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The flow stress of solution hardened single crystals and polycrystals is analyzed with respect to its 
dependence on temperature and strain rate. An evaluation of literature data, especially at low tem- 
peratures and low concentrations in fcc alloys, reveals that the interaction between dislocations and 
discrete, atomic-sized obstacles (or fixed clusters of them) cannot be responsible for solution hard- 
ening. A 'trough' model is favored in which the effect of the solutes is postulated to be equivalent to 
a continuous locking of the dislocations along their entire length, during every waiting period. The 
macroscopic features of this model are similar to Suzuki's chemical-hardening model. It can also 
explain the strong interaction of solution hardening and strain hardening at elevated temperatures, as 
well as basic features of dynamic strain-aging, in particular its strain dependence. 

I. INTRODUCTION 

THE effects of solutes on mechanical properties are mani- 
fold and virtually ever-present. They were one of the first to 
be considered in terms of dislocation theory 1.2 and are one 
of the last to be understood. There is an extensive and still 
active literature in the field, which may give the impression 
of a quantitative understanding including many details. 3 On 
the other hand, some basic issues are still seriously debated. 

There are various kinds of interaction between solute 
atoms and dislocations. A useful classification of these in- 
teractions was discovered by Fleischer: 4'5 one large group is 
'weak',  another is 'strong'; the ratio of the interaction 
strengths is more than a factor of 10, with few if any mate- 
rials in between. Strong interactions, giving rise to 'rapid 
hardening' (with concentration) are always due to solutes 
with tetragonal distortions, such as the defect pairs typically 
observed in ionic solids and presumably interstitials in bcc 
metals 4 (though see Leslie and Sober6). When such tetrag- 
onal distortions are not present, such as in substitutional 
solutions in metals, or interstitials in fcc metals, the various 
remaining solute/dislocation interactions are weak by com- 
parison. We shall here be concerned only with the latter. 

We will concentrate on the regime of behavior that has 
been perhaps the most widely studied: that near the so-called 
plateau stress at intermediate temperatures. Some of the 
materials to be considered exhibit abrupt yielding and/or 
jerky flow over some part of the regime, and others yield 
and flow smoothly throughout; they all show plateau-like 
behavior in an 'intermediate' temperature range. Our aim is 
to analyze a wide range of phenomena, relating to this 
central regime and contiguous regimes of behavior, and 
illustrate them by typical examples. This must unfortunately 
be at the expense of a general coverage of the literature, and 
of much important detail. 

Solution hardening has classically been treated as a con- 
tribution to the 'friction stress', which shifts the whole 
stress/strain curve to higher stresses. The real situation is 
much more complicated; this will be reviewed in Section II. 
The interaction between solution hardening and work hard- 
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ening is now widely recognized in its importance, 7-13 but a 
general theory is still elusive. We will merely outline the 
various phenomena. One consequence of this interaction is 
that even the yield stress is not in general free from any 
problems of superposition. 

There is also a grain-size effect that depends on solute 
additions. 14-19 For this reason, the most reliable information 
on solute effects is from single crystals, or from polycrystals 
investigated over a wide range of grain sizes. 

Section III surveys the temperature dependence of the 
yield stress and also, in some cases, of the ultimate ten- 
sile strength, for materials in which solution hardening 
and strain hardening are deemed to be the only operative 
mechanisms. A 'plateau' of flow stress over a significant 
temperature range can be identified, at least in some ap- 
proximation, for a great variety of alloy systems. It is shown 
that the low temperature-sensitivity of the flow stress occurs 
at temperatures below the regime in which there is macro- 
scopic evidence for solute mobility (which could be one 
reason for plateau-like behavior). 2~ 

This intermediate temperature regime is then analyzed in 
terms of two generic models of solution hardening: one in 
which the solute atoms act as discrete obstacles; 3'4'25 the 
other in which they provide ' t roughs '  for the dislocation line 
energy (from which the dislocation must 'unlock'  repeat- 
edly during its progress through the slip plane). 26'27 It is 
shown that there are order-of-magnitude arguments against 
the discrete-obstacle model, for the 'weak' obstacles consid- 
ered here. The trough model, on the other hand, appears to 
describe basic features of the observations quite well. 

Section IV summarizes how the instantaneous rate sensi- 
tivity of the flow stress can be used as a potent tool to 
identify the number and kind of operative mechanisms. This 
technique is applied to the particularly penetrating experi- 
ments of Basinski et al. ~ The analysis shows that, again, 
the discrete-obstacle model is untenable (at least for the 
tested alloys: fcc single crystals, substitutional solutions). 
This is so for four separate, solid reasons (including 
Basinski's 'stress equivalence'); and it is so even though 
these particular experiments relate to conditions in which 
the model would have been expected to apply if ever: very 
low concentrations and temperatures low enough to preclude 
any solute mobility by diffusive mechanisms. 

Having shown that, on a strictly heuristic basis, a trough 
model has cardinal features that could explain the tem- 
perature dependence over a wide range, we explore in 
Section V some details of such models. It is also shown that 
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a transition to the higher-temperature mechanisms can be 
made easily, by the simple expedient of limiting the length 
of the activated segment to the forest-dislocation spacing; 
this also provides a link to strain-hardening and strain-aging 
mechanisms. 

In summary, we will show that a single sweeping assump- 
tion can rationalize all observations with ease: that the sol- 
utes behave as if they distributed themselves continuously 
along the dislocation lines, while these stop at 'hard-line' 
positions given by the forest structure. The physical mecha- 
nism responsible for this trough-digging effect is not clear, 
especially at low temperatures; some possibilities are ex- 
plored. This basic assumption is, on a broader perspective, 
located between the two classical ones: that the solutes act 
as fixed discrete obstacles; 5 or that they behave as if they 
were smeared out in two (or three) dimensions.l 

II. SOLUTION HARDENING 
AND STRAIN HARDENING 

A. Superposition of Mechanisms 

In practice, the flow stress is almost never controlled by 
a single mechanism. If one wishes to study a single mecha- 
nism, one has two options: attempt to find an 'academic' 
case where all other mechanisms are absent or investigate 
the superposition laws along with the other aspects of behav- 
ior. 29 Solution hardening is often coupled with a lattice 
resistance; we will avoid these cases by ignoring, e.g., bcc 
metals at low temperatures. 

Similarly, grain-size effects can be avoided by studying 
single crystals--  but one must then assume, before applying 
the results to a polycrystal, that the behavior of a represen- 
tative grain is the same as that of a free single crystal. Most 
generally, one must study polycrystals at various grain sizes, 
ascertain the superposition law, and extrapolate to infinite 
grain size. The common alternative to investigate properties 
at a constant grain size, however, would have to assume that 
the grain-size contribution to the flow stress is either negli- 
gible or independent of concentration, which has often been 
demonstrated to be untrue. 14-19 

One contribution to the flow stress that can never be 
avoided is that due to strain hardening. Even the yield stress 
generally involves dislocation/dislocation interactions, as 
is evident from the finite yield stress of the purest single 
crystals (even in the absence of a lattice friction). This 
contribution increases with strain; thus a comparison of en- 
tire stress/strain curves, not just of yield stresses, for differ- 
ent alloys should shed light on the superposition between 
solute/dislocation interactions and dislocation/dislocation 
interactions. In the following sections, we will survey the 
types of behavior observed. 

B. Additivity 

The most common assumption is that solute atoms pro- 
vide a friction stress r:, which adds to all other con- 
tributions; 25'3~ in particular: 

= ~ ( c )  + r~(p) [1] 

where rd is due to dislocation/dislocation interactions: it 
depends on the dislocation density p; the friction stress de- 

pends on the solute concentration c. The total glide resis- 
tance is called r, this symbol is used instead of tr in order 
to emphasize (a) that it is a material property (and a scalar), 
not an applied stress (a tensor); and (b) that it describes the 
resistance to crystallographic shear, to be converted into a 
macroscopic stress value by use of an appropriate (average) 
orientation factor (which may itself depend on strain). 32 

If Eq. [1] were strictly true, solute additions should lead 
to an upward shift of the entire stress/strain curve. This 
is rarely observed. 7'1z Figure 1 shows one of the few exam- 
ples33 - -  albeit for a rather small range of strains. Some 
other alloys for which such behavior has been observed are 
Cu-Au,  34 Cu-Ni,  34 and Th-C, 35 all polycrystals and all at 
relatively small strains and low temperatures. In these cases, 
the contribution from solution hardening is easily identified; 
in particular, its definition as 

A~- = r r -  rr(pure) [2] 

is appropriate (so long as there is no solute dependent grain- 
size effect). This is by no means generally true. 

C. Multiplicative Hardening 

An empirical observation that is at least as common as 
additivity is a proportionality between solute hardening and 
strain hardening: the stress/strain curves diverge with in- 
creasing strain. 12'13,36 Allowing also for an additive friction 
stress, this can be written as 

r = r:(c) + [1 + k(c)]" r~(0) [3] 

The term k �9 rd amounts to an interaction between solu- 
tion hardening and strain hardening. It would exist also at 
the yield stress; thus, Eq. [2] does not hold under these 
conditions. 

Classical examples of this behavior are A1-Mg 37 and Cu- 
A1, 38 and a recently investigated one is Ni-Mo 36 (Figure 2). 
It is clear that the polycrystal stress/strain curves diverge. 
While these alloys all exhibit dynamic strain-aging to a 
greater or lesser extent, the multiplicative effect on harden- 
ing is present outside the temperature regime of jerky flow. 

D. Other Superposition Laws 

Additivity (Eq. [1]) has been justified theoretically on 
the basis of treating both solutes and forest dislocations as 
discrete obstacles, but of vastly different densities and 
strengths) ~ More sophisticated statistical treatments 39'4~ 
claim that 

r" = r~ + r~ [4] 

with n > 1, should be a better approximation. Certainly, for 
obstacles of equal strengths, one should expect Eq. [4] with 
n = 2, since their densities should add (and the flow stress 
is assumed to be proportional to the square root of the area 
density of obstacles). 

The effect of a superposition law of the form [4] (with 
n > 1) on the linearly plotted stress/strain curves is to make 
those of the alloys concave upward (when that of the pure 
materials is straight). 29 Such behavior is typically observed 
for irradiated materials (where, according to the above, it 
should be expected); I am not aware of any case in which 
such concavity has been observed in polycrystalline dilute 
solid solutions. 
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E. Abrupt Yielding 

In many cases, especially at low temperatures, solution 
hardened alloys show an abrupt yield drop and the con- 
comitant propagation of a Liiders band along the length 
of the specimen. This is associated with some difficulty to 
generate mobile dislocations (from stabilized 'atmospheres' 
or segregations). Note, however, that at the end of this 
Liiders extension, the whole sample has suffered the macro- 
scopic strain; at this point, solution hardening contributes 
only a propagation stress, which superposes with strain 
hardening. 4z If the superposition is linear (Eq. [1]), a back- 
extrapolation to the elastic loading line gives the solution 
hardening contribution; if it is not, the lower yield point is 
the most appropriate measure, neglecting strain hardening. 

Note that a similarity of behavior at the lower yield point 
and farther along the stress/strain curve is expected, since 
both relate to the propagation stress; only the upper yield 
point is caused by a generation stress. (It is also strongly 
influenced by stress concentrations and machine effects, 
and is therefore not usually of interest from a materials- 
characterization point of view.) 
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F. Single Crystals 

Single crystals oriented for single slip show an initial 
region of 'easy glide'. This tends to complicate inter- 
pretations a bit (and is irrelevant for applications to poly- 
crystal deformation). Figure 3(a) shows an example: 43 
while the yield stress increases monotonically with con- 
centration, the rest of the stress/strain curve does not. This 
is because the length of easy glide initially increases with 
concentration, and its slope decreases. 44'45 The stress at the 
beginning of 'stage II' strain-hardening (the steep part) 
again increases with concentration, and it may be the most 
relevant for the yield stress in polycrystals. 46 

Despite these complications, single-crystal results re- 
ported in the literature are usually given in terms of the 
yield stress at the beginning of easy glide (the critical re- 
soNed shear stress: CRSS)- -and ,  in fact, often merely as 
the excess over the value for the pure material (Eq. [1]). 
This may be misleading in considerations of the concen- 
tration dependence, for the following reason. A typical 
CRSS of a 'pure' single crystal is 10 -5/z (where/x is the 
shear modulus). Such a value could itself be due to trace 
impurities: it would require only about 50 at. ppm of a 
typical substitutional solute. A back-extrapolation of the 
linear relation between the CRSS and the square root of the 
dislocation density in 'pure' materials does in fact suggest a 
small contribution from impurities. 47 

Figure 3(b) (from the same alloy at a different tem- 
perature) shows two additional features. First, the initial part 
exhibits a zero slope, associated with the spreading of a 
Ltiders band along the single crystal. Then, the stress at the 
end of the nonuniform deformation should be the most 
relevant. 

Second, Figure 3(b) shows an influence of solute concen- 
tration on the beginning of 'stage III' deformation: a delay 
in the onset of dynamic recovery. This has been rationalized 
in terms of a decrease in the stacking-fault energy with 
concentration in many alloy systemsaS'48 - -  especially since 
it was also observed in Ni-Co alloys, 49"5~ in which the 
change in SFE is assumed to be the major effect of solute 
addition. 

G. Dynamic Recovery 

The influence of solutes on dynamic recovery is, in fact, 
a wide-spread effect.~2.52 Interestingly, it also occurs in the 
interstitial Ni-C alloy (Figure 4).  53 Here, one would not 
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Fig. 4 - - L o w  carbon additions to nickel polycrystals cause an increase in 
yield, a multiplicative hardening, and a strong effect on dynamic recovery, 
which is presumably not due to a solute dependence of the stacking-fault 
energy. After Kocks, Cook, and Mulford. 53 

assume a change in the stacking-fault energy. We conclude 
that solutes, in general, impede the rearrangement of pre- 
viously stored dislocations, by whatever mechanism. Cer- 
tainly, the width of extended dislocations (and thus the SFE) 
plays a significant role in th i s - -but  apparently not the 
only one. 

H. Very Large Strains 

Finally, there appears to be a significant influence of 
solutes on the stress/strain curve at strains in excess of 1. 
Figure 5 shows a well-known example. '~ Such an effect 
could be merely a consequence of the previous one: the 
flow stress at large strains is primarily determined by a 
balance between strain hardening and dynamic recovery. 
However, even the nature of the stress/strain behavior 
seems to be affected: in the presence of solutes, a new 
linear stage of strain-hardening sets in at large strains, of 
low but definitely finite slope, whereas pure materials usu- 
ally tend toward saturation) 4'55 

I. Conclusion 

More often than not, there is a significant interaction 
between solution hardening and strain hardening. For this 
reason, the difference between the yield stresses of alloys 
and the pure material is not a good general measure of 
solution hardening, and a theory relating to yield stresses 
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only is not likely to be general in describing the principal 
effects. 

III. THE TEMPERATURE DEPENDENCE 
OF THE FLOW STRESS 

A. Survey of Observations 

Figures 6(a) through 6(d) show one example for each of 
the following cases of solution hardening: fcc, cph, and bcc 
substitutional alloys, and an fcc interstitial alloy. 33'56-s8 Two 
of them relate to single crystals, and the rest to polycrystals. 
The different curves within each figure correspond to differ- 
ent concentrations of the same solute, except in Figure 6(a), 
which displays seven different solutes, all of the same 
atomic concentration. 

The most evident feature of these figures is that they are 
all so similar: in every case, there is a relatively steep drop 
at low temperatures, followed by a 'plateau' (or something 
similar) at higher temperatures. Both regimes are concen- 
tration dependent, and the transition between them occurs at 
about room temperature or a little above. This similarity 
persists despite the fact that some of the 'yield stresses' 
correspond to a 'lower yield point' and thus to L/iders front 
propagation, others to smooth yielding; and that some of the 
alloys exhibit jerky flow at higher temperatures and some 
do not. 

In some cases, the similarity may perhaps be fortuitous. 
In bcc metals, some solution softening is frequently ob- 
served at low temperatures. In cph crystals, it is gener- 
ally assumed that the temperature dependence of slip is 
controlled by the lattice resistance--but perhaps not of 
basal slip, which was chosen for Figure 6(d). However 
this may be, it would seem unlikely that entirely different 
mechanisms explain the behavior of each different type 
of material. 

The alloys illustrated in Figure 6 were, as stated, just 
examples; others show very similar behavior. Among fcc 
substitutional alloys, there are silver alloys, 2s'33'59-63 gold 
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alloys, 64 aluminum alloys, 65'66 nickel alloys, 49-51,67 lead 
alloys, 68 and a large number of copper alloys. 14,27,38,48,69-79 
Another interstitial fcc alloy, in addition to the Ni-C, 56 is 
Th-C. 35 Basal slip in substitutional cph alloys has been in- 
vestigated additionally in Mg-alloys 8~ and in Zn-Cd. 84'85 
Among bcc substitutional alloys, Ta alloys 86'87 exhibit sim- 
ilar behavior to the Nb-alloys, 57'8s and iron-alloys ]~ at 
least show similar high-temperature behavior. 

B. Dynamic Strain-Aging 

A recurring suggestion has been that the 'plateau' in 
the flow-stress vs temperature relation is due to solute 
mobility. 20-24 Certainly, solutes do become mobile above 
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some temperature and will then tend to segregate to dis- 
locations (or away from them if the interaction should be 
repulsive, as is possible in the case of screws). This in- 
creases the flow stress, in the temperature range where the 
solute mobility is sufficient. 

Figure 7(b) shows the hump in the flow stress vs tempera- 
ture diagram that should follow from such a mechanism; 66 
Figure 7(a) shows an equivalent--  but more microscopic - -  
measure of the breaking strength from internal-friction 
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Fig. 7 - -Dynamic  strain-aging is evidenced by the time- and temperature 
dependence of an internal-friction measure of the obstacle strength (a), and 
(b) by a hump in the flow stress v s  temperature diagram, for AI-1 at. pct 
Mg. After Schwarz. ~3 

measurements. 23 Its time dependence means that the phe- 
nomenon must be due to solute mobility. 

In most materials, however, the flow stress decreases 
monotonically with temperature. One trivial reason for this 
is that the shear modulus decreases with temperature and 
contributes to a negative slope; thus, a zero slope in r vs T 
would already be positive in z / t x  vs T. Furthermore, there 
could be a sufficiently negative slope left from the low- 
temperature mechanism (whatever it is) to offset a slight 
positive contribution from dynamic strain aging. Of course, 
one would not expect an exactly fiat 'plateau' from such a 
superposition - -  but the observed 'plateaus' are rarely long 
enough to allow a real assessment of their flatness. 

A hump is frequently observed in a diagram of ultimate 
tensile strength (or saturation stress) vs temperature 
(Figure 8). 93,94,95 Firstly, this demonstrates that strain hard- 
ening is greater in this temperature regime: an observation 
generally made in connection with dynamic strain-aging. 
Secondly, if solute mobility is obvious at large strains, it is 
likely to be present at low strains, too. 

An even more obvious indication of solute mobility is the 
occurrence of jerky flow (the Portevin-LeChatelier effect): 
it is a consequence of an inverted strain-rate (rather than 
temperature) sensitivity. 42'96 In some cases, the observation 
of jerky flow has been explicitly noted in connection with 
solution-hardening experiments. Figure 9 demonstrates 
such a case. 75 Here, the occurrence of jerky flow exactly 
coincides with the plateau-like behavior (even though a 
'hump' is not observed until the end of this temperature 
range). Other cases like this are Cu-Zn 75 and Cu-AI. 97 

Inverted temperature and rate sensitivities, and j e rky  
flow, are only extreme exhibitions of solute mobility. In the 
next chapter, we shall see that more subtle tests demonstrate 
the existence of solute mobility over a much wider range of 
conditions, and in more cases. 
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In summary, plateau-like behavior is certainly some- 
times, and possibly always, correlated with solute mobility. 
However, we shall demonstrate in the next section that 
plateau-like behavior begins in many cases at lower tem- 
peratures than any evidence (or plausibility) of solute mo- 
bility; this is a major problem for modeling attempts. 

C. The Discrete-Obstacle Model 

The model that has dominated interpretations of solution 
hardening over the last 20 years 3'25'9s was first proposed, as 
one contribution to solution strengthening, by Friedel, 2 and 
was then elaborated in detail by Fleischer. 4 As distinct from 
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Fig. 9 - - C R S S  v s  temperature for Cu-Ge single crystals of various atomic 
concentrations. The regime of jerky flow is shown dashed; plateau-like 
behavior is evident even at lower temperatures. After Traub e t  a l .  75 

the previous models of Mott and Nabarro, l in which solutes 
were considered essentially as if they were smeared out in 
two or three dimensions (and acted on dislocations only 
through fluctuations in this distribution), it is assumed here 
that solutes act like discrete particles, being overcome by 
the dislocations individually. This makes a treatment by 
thermal-activation theory straightforward. It is precisely 
these straightforward considerations that offer a serious con- 
tradiction to the model. 9s This contradiction has, in our 
opinion, not been taken seriously enough until now. 

Figure 10 shows a typical dependence of the activation 
energy AG on the stress r s, for a single set of discrete 

-t-f 

Fo 
AG=kT In(?o/?) 

Fig. 1 0 - -  Schematic of temperature dependence of friction stress T I (at 
constant strain rate +) for various concentrations of the same alloy accord- 
ing to the discrete-obstacle model. The total interaction energy Fo limits the 
temperature up to which an effect should be observable. 
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obstacles. (We write ~': to avoid the problem of super- 
position; see Section II.) The activation energy is plotted on 
the abscissa because it is, according to the Arrhenius equa- 
tion, proportional to temperature (at a given strain rate ~,): 

AG = kT ln(~0/3,) [5] 

where k is Boltzmann's constant and "Y0 a pre-exponential 
factor. * 

*It has been demonstrated that the assumption of a constant ~o is appro- 
priate whenever the rate sensitivity is low; the stress dependence of the 
mobile dislocation density is then negligible with respect to that of the dis- 
location veloci ty- -which  is then, in turn, essentially equivalent to that of  
the strain rate. 3~ Also note that back jumps are neglected. 

Figure 10 shows two limits: a stress § at which no ther- 
mal activation is needed (in the limit of zero temperature), 
and a total activation energy F0 (in the limit of zero stress). 
Near both limits, the curve must be parallel to the respective 
coordinate axis, for all realistic interaction laws and obstacle 
arrangements. 30 

The total interaction energy F0 between one solute atom 
and a dislocation determines the highest temperature, To, at 
which this interaction can contribute to the flow stress. We 
wish to find an upper limit for this temperature. From 
Eq. [5], and using the observation that the logarithmic 
factor is at least 16 (typically 20), for most common strain 
rates and mechanisms, we have 

kTo --< F0/16 [6] 

On the basis of physical mechanisms, one might expect F0 
to be a few tenths of an electron volt. It is, however, possible 
to come up with a quantitative estimate on the basis of the 
model itself and some macroscopic observations. The argu- 
ment goes as follows. 

The interaction can be specified in terms of a force- 
distance diagram. Its major characteristics__ are a maximum 
force, K, and an average width, 2xy. Then the total inter- 
action free-energy is 

F0 = ~ '~- f  [7] 

The average width cannot be more than a very few atomic 
spacings (keeping in mind that it relates only to the resisting 
part of the interaction profile, on one side of the solute). Say, 
it is -< 3b, where b is the magnitude of the Burgers vector. 

The maximum interaction force can be derived from the 
maximum flow stress, ~:. With the statistics appropriate for 
low concentrations of weakly binding solutes, 2'3~ the re- 
lation is 

where/~ is an appropriate shear modulus and c the atomic 
concentration. The quantity K / / ~ b  2 is the interaction 
strength normalized by twice the dislocation line tension; it 
determines the angle by which a single solute atom can bend 
the dislocation) ~ 

As Fleischer pointed out, 4'5 solute atoms fall in two 
classes: 'weak binders' (all substitutional solutes in metals, 
plus interstitials in fcc metals, and others), for which  k/p ,b  2 
comes out to be between about 1/60 and 1/80, from an 
analysis of measured values of § and strong binders 
(interstitials in bcc metals, for example), for which it is 

> 1 / 10. Thus we find, for weak solutes, ka---;_b__ 
Fo = I~b31xb---- 5 <- I~b 3 [91 

For copper alloys, this gives a limit F0 -< 0.2 eV, which is 
typical and plausible. For the critical temperature, we get 
the upper limit 

kT0 -< txb3/320 [101 

which is 1/80 eV for copper, or To <- 150 K. 
Yet we find that the end of the steeply declining part of 

the flow-stress temperature diagram is not reached until at 
least double that temperature for copper alloys. Obviously, 
there is no possibility at all for discrete-obstacle interactions 
to be responsible for the plateau itself: they are too easy to 
activate thermally. The surprise is that they do not seem to 
be able to account even for the low-temperature behavior 
(assuming some unexplained additional stress accounts for 
the plateau). To reiterate the point: all parts of the above 
estimate were made in the limit that would be most favor- 
able to the model; the actual discrepancy is likely to be more 
than a factor of 2 in temperature scale. 

D. The Temperature Dependence of the Shear Modulus 

So far, we have glossed over an important effect on the 
flow-stress vs temperature diagram, and that is the tem- 
perature dependence of the shear modulus. In virtually all 
models, the flow stress comes out proportional to the modu- 
lus (and if not, then to some other property of the inter- 
atomic potential at a given temperature, which may well 
depend on temperature as does the modulus). The nor- 
malization of the flow stress with the temperature-dependent 
shear modulus is taken care of by many authors. Another 
normalization is, however, rarely accounted for, and it is 
just as important for a quantitative analysis of the models. 
This is the normalization of the temperature with /xb 3. It 
follows from a very simple argument: 3~ the activation area, 
-(OAG/bOz)r,  cannot be proportional to the modulus, 
since it is a geometric quantity. For this reason, AG must be 
proportional to /z  whenever r is (and b 3 appears for other 
reasons3~ Thus, the general combination of variables for 
thermally activated flow is 

/xb---- 5 ~ /xb3 - g [11] 

The function g describes the dependence of the normalized 
activation energy AG/txb 3 on the normalized stress r/l~, 
where tx is to be inserted as Ix(T) for both variables; the 
limiting values must be g --~ 0 for r ~ ~ and, for short- 
range obstacles, g ~ Fo/l~b3 for z ~ 0. 

E. The Trough Model 

In Section Ill-C, we have discussed the discrete-obstacle 
model from the point of view of its self-consistency and its 
fit with some qualitative experimental data, but without 
judging its physical basis. In this section, we shall do the 
same for the 'trough model' .  It was invented 99 to describe 
the unlocking of dislocations from segregated solute atmo- 
spheres (in particular, in Fe-C), and has been used in de- 
scriptions of internal friction, l~176176 We will assume that it 
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might potentially describe repeated unlocking, too (i.e., a 
propagation stressZ6'27), and discuss the physical basis for 
this later. 

The most eye-catching property of trough models is that 
the activation energy is proportional to the reciprocal of the 
stress; this leads to a high-temperature branch of the ~- vs T 
diagram in which ~" ~ l/T: a very slow decay--a lmost  
plateau-like! Figure 11 shows Fisher's original fit, along 
with a simplified sketch of his model. While the solutes are 
shown individually, they are treated as if they were smeared 
out along the dislocation, giving it a lower line energy: one 
may say that the solutes make a trough for the dislocation. 
To move on, the dislocation has to leave the bound state and 
re-acquire its higher, 'free' line energy. It does so by nucle- 
ating a bulge; its curvature is given by the applied stress, the 
angle Y by the equilibrium between the two line tensions. 
The 'long-range' nature of the model comes from the fact 
that the dislocation has everywhere a high line energy, com- 
pared with the bound state. 

At low temperatures, the original, simple model does not 
describe the behavior even of Fe-C. This is due to the 
assumption of just two discrete line energies; in other words, 
of a square-well potential for the interaction of the dis- 
location with a smeared-out string of solutes. Any realistic 
potential will have finite slopes; the maximum slope is the 
flow stress at zero temperature. The simplest potential that 
has this property is the triangular well; it gives for the 
activation energy of bulge nucleation 3~ 

~ 2V~-~-~ ~8 ( ~bw~_~} 1,2 [12] 
AG = 3  ~Bw" b w �9 1 - 

1 

m 0.5 

0 

_ ~ I I 1 _ 

I I I ! 
0 100 200  3 0 0  4 0 0  5 0 0  
ABSOLUTE TEMPERATURE,  * K 

(a) 

0 0 0 0 0 ~ 0 0 0 0 0  

(b) 

Fig. 11--Thermally activated nucleation of a 'bulge' from a 'trough': 
(a) schematic. (b) At 'high' temperatures, it gives a reciprocal relation 
between flow stress and temperature. 99 

where ,~o is the free energy per unit length of the free 
dislocation, ~B the binding free energy per unit length, and 
w the effective width of the trough (here, the half-width of 
the energy well; a more general definition of w will be given 
in Section V-D). For further use, we will introduce the 
following normalizations: 

fB -- [13a] 
txbw 

,/- 
S -= [13b] 

~f~ 
4 ( 2 ~;~o'] 1/2 (.._w_w) 3/2 

~b =--- - f  \txb2} \ b / [13c] 

The constant qJ is supposed to contain whatever combination 
of effective dislocation line tensions is appropriate, instead 
of ~o itself, when anisotropy is properly accounted for. ~ 
One would expect it to be a little larger than 1. 

Now, with Eqs. [5] and [12], 

kT ln('ko/~') - AG _ ~bX/~B " g(S) [14] 
/.~b 3 /xb 3 S 

where g(S) = ~v/(1 - S) in Eq. [12], but may be a more 
general function in later applications: it plays the role of the 
short-range effect of the interaction profile; g(S) must go to 
zero for T ~ 0, and to 1 for S --~ 0. 

Short-range interactions are difficult to derive in detail 
and should depend on the solute. Suzuki, in fact, derived the 
square-root function (Eq. [14]) on the basis of a specific, 
detailed model (stacking-fault locking). We shall show in 
Section V that a linear relation should generally hold in the 
limit of low stresses in any trough model. 

The salient feature of Eq. [ 14] that is independent of the 
local interaction is the dependence on the reciprocal of the 
stress. This suggests that a plot of temperature-times-stress 
vs stress is opportune: it should go to afinite value in the 
limit S ~ 0. Thus, it has replaced the 'tail' in a ~--T plot by 
a (linear) decrease.* 

*On the other hand, if the real behavior is not described by ~" ~ I /T,  but, 
e.g., by a discrete-obstacle model, then the "r-vs-'rT plot should curve back 
toward the origin as r ~ 0. 30 

A second feature of Eq. [14] is most important: while 
the stress is normalized by the interaction strength f~ 
(Eq. [13b]) as expected, the temperature normalization also 
depends onfB (its square-root); thus both scales are concen- 
tration dependent. This is due to an obvious property of the 
model: that the lowering of the line tension (and thus the 
total activation energy) is proportional to the linear density 
of solutes along the dislocation. As a consequence, the 
concentration dependence of the flow stress at a fixed (not 
normalized) temperature is meaningless. (Furthermore, as 
emphasized before, both stress and temperature are normal- 
ized by/x(T) . )  

In Figures 12(a) through 12(d), we have plotted diverse 
data on copper alloys according to this scheme: first, the 
stress and temperature were both normalized with /x(T); + 

+The temperature dependence of b was ignored. 

then, a value of ln('~0/~)/4t for each solute (~0 could depend 
on the interaction range w and on the elastic anisotropy), 
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Fig. 12--Normalized stress S =- r / / z fn  (fB =- ~;8/ lxbw; o~n: total binding energy,/x: shear modulus, b: Burgers vector, w: trough width) vs normalized 
stress times temperature, for copper alloys: (a) Cu-Mn single crystals, 79 (b) three polycrystalline Cu alloys; ]4 (c) Cu-A1 single crystals ~'6~ and poly- 
crystals; 14'27 (d) Cu-Ge (and one Cu-Ga) single crystals. 74'75 0 is an adjustable constant. Polycrystal flow stresses have been divided by 3.06. All alloys follow 
a linear decrease in this diagram at intermediate temperatures. 

and values of fB for each concentration, were found that 
would make all data extrapolate to the same point on the 
stress-times-temperature axis, and with the same slope. If 
such values can be found, this is evidence for the possibility 
of representing the data by this description in this regime. 

A general inspection of Figure 12 shows that this is by 
and large the case. First, Cu-Mn s ingle  crys ta l s  (Fig- 
ure 22(a)) 79 fall on a single straight line for five of the six 
concentrations; the highest concentration deviates slightly. 
The values off8 chosen to give this fit turn out to be propor- 
tional to ~v/c; this empirical relation will be made use of in 
the interpretation later on. At 1 at. pct, fB = 5 • 10 -4. The 
value of ln(~'0/~/)Ab (using g(S )  = 1 - S,  and I . t o b 3 / k  = 

56560 K) is 6.3:  an e m i n e n t l y  r e a so n ab l e  va lue  
(Eq. [13c]). While these data referred to a large number of 
concentrations, studied in a single investigation, they were 
taken at only three temperatures. 

Figure 12(b) presents data on three different copper alloys 
over a wide range of temperaturesl4 - -  though of only one 
concentration each, and in this case taken on polycrys ta ls .  
The grain-size dependence was rather strong and solute de- 
pendent; the values plotted are from a back-extrapolation of 
a Hall-Petch diagram to infinite grain size. It is seen that all 
three alloys exhibit the same initial linear decrease--but  
widely divergent values of ~b and fB were necessary to 
achieve this (Table I). At about room temperature (marked 
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Table I. Model Parameters from Experimental Analysis of Copper-Alloy Polycrystals and Single Crystals 

Alloy c-Range [At. Pct] P, S fn/~v/c [Pct] ln(~o/~)Ab Reference 

Cu-Sn 14 P 14 20 14 
Cu-Zn 36 P 1.6 15 14 
Cu-Mn 1 to 5.5 S 5.0 6.3 79 
Cu-A1 0.5 to 15 S, P 2.2 5.5 14, 27, 28, 69 
Cu-Ge 1 to 7.3 S 2.6 3.8 74,75 
Cu-Ga 5 S 2.0 3.8 72 

by solid symbols), all three alloys show a rather abrupt 
transition into a plateau. Room temperature is just under 
Tin~4 for Cu, and this is a reasonable homologous tem- 
perature for strain-aging effects to set in. 

Probably the most intensively investigated alloy is Cu-AI. 
Figure 12(c) displays some of the data.14'27'28'69* It is seen 

*Basinski's data below 77 K were omitted from the plot; they exhibit 
effects from dislocation inertia. 28'1~176 

that the polycrystal data from which the grain-size effect had 
been eliminated 14 fall in quite well with the single crystal 
data:  The intermediate temperature regime is again well 
described by a linear decrease; then, again rather abruptly, 
a real plateau due to dynamic strain aging sets in (at about 
T = 300 K). A single value ln(~0/~)/~b = 5.5 was ade- 
quate for all data (the best 28 would give a value of 5), and 
fB was again proportional to ~ (within -+5 pct), being 
about 2.1 • l 0  -4 at c = 1 at. pct. 

Another alloy that has been studied by numerous in- 
vestigators is Cu-Ge. Two sets of data are shown in Fig- 
ure 12(d). 74'75. Dynamic strain aging was investigated in 

tA very extensive investigation on many copper alloys 38 shows much 
higher values of stress, possibly because these were polycrystals of a 
constant grain size (50/xm), and the grain-size contribution to the flow 
stress may well have been significant and solute dependent)  4-~9 

detail 75 and occurred over most of the temperature range, at 
essentially constant stress (only rising at the highest tem- 
peratures). Having gained confidence in the previous three 
figures, we would describe these data as fitting well enough 
also; however, the concentration dep_gndence offB is here a 
bit stronger than proportional to N/c. A single concentra- 
tion of Cu-Ga 72 is also plotted in this figure and follows 
the trend. 

The concentration dependence within one alloy system 
cannot, as was pointed out above, be properly studied at a 
fixed temperature within the framework of this model. 
Figure 13 shows it for the example of Cu-A1 alloys, along 
with the concentration dependence of the scaling parameter 
fB: the former is not simple, and the latter is proportional to 
~/-cc, in this case. 

F. The Cluster Model 

The shortcomings of the discrete-obstacle model have 
been well realized before. 21'98'1~ To account for a more 
athermal behavior at higher temperatures (without invoking 
solute mobility or dislocation locking), Labusch 1~ has 
treated the effective interaction between different solute 
atoms along the same dislocation line, and later 1~ the pos- 
sible action of clusters of solute atoms as strong obstacles 
(which had been noted 1~ and modeled 1~ previously). This 
cluster theory did produce an effective plateau in the ~--T 

behavior; but it predicts ~~ a very strong strain-rate de- 
pendence in this regime, which is not observed (at least in 
macroscopic experiments). Also, the temperature at which 
the plateau begins should, according to the model, be much 
higher than observed. A good feature of the model is that the 
activation energy depends on the cluster size; if this were 
concentration dependent, so would be the temperature scale 
(much like in the trough model) - -  but then the concen- 
tration dependence of the flow stress at a fixed temperature, 
which has been used extensively as an identifying feature of 
the model, would be uninstructive. 

G. Conclusion 

The observation of a concentration-dependent 'plateau' in 
the stress-temperature diagram is general in solution hard- 
ened alloys. At least in the upper temperature regime of this 
'plateau', evidence of dynamic strain aging is frequent: e.g., 
by jerky flow, or by a high strain-hardening rate that leads 
to a pronounced 'hump' in the diagram of ultimate strength 
vs temperature. 

At the low-temperature end of the spectrum, the tempera- 
ture dependence is strong enough that an explanation on the 
basis of a discrete-obstacle model would seem plausible 
(if the plateau itself could be explained by an additive 
mechanism). However, the end of the strong decrease and 
the beginning of plateau-like behavior occur generally at too 
high a temperature to be consistent with a discrete-obstacle 
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Fig. 1 3 - - T h e  concentration dependence of the flow stress (normalized by 
the shear modulus) at two fixed temperatures, and of the scaling parameter 
fB, for Cu-A1. 
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mechanism: the disagreement is at least a factor of 2 in the 
activation energies. It appears that there must be a regime 
below that of dynamic strain aging in which the behavior is 
more athermal, i.e., in which the effective resistance to 
dislocation motion is more long-range than can be expected 
from discrete solute atoms. We do not find the more so- 
phisticated variations of the discrete-obstacle model, even 
involving clusters, convincing to solve this problem in a 
quantitative way. 

On a Strictly heuristic basis, the temperature dependence 
of the flow stress in solution hardened alloys at low and 
intermediate temperatures can be rationalized by a de- 
pendence of the activation energy on the reciprocal of the 
stress. (For details, see Section V-D.) Such a dependence is 
a prominent feature of trough models, in which the dis- 
location is supposed to unlock repeatedly from stable posi- 
tions such as they have been envisaged, even in the absence 
of aging, by Suzuki. 26 An easy test of this empirical fit is a 
plot of stress vs stress-times-temperature; behavior quan- 
titatively consistent with a trough model was demonstrated 
in a variety of cases. 

IV. THE RATE SENSITIVITY 
OF THE FLOW STRESS 

A. Phenomenology and Discrete-Obstacle Model 

The rate sensitivity of the flow stress in metals at low 
temperatures is quite small: it is, in fact, hard to measure 
accurately, and the evaluation of the measurements is sub- 
ject to debate. However, in a way that is insensitive to these 
details, 109 the rate sensitivity is a powerful diagnostic tool: 
its order of magnitude and its variation with other variables 
can be analyzed to provide information about the controlling 
mechanisms. 3~ The important variables are the obstacle 
density (varied either by straining or by changing the solute 
concentration) and the temperature. We will discuss these in 
the next three sections; but first we summarize the theoret- 
ical method, and address the question of order of magnitude. 

The basis of the analysis is the assumption that there are 
no more than two controlling mechanisms, a n d - - t o  be 
proved or disproved--that  the two flow stresses superpose 
linearly. Then, differentiation of Eq. [ 1 ] and minor manipu- 
lation gives 

Or [ = O l n ~ .  + O l n r d  r 
/ 3 -  01n-----~ r 01n r r :  ~ Yd 

=--- m: "If + mcl rd [15] 

The implication is that the variation in strain rate is done at 
constant structure; but it is the dependence of the result on 
structure that we shall analyze. 

If a variation in concentration affected only r:, then /3 
would have to be a linear function of the total flow stress ~" : 
its offset in the/3-direction would be given by the constant 
m : d ,  its slope by m:. Similarly, if straining affected only 
rd, /3 would be linear in the total flow stress, its offset being 
m:r:, its slope md. Certainly in the latter case, such behav- 
ior is often observed, and thus worth exploring further: 
when the strain is the independent variable, the best plot is 
one of /3 vs stress (at a constant temperature and base 
strain-rate). 29,67,110 

One of the assumptions that enters into the linearity of the 
'Haasen plot' discussed in the last paragraph is that the 
relative rate sensitivity m is independent of obstacle concen- 
tration. This is a necessary consequence of the discrete- 
obstacle model, as will now be s h o w n .  67 For any one set of 
obstacles (say, the solutes), the flow stress is a product of 
two terms: one dependent on the obstacle spacing, the other 
on the obstacle strength. The details depend on the statistics; 
for weak, dilute solutes, one expects 

( K )  3/2 
r / =  \ ~ 5 ]  /xV~c [16] 

Here, we have replaced the maximum interaction force ~" in 
Eq. [8] by an effective interaction force K, which depends 
on strain rate and temperature through thermal activation. 
Obviously, the logarithmic derivative of r:  with respect to 
strain rate is independent of concentration whenever such a 
product relation holds. Thus, plots of/3 vs r should be linear 
in all such cases. 

The actual magnitude of m: is also important: it gives 
information on the obstacle width (or 'depth'). 3~ Again, the 
exact value will depend on the detailed statistics used; but 
the order of magnitude follows, for any model of the 
discrete-obstacle type, from differentiating Eq. [16]: defin- 
ing the effective obstacle width at the given strain rate as 
Ay =-- -(O AG/OK)r, the rate sensitivity becomes, with 
Eqs. [5], [15], and [16], 

2 0 I n K  r =  k 0 1 n K I  kT 
m : -  -O rn-  - T - T a - (  T - Ii- y 

kT /zb 2 b 
- /zb 3 K A y  [17] 

Of the three factors in the last expression, the first is typi- 
cally, at room temperature, 1/180; the second, for a typical 
solute (see Section III-C), about 60; thus, 2 Ay/b should be 
of order 1/m: if the model were to hold. Since typical values 
of the total rate sensitivity m are always less than 1/30, 
Ay/b would come out to be larger than about 15, which is, 
of course, ludicrous and incompatible with the idea of dis- 
crete obstacles. 

This problem has frequently been pointed out and has 
been circumvented by postulating an additional athermal, 
yet solute-controlled contribution to the flow stress, the 
'plateau'. To explain the plateau itself with a discrete- 
obstacle model is, then, not possible. This argument is very 
similar to the one arrived at from a qualitative analysis of the 
temperature dependence in Section III-C. 

B. Strain Dependence 

The rate sensitivity/3 for different (pre)strains should, as 
derived above, be plotted as a function of the flow stress 
(as it changes with strain) for mechanistic interpretation, i~0 
This is often done in terms of an (apparent) activation area 
Aa defined by 

/3 = kT / (b  Aa) [18] 

The inverse normalized activation area, bZ/Aa, is plotted in 
Figure 14(a) for Ni and Ni-Co alloys. 67 It is a linear function 
of flow stress. Note, however, that the slope of these lines 
decreases with concentration. Yet it should be, by the above 
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Fig. 14- -Haasen  plots for (a) Ni-Co alloys and (b) INCONEL 600, after 
Mulford. 67 The slope is a measure of the relative rate sensitivity of the 
contribution to the flow stress from dislocation/dislocation interactions; it 
is decreased by solute additions, in a temperature-dependent way. In (b), 
this effect is due to dynamic strain-aging; in (a) it is commonly rationalized 
on the basis of  the solute dependence of the stacking-fault energy, 

analysis, a property of  dislocation/dislocation interaction 
only: me. It is evident again that solutes do influence 
the strain-hardening contribution to the flow stress. For 
these alloys, an obvious interpretation is that the stacking- 
fault energy is decreased by the alloy additions, and this 
increases the effective 'width of  the obstacles '  (the forest 
dislocations). 

The same behavior is, however,  also observed in other 
alloys such as Ni-C, where the stacking-fault energy is not 
likely to be affected. 53 On the other hand, dynamic strain 
aging is here important. This is shown in Figure 14(b) for 

INCONEL* 600, at various temperatures.  The most evident 

*INCONEL is a trademark of the INCO family of companies. 

characteristic of  these data is that the slope ma is negative at 
some temperatures. This can only be due to dynamic strain 
aging (even though jerky flow occurs only when the total 
rate sensitivity is negative). Once this is established, it is 
evidently possible for the same mechanism to lower ma to 
some extent, even though not always enough to make the 
slope negative. This could then be responsible for the effect 
in Ni-Co also. 

In conclusion, there seems to be a general effect of  solute 
additions on the rate sensitivity of  Te (the strain-hardening 
contribution to the flow stress), such as to lower it. This is 
particularly prominent at higher t e m p e r a t u r e s - - a n d  could 
therefore contribute to more 'a thermal '  behavior. 

C. Concentration and Solute Dependence 

The same principles that have long been used to study the 
influence of the forest dislocation density can also be used 
to investigate the solute atom density: as it is varied, the rate 
sensitivity /3, or the inverse of  the activation area Aa,  
should be a linear function of  the flow stress (as it varies 
with concentration). This can be studied easily at the yield 
stress, presuming that the dislocation contribution ~'a is here 
constant or negligible. In the latter case, the straight line 
should actually go through the origin. 

In Figure 15, we have replotted data for silver alloys 2s in 
this way. The line is well enough straight, and it does ap- 
proximately go through the origin. Nevertheless,  the data 
disagree with the discrete-obstacle model in two respects. 
First, the m s that can be derived from these slopes is about 
1/30 at room temperature, 1/45 at 78 K. These values are 
so high only because the data were taken with Basinski 's 
extrapolation method: as ' instantaneously '  as possible. The 
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Fig. 1 5 -  Stress equivalence for silver alloys: different alloys show the 
same dependence of rate sensitivity (the inverse activation area Aa) on 
concentration when plotted as a function of the (concentration dependent) 
flow stress. (Open symbols: Ag-In; full symbols: Ag-Sn; cross sym- 
bols: Ag-Au.) Also note that the activation area is of  order 1000 b 2. After 
Basinski, Foxall, and Pascual. 2s 

METALLURGICAL TRANSACTIONS A VOLUME 16A, DECEMBER 1985--2121 



values for Ay/b,  by the most favorable statistical inter- 
pretation, come out to be 18 and 6, respectively: much too 
large. If, on the other hand, a reasonable value for Ay/b  
were chosen (such as 1 or 2), the obstacle spacing would 
have to be at least an order of magnitude larger than the 
spacing of individual solutes along the dislocation line to 
give the right order of the activation area. This discrepancy 
has been noted many times, probably first by Schwink and 
Traub, 1~ and was one of the reasons why Basinski et al. 2s 
found it compelling to dismiss the discrete-obstacle model 
on the basis of their data. 

Secondly, Basinski, Foxall, and Pascual 2s discovered that 
different alloys fell on the same line. (They plotted it in a 
different diagram, in which there is no reason for the line to 
be straight.) They labeled this effect 'stress equivalence': at 
the same flow stress (and temperature and base strain-rate), 
any alloy, of whatever solute kind or concentration, has the 
same rate sensitivity. Yet the same flow stress could come 
about either by a higher concentration or by a stronger 
interaction--but only the latter should enter the rate sensi- 
tivity (Eq. [17]). Stress equivalence is thus incompatible 
with a discrete-obstacle model (or at least it would be an 
incredible coincidence). On the other hand, it would be a 
natural consequence of a trough model: here, only one pa- 
rameter enters, the decrease in the dislocation line energy 
per unit length. This will be discussed in detail in Sec- 
tion V-E. Stress equivalence has also been shown to be 
compatible with Labusch's cluster model. TM 

A third and most powerful argument follows from the 
data of Basinski, Foxall, and Pascua128 on copper alloys of 
many concentrations--but this point can be appreciated 
only by plotting the data in the way used here: Figure 16. 
In this case, the data curve is far from straight, especially at 
low concentrations. This means that the obstacle spacing 
that enters into the activation area is not proportional to the 
one that enters into the flow stress. We find this the most 
compelling argument against the discrete-obstacle model, 
especially since the violation occurs at low concentrations 
and low temperatures, where the solutes are most likely to 
act as individual obstacles. Incidentally, even in a discrete-' 
cluster t h e o r y  1~176 the spacing of the effective obstacles 
should be same for the flow-stress relation as for the activa- 
tion length. Thus, the nonlinearity of Figure 16 would 
appear to be incompatible with both the discrete-obstacle 
and the cluster models. 

D. Temperature Dependence 

Finally, at a given structure and base strain-rate, the rela- 
tive rate sensitivity should depend on temperature in a way 
that is characteristic of the mechanism(s). "~ The same in- 
vestigation of Cu-A1 alloys 2s also provided such data, and 
we replotted them in Figure 17 in the way we find most 
instructive. The qualitative behavior of different models is 
drawn in as lines. The discrete-obstacle model predicts 
about same shape as observed, except that it rises sharply 
at low temperatures, and should be on a much more 
compressed temperature scale (Section II1-C). A two- 
mechanism model (with one mechanism being 'athermal') 
demands that m decrease again at higher temperatures. Fi- 
nally, the trough model predicts a linear initial rise, tending 
toward eventual saturation. The latter is most closely what 
is observed; the deviation at high temperatures is in the 
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opposite direction of a separate plateau mechanism. We 
conclude that, again, a repeated-unlocking model could, on 
a heuristic basis, explain the plateau-like behavior along 
with the low-temperature behavior. 

E. Conclusion 

Observations of the strain-rate sensitivity of many solu- 
tion hardened alloys are in conflict with qualitative and basic 
features of the discrete-obstacle model in four respects: its 
order of magnitude is too small; it is 'stress equivalent', 
independent of the kind of solute; it sometimes violates the 
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necessary proportionality between activation length and ob- 
stacle spacing; and its temperature dependence is not in 
accord with either a single short-range mechanism or the 
superposition of that with an athermal contribution. 

We shall discuss some features of the activation area for 
trough models in the next section. 

V. TROUGH MODELS 

A. Requirements f o r  a Viable Model  

We have seen that a bulge-nucleation model (if it could be 
physically justified) would explain, at least in a qualitative 
manner, a number of general features of the obser- 
vations: plateau-like behavior in a flow stress vs tem- 
perature diagram at intermediate temperatures (actually a 
"r ~ 1 /T  relationship); an unsystematic concentration de- 
pendence of the flow stress at constant temperature (since 
the temperature is also scaled by concentration); 'stress 
equivalence' of the thermal/rate properties (since there is 
only one interaction parameter, the binding energy per unit 
length); and the right type of temperature dependence of the 
rate sensitivity. We shall now explore whether other features 
are also compatible with such a model: the temperature 
dependence at low temperatures; the concentration de- 
pendence of the scaling parameter; the order of magnitude 
of the activation area as well as its dependence on concen- 
tration (especially at low concentrations); and the interaction 
with strain hardening. 

First, however, let us address the basic problem of justi- 
fying such models on physical grounds. The essence of 
bulge nucleation is that the length of the 'bulge' in the 
dislocation is not related to the spacing of individual solute 
atoms: the bulge is a breaking-away from a trough. The 
solutes must behave as if they were smeared out along the 
dislocation, and only their interaction energy per unit length 
(~B) matters, which is proportional to the interaction 
strength of each solute atom times the concentration of sol- 
utes along the dislocation line, C. 

The latter is an instructive quantity: in some cases, one 
may describe it as 

C = klk/~c + k2c = kiX/-~c �9 (1 + k3~c)  [19] 

Here, c is the bulk atomic concentration, and the k's are 
constants. The first term in this relation comes from the 
number of solute atoms the dislocation encounters when 
moving through a slip plane, while continually flexing be- 
tween them. 2'3~ The term proportional to c could result 
from the dislocation's collecting, in some way, all sol- 
ute atoms within a cylindrical volume around it, once it 
has stopped. (There are also other possibilities for such 
a linear term. H3) The observation of a proportionality of 
the normalized binding energyfB to the square-root of c in 
Cu-A1 (Section Ill-E) suggests that there is no significant 
collecting after stoppage, at least in this alloy, in this 
temperature regime. 

A trough mechanism would be easy to envisage if the 
dislocation did collect a significant number of solute atoms 
from its surroundings after being stopped by forest dis- 
locations: then the distribution could be almost continuous 
along the dislocation line, and there would be a denuded 

zone around the dislocation, so that the nucleated bulge 
would certainly be 'free'. Then, however, there would have 
to be a significant contribution to the binding energy propor- 
tional to c. More fundamentally, it could not happen at the 
low temperatures where it is observed: diffusion even by 
one atomic jump, and even if it occurred by something akin 
to pipe diffusion (but toward the dislocation) does not occur 
below about Tm/4. 

It is possible to envisage an essentially athermal atomic 
interchange mechanism, in the very center of the core. How- 
ever, then the spacing of actual solute atoms along the dis- 
location, at low bulk concentrations, would be much larger 
than one atomic spacing: how then can the dislocation 
behave as if it were continuously locked? 

One general possibility is that effectively a 'solute 
dislocation '114 has been formed: the net effect of all re- 
arrangements in solute distribution, especially at far dis- 
tances, due to the presence of the particular dislocation 
under consideration. 

A more local solution to this multiple puzzle emerges 
when one widens the considerations to extended dis- 
locations, not only unit ones; 26 and when one allows the 
solute/dislocation binding to be subject to fluctuations. 27 
These possibilities will be treated in detail in the following. 

There is one other problem left, and it has been the major 
cause for the judgment in the literature over the last two 
decades 3'25 that trough models are inapplicable to normal 
solution hardening. In this argument, it is envisaged that 
'unlocking' of dislocations is primarily a break-away from 
a stable atmosphere, created typically at a higher tem- 
perature. Then, the rest of the volume is denuded of solutes, 
and the effect is essentially one of the generation of mobile 
dislocations, not of their propagation. Such generation 
stresses lead to yield drops and Liiders bands, whereas the 
effects being discussed here hold also for smooth yield. 

The reason why this objection can no longer be viewed as 
serious is that dislocation propagation itself is known to 
be jerky: 3~ dislocations sweep some area of the slip plane 
easily, only to be stopped at some 'hard line' where they 
wait for thermal activation. These relatively hard lines 
would typically be dictated by the arrangement of forest 
dislocations (or second-phase particles, or even the sol- 
utes themselves). An analysis of macroscopic strain rates 
and pre-exponential factors shows that the waiting time is 
typically of the order of 1 second. Thus, a viable re- 
peated-unlocking mechanism must allow a dislocation to 
'dig a trough' in that sort of time span and, on the other 
hand, to be comparatively free during the short transit 
times (when it typically travels one atomic spacing in the 
order of 10 -9 S). 

B. Extended Dislocations 

When a dislocation is extended, its partials have, in gen- 
eral, different character: the partial with more edge character 
will usually interact more strongly with the solute. While a 
(whole) dislocation is moving, it will encounter solutes on 
both its partials equally; but when it stops, it may stop so as 
to maximize the number of solutes on the partial that inter- 
acts more strongly. This could happen strictly mechanically; 
in addition, if there is any quasi-athermal mobility of the 
solutes within the extended 'core' of the dislocation, some 
further redistribution might occur as a consequence of stop- 
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ping. Then, the dislocation is more strongly bound when it 
is at rest than when it is moving, and the concentration of 
solutes 'on' it is proportional to V~cc. 

In addition, this mechanism provides the rudiments of a 
trough: the partial that has no (or fewer) solutes on it, and 
the stacking-fault ribbon between them, serve as effective 
distributors of the interaction force along the dislocation. 
Figure 18 shows a sketch: it is apparent that the dislocation 
cannot break away from a single solute independently of the 
others. (Such configurations have actually been observed by 
weak-beam transmission electron microscopy in Cu alloys, 
but the nodes were there interpreted as constricted jogs. 115) 

This mechanism relies on the finite extension of the dis- 
locations: it can be expected to operate only when this ex- 
tension is at least of the order of the range of the solute/ 
dislocation interaction. (It has nothing to do with the solute 
spacing, n6) But since the range is typically no more than a 
couple of atomic spacings, even the dislocation extension in 
'high-stacking-fault-energy materials' such as aluminum 
should be sufficient--especially for edge dislocations, 
which tend to be more extended. 

At the other end of the spectrum of stacking-fault ener- 
gies (X), X/t xb may become so low as to be negligible 
with respect to the solute binding-force per unit length, fn; 
then, one would again expect a trough model to be tenuous. 
(In fact, one should then expect dissociation of the par- 
tials at a lower stress, with the attendant formation of large 
faulted areas.) Thus, there is likely to be a subtle interplay 
between x / ~ b  andfB ; it would have to be studied in detail 
to correlate with the observed differences between differ- 
ent alloy systems. 

Another possibility for 'trough-digging' is the chemical 
interaction proposed by Suzuki: 26 since the bulk stacking- 
fault energy depends on the bulk concentration of solutes, 
there will also be a local interaction. This is, of course, 
athermal; but the relaxation time for it would have to be 
finite, so that there is a difference between moving and tem- 
porarily 'waiting' dislocations. Suzuki and his co-workers 
have elaborated this model in great detail. 27'97 It requires a 
correlation between the effectiveness of a solute to lower the 
SFE and to raise the strength. Such a correlation does not 
seem to exist in all cases.liT 

Note that the essence of all trough models is that the free 
energy of the resting dislocation is lowered by solute inter- 
actions: we have assumed that this is generally true when the 
resting dislocation contains more solutes than the bu lk - -  
but it may just as well be the other way around: if the 
interaction were repulsive, or if the stacking-fault energy 
were raised by solutes. 

C. Fluctuations 

A trough model may still be a good approximation when 
the 'depth' of the trough is not exactly constant. Suzuki 27 has 

Fig. 18--Interaction of solutes with an extended dislocation: it is gener- 
ally stronger on one of the partials; the other serves to distribute the force, 
which could lead to trough-like behavior. 

examined the consequences of spatial fluctuations in the 
binding energy. Not surprisingly, the effect manifests itself 
in the pre-exponential factor (the activation entropy)--and 
makes it temperature dependent. At low temperatures (typi- 
cally about 200 K or less), the temperature dependence of 
the pre-exponential factor becomes as important as that of 
the Boltzmann term, and it then becomes questionable 
whether they can be operationally separated. This is the 
regime where the discreteness of the obstacles may make 
itself felt. Above this temperature, however, the trough 
model remains intact despite the fluctuations: that, from our 
point of view, is the significant result. 

D. The Trough Profile 

If we now view the interaction between solutes and a 
resting dislocation as constant along its length, one may 
describe the dependence of the interaction on the forward 
displacement of the (entire) dislocation (at fixed solute dis- 
tribution) by a 'trough profile', such as that shown in 
Figure 19(a). If the 'bound state' is taken as reference, the 
increase in free energy per unit length, A~, depends on 
the forward displacement, y, away from the bound state, and 
reaches the full 'binding energy', ~B, at infinity; then, the 
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Fig. 19 - - ( a )  A typical trough profile, schematic: A~" is the interaction 
energy as a function of the forward displacement of a straight dislocation 
element, A~J controls the local angle Y of an equilibrium bulge (b) that 
might be nucleated under a stress z. 
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total free energy per unit length is ~o ,  the line energy of 
the dislocation. 

At a given applied stress r, the dislocation will move 
forward to an equilibrium position Y0 given by 

0 
[ 

L = rb [20] 
OY yo 

The maximum stress needed to unlock the whole dislocation 
from the trough (the 'mechanical threshold '3~ § is given by 
the maximum slope in the A~ vs y diagram (point M in 
Figure 19(a)). 

With the aid of thermal activation, a 'bulge' may be 
nucleated on this dislocation; one-half of it is illustrated in 
Figure 19(b). One must know its (saddlepoint) equilibrium 
shape in order to derive the activation energy AG. Both 
the bulge shape (at given trough profile) and AG were 
derived in detail in Kocks et al. 3~ (Eqs. [24e] through [24f] 
and [51f] through [51i]). It turns out that the activation 
energy is given by 

fyi'  AG = 2 ~  (y) dy [21] 

where Y is the angle of the bulge element at position y with 
respect to the main dislocation direction (Y being assumed 
small, called fl in Reference 30). The upper limit of the 
integral is given by the criterion that Y vanishes again (as it 
does at Y0). 

Thus, the bulge shape is best specified as the function 
Y(y). This is again uncomplicated when Y is small; the 
result is 

Y = ~/2 A ~ / ~ o  [221 

where 

AWo =-- A ~  (y)  - A ~  (Yo) - r b ( y  - Yo) [23] 

which is shown, at one arbitrary value of y, in Figure 19(a). 
Putting these equations together, and using the formerly- 
defined abbreviationsfB and t# (Eqs. [13a, c]), we get 

3 ( n  
AG = ~b/d, bZX//~B �9  Jr0X//~-~/~B dY [24] 

Here, Y =-- y / w ,  where the trough-width parameter w may 
be chosen arbitrarily (but the same as in ~O); we will specify 
a useful one below Eq. [27]. The quantity after the dot 
comes out to be g ( S ) / S  (Eq. [14]). In other words, 

g(S) =-gs. - s r  d r  [25] 

We will now treat the two limits: low temperature and 
'high' temperature. For the limit of low temperatures,  
one may approximate the neighborhood of point M in 
Figure 19(a) as a cubic and find that 

AG oc (1 - r /§  5/4 [26] 

in other words: almost straight. 
The situation for the limit of 'high' temperatures (which 

we shall find appropriate for the intermediate temperature 
regime where plateau-like behavior is observed) is illus- 
trated in Figure 20(a): the stable equilibrium position of the 
(straight) dislocation is bound to be in a parabolic well; and 
the farthest excursion of the bulge will have essentially the 

free-dislocation energy--and these qualitative facts do not 
change as the stress gets even lower than the value shown in 
the illustration (which is actually not so low at all!). 

The profile shown as a solid line in Figure 20(a) has two 
advantages: it should describe the intermediate-temperature 
limit well; and it must give an upper limit for AG, since the 
top will certainly be somewhat rounded, such as shown in 
the dashed curve. This upper-limit property holds provided 
the model profile and the real one are compared at the same 
behavior in the bottom of the well. For this reason, it is 
particularly appropriate to define w in terms of this curva- 
ture at the bottom of the energy well. We set 

A ~  = ~ B ( y / w )  2, ( y  <-- w); 

A~ = ~B, (y --> W) [271 
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Fig. 2 0 - - L i m i t  for intermediate and high temperatures: a parabolic 
energy well (a). For a given curvature, this gives an upper limit for the 
activation energy AG as a function of the normalized stress S (b). The 
dashed line may describe realistic behavior; the dotted line is the linear 
approximation we used in experimental analysis; the dash-dotted line is the 
square-root relation. 26 
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These two regimes must be separately integrated, with the 
help of Eqs. [20], [23], and [24]. 

A subtle question is how to normalize the stresses. If we 
stay with the parameter S defined in Eq. [13b], then the 
maximum stress in the parabolic model profile (Eq. [27], 
Figure 20(a)) is S = 2, not S = 1. On the other hand, the 
region near the true maximum stress is not well described by 
this model profile anyway; thus, a normalization of the 
stress by the maximum stress would not really be appro- 
priate in the low-stress limit. The normalized parameter S, 
which is in terms of the total binding energy (and the well- 
width w), is in fact quite appropriate. 

With this convention, integration of Eq. [24] with 
Eq. [27] gives 

AG = ~0/~b3~/~ �9 1 - �88 + �89 3 [28] 
S 

This function is plotted in Figure 20(b) (as AG �9 S vs S: 
solid curve). Note that in the limit of low stresses, the 
dependence is l inear- -and such as to extrapolate back to 
S = 4/3. That is not an unreasonable value for a real maxi- 
mum stress, and so this straight-line relationship may be a 
good first approximation for the total behavior. 

In our experimental evaluations, we used g(S) = 1 - S, 
for simplicity. To interpret this in terms of the current limit- 
ing model, we would have to replace S by 3/4 �9 S, and ~0 by 
3 / 4 .  ~. This does not change the conclusion from those 
evaluations: that the value of ~ derived from the experi- 
ments is eminently reasonable. 

In truth, the maximum stress may lie anywhere (so long 
as S < 2); also, the initial decrease must be with the 5/4 
power (Eq. [26]), i.e., with an infinite slope. The dashed 
line is one possibility. (It is worth noting, and will be elabo- 
rated upon in the next section, that the slope of the curve is 
always negative, but the curvature may well change sign.) 

In the light of these derivations, the function g(S) = 
%/(1 - S), which was discussed in Section III-E in con- 
nection with a triangular well and the Suzuki model, is only 
a rough approximation: the profile is not smooth near the 
maximum stress nor at S --* 0. While it also gives a straight 
line for g(S) in the limit S --* 0, the slope extrapolates to 
S = 2 (using the half-width of the well for a definition of w, 
as in Section III-D). In Figure 20(b), this functional relation 
is shown renormalized such as to have the same high- 
temperature limiting behavior. 

Finally, another simple profile of some limiting qualities 
has been analyzed, namely, where 

A ~  = ~s  1 1 + y / w  [291 

While it has a cusp at the origin, the comer at the top has 
been replaced by about the longest-range dependence that 
could be envisaged. Using w = ~B/~'b, the result is 

A G =  p, b3t0V~B. ( ~ - - - ~ E ( X / 1 -  S ) -  2K(X/T-Z~) )  

[30] 

where E and K are the complete elliptic functions of the 
'k'-arguments. This relation is also plotted in Figure 20(b), 
again renormalized to give the same high-temperature 
behavior. 

E. The Activation Area, Stress Equivalence 

The ('apparent') activation area Aa (or 'activation vol- 
ume' b Aa) characterizes the strain-rate dependence of the 
flow stress (Eqs. [15] and [18]). In terms of activation pa- 
rameters, it is defined 3~ by 

b A a  ~ OAG [31] 
0~" r 

Since AG and ~" are proportional to various constants that 
depend only on the alloy system, and then also proportional 
to a function of the normalized stress S, it is most convenient 
to study the logarithmic derivative; then, with Eq. [14], 

a O  d ln (S /g)  
b Aa = - -  [32] 

r d i n S  

It is apparent that there is one term which is just h G / r ;  it 
dominates in the limit S ~ 1. Since AG is strictly a function 
of temperature and strain rate (Eq. [5]), the activation area 
is 'stress equivalent', at least in this limit, i.e., it does not 
depend on the kind of solute or the concentration except 
through the one parameter, the flow stress. (In a discrete- 
obstacle model, the term after the dot in Eq. [32] is merely 
- d  In g / d  In s; this is a function of s, which is a function 
of AG/Fo,  and thus of the obstacle strength; see Sec- 
tion III-C.) 

The order of magnitude of the activation volume in this 
intermediate-temperature limit of the trough model can be 
easily estimated. At room temperature (in Cu, e.g.), A G /  
/*b 3 = 0.1, and r/ l*  ~ 10 -4 (for a 1 pct-alloy, approxi- 
mately); thus, the activation volume is of order 1000 b3: the 
surprisingly large order usually observed. 

For the linear dependence g = 1 - S, the total expres- 
sion [32] may be written as 

b 2 r/l~ 
�9 (1 - S )  [ 3 3 ]  

Aa AG/la, b 3 

This should hold approximately for S < 1/2. Thus we see 
that in the truly low-stress limit, the inverse activation area 
should be proportional to the stress: the same result as in 
the discrete-obstacle model, but not observed (Figure 16). 
However, at finite S, this linearity is actually broken. This 
is because, in trough models, S is not a function of tem- 
perature and strain rate only, but also of the obstacle concen- 
tration (see Eq. [14]). If we express S in terms of AG and 
~', avoiding f s,  we find 

{ 
S ~,kT ln(+o/+)/ \-~] [34] 

Thus, there is a fairly rapid (when S is not too low) de- 
parture from the apparent linear relation between 1 /Aa  and 
z; insertion of numerical values shows that it describes the 
results of Figure 16 quite well. 

This correction is also stress equivalent in that, at a given 
temperature and strain rate, only z matters--except  that ~O 
enters, and thus the effective trough width: this could 
depend on the alloy system, and then the stress equivalence 
should be lost at lower temperatures. It would be very inter- 
esting to know whether this is the case: if not, then even the 
width of the trough profile would be a 'universal' quant i ty--  
possibly dependent on the matrix, but not the solute. 
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The peculiar relation [33] allows one further interesting 
observation: dividing by z, and using Eqs. [5], [15], and 
[18], we have 

O l n r  r -  1 - S  
0 In ~, ln(~/0/~) [35] 

In other words: in the intermediate temperature regime 
where S -~ 1/2, the relative rate sensitivity is about 1/40: 
very typical for solution hardened alloys. 

E The Activation Length and the High-Temperature Limit 

It is easy to show that the macroscopically derived 
('apparent') activation area is in fact, for trough models, 
equal to the microscopic geometrical area swept out by the 
bulge during the activation event. It is now interesting to 
analyze how this area is made up: how much maximum 
forward excursion, h, and how much length, 18 ? 

For this, we must first confirm the self-consistency of the 
assumption previously stated, that the angle Y is small. 
From Eq. [21] and Figure 19(a), it is clear that an upper 
limit is 

Y < N/(2~B/~;D) = 2X/(fBw/b) = r [36] 

where the dislocation line energy ~D has been set equal to 
i~b2/2, and the definition [13a] has been used for the nor- 
malized obstacle strength, fB. From our analysis of experi- 
ments (Table I), we found fB -< 5 x 10 -4, approximately; 
setting w ~< 3b, we get 

-~ 0.1 [37] 

or about 6 deg. 
Now approximating the bu,~ge as a circular arc that meets 

the dislocation in the angle Y, we can first write 

Aa = 8 h 2 / ' ~  [38] 
3 " 

This is an interesting relation because, for the linear form 
of g(S), at intermediate temperatures, we can also write 
(Eqs. 131], [13c]) 

Aa = ~l'bz 1 4 w 2 1 
S --~ ~- 3 V'fBw/b " S - i  [39] 

Comparing Eqs. [38] and [39], and using Eq. [36], we find 
that the maximum excursion of the bulge, h, is 1/S times the 
trough width, w. 

Another relation for the circular arc is 
2 ̂  Aa = IB Y/6  [40] 

from which follows 

IB/w ~-- 4 / Y "  1/S [411 

The length of the bulge, l~, is at least 40 times the width of 
the well, and can become quite large at high temperatures. 

There is a limit to the applicability of this model when lB 
becomes of the order of the forest dislocation spacing (Fig- 
ure 21): then, the bulge is no longer free; in effect, the flow 
stress is due to forest cutting at a lower line energy. This 
could explain the proportionality between solution harden- 
ing and strain hardening discussed in Section II-B. 12 It 
would also rationalize the proportionality of strain-aging 
effects to '/'d 12'53 

Fig. 2 1 - - A t  low stresses, the bulge length IB is limited by the forest 
spacing lo. This causes an interaction between strain hardening and solu- 
tion hardening, including strain aging. 

G. Conclusion 

Detailed examples have shown that trough models are 
quantitatively viable, with respect to both the orders of 
magnitude and the types of dependencies on temperature, 
strain rate, and concentration. Their principal advantage lies 
in the 'intermediate' temperature regime; at very low tem- 
peratures, some effects of the discreteness of the solute 
atoms may be felt (unless inertial effects already dominate); 
at high temperatures, where the dislocation forest spacing 
limits the bulge length, a natural transition to solute-depen- 
dent work hardening is an attractive feature of the model. 

VI. SUMMARY 

An analysis of a wide variety of data on the temperature 
and strain-rate dependence of the flow stress in solution 
hardened alloys has led us to the following conclusions: 

1. The fixed-discrete-obstacle model is untenable for the 
following experimental reasons: 
a. A significant glide resistance extends to too high a 

temperature, by about a factor of 2 at least. There is 
no cause for any 'plateau'-like behavior. 

b. The observed activation area is at least an order of 
magnitude too large. (This point has been made by 
almost every investigator in the field.) 

c. The observed activation area (even that portion of it 
which can be attributed to solute dislocation inter- 
actions) is not proportional to the solute spacing 
(in one well-investigated case), even at low con- 
centrations and low temperatures. (This point has 
been made here for the first time, on the basis of 
Basinski's data. 28) 

d. At a given flow stress, the thermal properties are in- 
dependent of the concentration and even the kind 
of solute element. (This was discovered by Basinski 
et al. 28 and termed 'stress equivalence'.) 

At least some of these objections hold equally well for the 
cluster variations of the discrete-obstacle model. 

2. It is likely that solute mobility contributes to the exis- 
tence of the 'plateau' at intermediate temperatures in all 
cases: such mobility is bound to exist above some tem- 
perature and, so long as it is not too great, is bound to 
influence dislocation mobility and thus the flow stress. 
Its presence can be detected most easily by the Portevin- 
LeChatelier effect and by a hump in the diagram of ulti- 
mate tensile strength against temperature; however, it 
exists beyond these regimes and can there be detected 
most subtly by any decrease in the rate sensitivity 
with strain. 
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3. The regime of temperatures b e l o w  that in which 
thermally-activated solute mobility can be important, 
may be explained on the basis of a model of 'repeated 
unlocking' by 'bulge nucleation' from a 'trough'. The 
jerky nature of dislocation glide through a field of forest 
dislocations makes this a possible mechanism for an ef- 
fective propagation stress, not just for dislocation genera- 
tion. An investigation of the detailed properties of such 
models appears to satisfy all the requirements of a viable 
theory. The principal lack, so far, is an attempt to explain 
the solute dependence, i .e. ,  the influence of size misfit, 
modulus misfit, electron/atom ratio, etc. The model has 
the additional advantage that it may change but subtly, 
without any real break, as the temperature is raised and 
solute mobility becomes an added feature. 

It is an unfortunate truism of scientific modeling that a 
single, basic failure of a model weighs more heavily than 
20 years of successes. The repeated-unlocking model has 
not been subjected to the same scrutiny as the discrete- 
obstacle model, and thus not been given the same chance 
to fail. It has been held to steadfastly for 27 years by a 
single person: Professor Hideji Suzuki. It is time that it 
be taken seriously. 
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