorem 3 are satisfied, and ~ = A(f~). The matrix 

( ~  01) inM'where 

i6I 

belongs to F r  if and only if the following hold: 

j~J 

ui § ~-~(~i - 1)vj -= a -- 1. (5) 
~EI iE7 

Proof .  As in the proof of Theorem 2, we note that  conditions (5) will distinguish a subgroup in M, 

denoted H,  and that  F r  <_ E .  

We argue for the inverse inclusion. Assume, to the contrary, that there exists a matrix c E g \ F t .  

Standard manipulations will help us reduce the problem to the case where I and J are finite sets and all the 

groups Ai (s E I)  are finite. We may also assert that  there exists a canonical epimorphism of the ring Za 

onto some residue ring Z/mZ and there exists an epimorphism ~0 of the group A onto a finite A'; moreover, 

if T' is a free (Z/mZ)A'-module with basis {t~ [ k E I U 7}, and 

~ : M  --~ L = T, 

is a group epimorphism determined by the epimorphism ~o: A -~ A ~ and by the map tk -~ t~. (k E I U J) ,  

then c~b ~ F~-~b. We also assume that the kernel S of the through homomorphism F -~ A --~ A' satisfies 

the following condition: S n A~ : 1 (i E I).  Let F be an abstract free product of groups Ai (i E I)  and X. 

The group F is contained as an abstract subgroup in F and is dense in it; therefore, FT~b = Fr~b. Let 

R=sn . 

By Theorem 1, the map ~ yields an embedding for the group F/(Rr"[R,R]). The criterion determining 

whether elements of a corresponding matrix group belong to F/(R'~[R, R]) was stated in Theorem 2. We 

can therefore say that  the matrix 

~ 
of L lies in F ~  itf conditions (3) are satisfied. The matrix c~b satisfies these, which is a contradiction with 

c~b ~ Fr~b. The theorem is proved. 
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