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A mathematical model of  thermosolutal convection in directionally solidified dendritic alloys 
has been developed that includes a mushy zone underlying an all-liquid region. The model 
assumes a nonconvective initial state with planar and horizontal isotherms and isoconcentrates 
that move upward at a constant solidification velocity. The initial state is perturbed, nonlinear 
calculations are performed to model convection of the liquid when the system is unstable, and 
the results are compared with the predictions of a linear stability analysis. The mushy zone is 
modeled as a porous medium of  variable porosity, consistent with the volume fraction of inter- 
dendritic liquid that satisfies the conservation equations for energy and solute concentrations. 
Results are presented for systems involving lead-tin alloys (Pb-10 wt pct Sn and Pb-20 wt pct 
Sn) and show significant differences with results of  plane-front solidification. The calculations 
show that convection in the mushy zone is mainly driven by convection in the all-liquid region, 
and convection of the interdendritic liquid is only significant in the upper 20 pct of  the mushy 
zone if it is significant at all. The calculated results also show that the systems are stable at 
reduced gravity levels of  the order of  10 -4  go (go = 980 c m "  S -1) or when the lateral dimensions 
of the container are small enough, for stable temperature gradients between 2.5 -< GL --< 
100 K-  cm -~ at solidification velocities of  2 to 8 cm.  h -1. 

I .  I N T R O D U C T I O N  

D U R I N G  dendritic solidification of alloys, liquid flow 
is induced both by buoyancy forces and solidification 
shrinkage. Based on the experimental base of  several in- 
vestigators (e .g . ,  Laxmanan et al . ,  tq Sarazin and 
Hellawell, t2~ and Streat and Weinberg,[3]), there is strong 
evidence that the major reason for liquid flow is often 
the former, i .e . ,  thermosolutal convection. This can be 
seen in Figure 1, which shows schematically the varia- 
tion of the concentration of solute vs distance from the 
base of a directionally solidified ingot. 

Two curves are shown in Figure 1. One shows 
macrosegregation when thermosolutal convection is ab- 
sent and flow of the interdendritic liquid is induced pri- 
marily by solidification shrinkage. This results in a positive 
segregation at the surface of the solidified ingot, which 
is often deemed "inverse segregation. "t4J On the other 
hand, when thermosolutal convection occurs, there is 
apparently an advection of solute from the enriched mushy 
zone to the all-liquid zone that results in negative seg- 
regation at the surface and a gradual increase of  the so- 
lutal concentration in the completely solidified ingot. 

The major emphasis of  this paper is to model the 
thermosolutal convection responsible for the latter type 
of macrosegregation described above. In an accompa- 
nying paper, tSl the thermosolutal convection was ana- 
lyzed in terms of its linear stability. As a model system, 
Pb-20 wt pct Sn alloy solidifying at 0.002 cm-  s -~ was 
selected. Marginal stability curves, in terms of the ther- 
mal gradient at the dendrite tips vs the horizontal wave 
number of  the perturbed variables, were calculated for 
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gravitational constants of  go, 0.5 go, 0.1 go, and 0.01 go. 
For 0.0001 go, the system was found by calculation to 
be stable for all thermal gradients (2.5 --< GL ---< 
1 0 0 K . c m  -~) and for all wave numbers (0-< to_< 
130 cm-~). For the greater fractions of go, however, there 
were no minima in the marginal stability curves, so that 
the system was not found to be unconditionally stable 
for all wave numbers. The analyses did reveal that there 
are probable container widths, below which convection 
can be suppressed. 

In this paper, the same type of a system is formulated 
using dimensionless variables. Calculations are pre- 
sented for various situations in which the linear stability 
analyses have predicted convection and no convection, t~] 
respectively. The nonlinear calculations presented herein 
agree with the predictions of  the linear stability analyses. 
It is important to note, however, that the present non- 
linear analysis does not permit the volume fraction of 
liquid in the mushy zone to deviate from its distribution 
determined for the nonconvecting and steady state. While 
this is a reasonable assumption to make for convection 
near the critical state, and it permits a prediction of the 
conditions in which thermosolutal convection is ex- 
pected, such an assumption does not allow an investi- 
gation of the supercritical stage of convection that leads 
to the formation of localized segregates that are some- 
times called "channel segregates" or "freckles. ,,[2] In fu- 
ture work, we intend to model the supercritical convection 
and the formation of channel segregates by relaxing the 
assumption that the volume fraction of liquid in the mushy 
zone does not vary with time. 

I I .  M A T H E M A T I C A L  M O D E L  

A.  Conservat ion Equat ions  

The physical situation is illustrated by Figure 2. We 
assume that a binary alloy solidifies vertically in a two- 
dimensional strip of width W. In Figure 2, S denotes 
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Fig. 1--Varia t ion of solute concentration v s  distance from the base 
with and without thermosolutal convection for a directionally solidi- 
fied ingot. 

the all-solid zone, L the all-liquid zone, and L + S 
the mushy zone. The coordinate system is located at 
z = 0 and moves upward at the constant solidification 
velocity, V. 

In Part I [51 of  this paper, all of  the major assumptions 
are listed. We start with Eqs. [6] through [9] of  
Nandapurkar et al.tSl for the conservation equations writ- 
ten for the moving coordinate system and in a dimen- 
sional form. 

(mass conservation) 
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Fig. 2--GeometD" and coordinate system for directional solidifica- 
tion of  a dendritic alloy. 
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In the equations for momentum, u and w are the com- 
ponents of superficial velocity, P0 is the density of the 
liquid at the reference state with a concentration C= and 
liquidus temperature To, p is pressure, Vo is the kinematic 
viscosity of the liquid at the reference state, K is the 
permeability, g is the gravitational acceleration, and p is 
the variable density of  the liquid. The permeability is 
that recommended for a mushy zone with a columnar 
dendritic structure: [61 

4'3 
K = a d ~ -  [6] 

(1 - 4 ' )  

where d~ is the primary dendrite arm spacing, 4' is the 
local fraction of liquid, and a is a constant. The variable 
density for the Boussinesq term in Eq. [2] is expressed 
in the usual manner: 

p = p0[1 - f l r (T  - To) - f lc(C - C=)] [7] 

where fir is the thermal expansion coefficient,/3c is the 
sotutal expansion coefficient, and T is the temperature. 

In the energy equation, d = K/(pO0), where K and 
are the thermal conductivity and heat capacity, respec- 
tively, within the mushy zone, and L is the latent heat 
of  fusion. In the solute equation, D is the diffusivity of 
the solute in the liquid, and k is the equilibrium partition 
ratio. It is also assumed that 4' = 4,(z) in the moving 
coordinate system. 

Equations [1] through [5] and Eq. [7] apply both to 
the mushy zone and to the all-liquid zone. Specifically, 
with the volume fraction of  liquid, 4', equal to one, the 
permeability is infinity, and the Darcy terms of  the com- 
ponent momentum equations (Eqs. [2] and [3]) become 
zero. Hence, the component equations for momentum 
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reduce to the usual Navier-Stokes equations with the 
Boussinesq approximation. The energy and solutal con- 
servation equations (Eqs. [4] and [5]) also reduce to the 
usual forms for the single-phase fluids when ~b is unity. 
Thus, we are assured of continuity in the major variables 
and their derivatives in the transition from the mushy 
zone to the all-liquid zone. 

We now rewrite Eqs. [1] through [5] with nondimen- 
sional quantities. 

(1) The thermal Rayleigh number is 

g#TG~ H 4 
RaT - - -  [8] 

v0ff 

where GL is the specified initial thermal gradient at the 
tip of the dendrites and H is a characteristic length. For 
these nonlinear calculations, we have selected H = z,, 
the height of  the mushy zone. 
(2) The solutal Rayleigh number is 

gJ~c C ~  H 3  
Rac - [9] 

v0D 

where C~ is the concentration of solute in the bulk liquid. 
(3) The Prandtl number is 

Pr = Vo/~ [10] 

(4) The Schmidt number is 

Sc = voiD [11] 

(5) The Darcy number is 

Da = K / H  2 [ 12] 

(6) The reference velocity is 

U = ( g f l T G L H 2 )  1/2 [13] 

(7) The nondimensional interface velocity is 

( / =  V / U  [14] 

The momentum diffusion time scale 

H 2 
r = - -  [15] 

v0 

has been chosen because it lies between the temperature 
and solute diffusion time scales. The temperature and 
solute concentrations are nondimensionalized according 
to 

T' - To 
T - - -  [16] 

G~H 
and 

f ! - -  C ~  

C = [171 
C~ 

respectively, where the prime denotes a dimensional 
quantity and To is the liquidus temperature of the alloy 
with concentration C~. For reference pressure, we choose 

P = poH2/r 2 [ 18] 

Finally, the nondimensional components of  velocity are 

u = u ' / U  and w = w ' / U  [19a,b] 

The nondimensional coordinates are 

x = x ' / H  and z = z ' / H  [20a,b] 

Nondimensional time is 

t = t ' / r  [21] 

And nondimensional pressure is 

p = p * / P  [22] 

Notice that in the definition of the nondimensional 
pressure, a dimensional pressure p* is introduced. The 
dimensional pressure gradient in Eqs. [ 1 ] and [2] is writ- 
ten as Vp' = Vps + Vp*, where Vp, = -Pog,  so that p* 
satisfies Vp* = Vp' + Pog- 

Because the equations in the mushy zone reduce to the 
equations in the liquid when ~b = 1, the whole system 
can be described by one set of  equations. In nondimen- 
sional form, Eqs. [1] through [5] become 
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B. The Initial State 

We assume that initially there is no convection and 
that, in the mushy zone, Eqs. [21] through [25] of  
Nandapurkar et al. [5] describe C, T, and ~b. The non- 
convecting state is specified by inputting GL, V, and 
C~ with 

~(x ,z , ,0 )  = 1 

4,(x, o, o) - o 
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and 

T'(x, 0, 0) = T~ 

In addition to obtaining C, T, and ~b in the nonconvect- 
ing mushy zone, the position of the dendrite tips, z,, is 
also obtained as part o f  the solution. 

The characteristic length, H,  is made equal to z,, and 
the height of  the all-liquid zone is also made equal to 
H = zt. The temperature at the top of the all-liquid zone 
simply becomes 

T'H= T" + GLH 

where T[ is the temperature at the dendrite tips. Thus, 
within the numerical domain, the temperature gradient 
in the liquid of  the initial state is assumed to be linear. 
Notice that this initial state does not exactly match the 
steady-state thermal field, which is strictly obtainable only 
for an all-liquid zone of infinite height. Because we seek 
a nonlinear calculation for T, C, u, and w, it is not nec- 
essary that the initial state must match a steady state. 
However,  we choose "..he values of  C, T, and q~ that rig- 
orously match a steady state for the initial condition of  
the mushy zone. 

C. Boundary Conditions 

The domain is made finite by means of an artificial 
top boundary at z' = z, + H -= 2H and by considering 
only the region 0 --- z -< 2H. 

The boundary condition associated with Eqs. [24] 
through [27] are as follows: 

(1) No slip condition on velocities along the two vertical 
walls and the bottom boundary. 
(2) No surface tractions at the top open boundary 
z' = 2H. 

t r - n  = 0 

where n is the unit normal vector pointing outward from 
the boundary surface. 
(3) Adiabatic vertical walls. 
(4) Prescribed temperatures at bottom and top bound- 
aries (with zt = H):  

TE- To L - T o  
T(x, O, t) - - -  andT(x,  2H, t ) -  - - +  1 

GLH GtH  

(5) No solute flux at the vertical and bottom boundaries. 
(6) At the top boundary, the solute must balance the 
concentration C~ outside; viz., at the top boundary, 

1 0 C  R~r - - - - +  VC =O 
Sc Oz 

(7) At the bottom, z = 0, 

CE-C~ 
C = -  

C~ 

III. NUMERICAL METHOD 

The governing Eqs. [23] through [27] have been dis- 
cretized using a finite element method based on rect- 
angular bitinear Lagrangian elements. The numerical 

model uses a Petrov-Galerkin formulation for convection- 
dominated transport and a penalty function approxi- 
mation to impose incompressibility. The system of 
first-order ordinary differential equations in time result- 
ing from the semidiscrete Petrov-Galerkin approxima- 
tion is integrated using a generalized Newmark  method. 

The major features of  the algorithm have been basi- 
cally described in Heinrich t71 and Heinrich and Yu. rS~ The 
detailed aspects of  the method pertaining to a related so- 
lidification process can be found in Heinrich. I9~ 

A rectangular mesh has been used in all calculations 
with uniform nodal spacing in the x-direction but non- 
uniform in the vertical direction, where the mesh is heavily 
refined in the vicinity of  the dendrite tips. The criteria 
for this refinement were (1) to allow a maximum change 
in the volume fraction liquid of  no more than 7.5 pet 
between two consecutive nodes in the vicinity of  the 
dendrite tips, where it changes very rapidly and (2) to 
place at least two nodal points within a distance D / V  of  
the dendrite tips in the all-liquid region, to resolve the 
initial exponential decay in the solute concentration field. 
Finally, the changes in the mesh spacings in the z-direction 
were gradual, to avoid undesired mesh reflection effects. 

IV. C A L C U L A T E D  R E S U L T S  
FOR NONLINEAR CONVECTION 

Calculations were performed for lead-tin systems 
under a variety of conditions. All calculations were started 
by introducing a random perturbation in the initial so- 
lutal field at the nodal points of  the form 

C(x, z, O) = Co(z) (1 + 0.005r) [28] 

where Co(z) is the solutal concentration of the initial state 
and - 1  ~ r -< 1, with r taken from a random number 
generator. 

Whether Eqs. [2] and [3] provide the most appropriate 
model for flow in the mushy zone is not yet definitive. 
A survey of the literature reveals that most authors differ 
in the form of the momentum transport equations in the 
mushy zone, in particular, in the coefficients for the 
transient, inertial, and viscous terms. Our formulation 
agrees with that of  Beckermann and Viskanta. t~~ 

Chouhadry et al. till have shown that the convective 
inertial terms are negligible in a porous medium. How- 
ever, the experimental work supporting this conclusion 
was for packed beds of  spherical beads with ~b = 0.4 
and does not apply to the variable porosity case under 
consideration, in which 0 < & <- 1. Our numerical re- 
suits indicate a significant difference in the total kinetic 
energy of the flow in the mushy zone when the inertial 
terms are not included. Both models (with and without 
inertial terms) produce flow fields that are almost iden- 
tical, but the one including the convective inertia terms 
shows consistently higher total kinetic energy in the 
mushy zone, and the difference stems from the flow close 
to the dendrite tips. This is consistent with the fact that 
the porosity approaches one at the tip of  the dendrites. 

The viscous terms in Eqs. [2] and [3], known as the 
Brinkman terms (cf. Brinkman ~121), are usually neglected 
when compared to the Darcy terms. These have the in- 
convenience that interface conditions must be imposed 
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at the tip o f  the dendrites, [13] which should not be nec- 
essary and is perhaps not valid when the porosity ap- 
proaches unity. However ,  it is clear f rom experiments 
in packed beds that the Brinkman extension is appro- 
priate when the porosity is greater than about 0.6,  where 
the Darcy approximation is not a good model for the 
flow. A thorough discussion of  the Brinkman term is 
given by Nield. [14] The exact form of  this term, however,  
is not determined. It will depend on the form of  the con- 
stitutive relation for the porous medium; moreover ,  it is 
sometimes recommended that the viscosity be inter- 
preted as an "effective viscosi ty."  In this work,  the fluid 
v iscos i ty /x  has been used. 

The most  important changes in numerical results for 
the dendritic region are attributable to changes in the per- 
meability function K. As we will see, the flow in the 
mushy zone is very sensitive to the values attained by 
K, and convect ion in the mushy zone can be eliminated 
if K is very small. 

First, we discuss the result o f  nonlinear calculations 

Table I. Calculations for Pb-20 Wt Pct Sn 

Calc. 
No.  

Reference 
Thermal Con- 
Gradient tainer 

GL g/go (go = Width Linear 
( K ' c m - l )  980 cm" s -2) (cm) Stability tS1 

80 1 1.24 unstable 
80 10 -4 1.24 stable 

2.5 1 3.46 unstable 
2.5 10 -1 3.46 unstable 
2.5 10 - 2 3.46 unstable 
2.5 10 -4 3.46 stable 
2.5 1 0.10 stable 

for the Pb-20 wt pct Sn alloy, for which the linear sta- 
bility analysis is presented in our companion paper. TM 

The physical parameters are given in that reference, and 
only the nondimensional  parameters will be mentioned 
here. Table I shows the different cases considered and 
the results of  the linear stability analysis. The solidifi- 
cation velocity is 7.2 c m .  h -1 (2 x 10 -3 cm" S -1) in all 
cases, and the upper boundary was chosen at z'  = 2H. 

In the case o f  GL = 8 0 K ' c m  -1, the depth of  the 
dendritic region was found to be 1.24 cm, and when 
the gravitational constant is go = 980 cm- s -z, the non- 
dimensional parameters are Ra t  = 4.24 x 104, Rac = 
2.33 x 10 7, Pr = 1.58 x 10 2, Sc = 91.0, and 
Da = 6.15 x 10-8~b3/(1 - ~b). 

All o f  our nonlinear calculations agree with the linear 
stability results in the sense that when the stability anal- 
ysis predicts an unstable case, convection develops in 
the nonlinear system, and when a stable system is pre- 
dicted, the perturbations die out in the nonlinear model. 
In Figure 3, the results for calculation 1 after 114 sec- 
onds are shown. It can be observed that convection is 
very weak in the all-liquid region, and there is essen- 
tially no convect ion in the mushy zone. In fact, the 
permeabilities used in these calculations yield almost no 
convect ion in the mushy zone in all cases. 

In the case GL = 2.5 K . c m  1, a depth o f  17.3 cm 
results for the mushy zone,  and at normal gravity con- 
ditions, the nondimensional  parameters are Ra t  = 
4.97 • 107, Rac  = 6.28 x 101~ and Da = 2.75 x 
10-9~b3/ (1  --  t~)  with the same values as before for the 
Prandtl and Schmidt numbers.  Results at t = 1080 s for 
calculations 3 and 5 in Table I are shown in Figures 4 
and 5, respectively. As expected, much weaker  convec-  
tion is observed in Figure 5 than in Figure 4 because of  
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Fig. 3 - - C o n v e c t i o n  in a Pb-20 wt pct Sn alloy (calculation l) at 114 s with GL = 80 K . c m  ~. (a) Isotherms a r e  ( T '  - T E ) / ( T ,  - TEL 
(b) solutal isoconcentrates, and (c) streamline contours. 

METALLURGICAL TRANSACTIONS B VOLUME 20B, DECEMBER 1989--887 



5.0  

T 

2.6 

2 .5  

1.4 

i 0.7 

(a) 

C 

0.001 
0.1 

0.5 

1.0 

1.5 

2.0 

(b) 

0.2E- 0.6E- 
-0.1 E- 

-0,2E- 
-0,3E- 

O. IE- 
0.6E- 
0.2E- 

0.2E- 

(c) 

Fig. 4--Convection in a Pb-20 wt pct Sn alloy (calculation 3) at 1080 s 
with GL = 2.5 K ' c m  -~. (a) Isotherms are (T' - TE)/(T, - TE), 
(b) solutal isoconcentrates, and (c) streamline contours. 

the reduced value o f  g. It can be observed that the con- 
vection cells in Figure 4 are much longer than those in 
Figure 3 because o f  the weaker stabilizing temperature 
gradient. These calculations show the expected results 
as predicted by the linear stability analysis o f  Nandapurkar 
et al. TM However ,  these cases show no convect ion in the 
mushy zone and hardly any effect o f  thermosolutal con- 
vection in the conditions at the dendrite tips. We should 
point out that the linear stability calculations were done 
for laterally unbounded systems TM and for values o f  g 
sufficiently high to cause convection.  The systems were 
never found to be stable unconditionally for all wave- 
lengths. Therefore,  we have assumed that a system is 
stable provided that the linear analysis predicts stability 
for wavelengths equal to or greater than the width o f  the 
container. 
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Fig. 5 - -Convect ion  in the Pb-20 wt pct Sn alloy of Fig. 4 but at the 
reduced gravity 0.01 go (calculation 5). (a) Isotherms are (T' - Te ) /  
(T, - TE), (b) solutal isoconcentrates, and (c) streamline contours. 

Another  series o f  calculations was performed for a Pb- 
10 wt pct Sn alloy at GL = 50 K .  cm -1 and a lower so- 
lidification velocity o f  2.5 c m .  h -1 (approximately 7 • 
10 -4 c m "  s - l ) .  These are summarized in Table II. 

The results for calculations 8 through 12 confirmed 

Table II. Calculations for the Pb-lO Wt Pct Sn System 

Container 
Calculation Width g/go (go = Linear 

Number (H = 2.4 cm) 980 cm" s -2) Stability I51 

8 H 1 unstable 
9 2H 1 unstable 

10 H/2 1 unstable 
11 H /4 1 unstable 
12 H /8 1 unstable 
13 H~ 16 1 stable 
14 H 10 -4 stable 
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Fig. 6 - - C o n v e c t i o n  in a Pb-10 wt pct Sn alloy (calculation 8) at 700 s. (a) Isotherms are ( T  - T ~ ) / ( T ,  - T e L  (b)  solutal isoconcentrates, and 
(c) streamline contours. 

that the size of  the convection cells was independent of  
the width of  the container. The depth of  the mushy zone 
was H = 2.4 cm, and the top boundary was chosen at 
z = 2H. The parameters for these calculations, when 
the gravitational constant is go, are Rat  = 6.15 • 105, 
Rac = 9.49 x 107, P r  = 1.96 • 10  -2 ,  S c  = 82.3, and 
Da = 3.947 x 10-7qb3/ (1  - Oh). 

Results for calculation 8 in Table II are shown in 
Figure 6 at t = 700 s. It can be observed that, in this 
case, there is significant convection in the upper part of  
the mushy zone, and convection produces a strong dis- 
turbance in the concentration field at the tip of  the den- 
drites. The temperature field remains virtually undisturbed. 
Note that dimensionless temperature is defined differ- 
ently and given in the caption. Figure 7 shows a mag- 
nification close to the dendrite tips at 1887 seconds. A 
better organized cell system can be observed at this later 
time, and the effect of  convection in the upper part of  
the dendrite region is evident. The temperature field has 
been magnified 100 times and shows how weakly it is 
affected by convection due to the very low Prandtl num- 
ber. In all calculations performed so far, using values 
generally accepted for the Darcy number, convection in 
the mushy zone is only significant in the upper 20 pct 
of  the dendritic region, if  there is any convection at all. 
Furthermore, as can be observed in Figure 7(a), con- 
vection in the mushy zone is almost entirely driven by 
convection in the all-liquid region. This is more clearly 
illustrated by calculation 12 in Table II, for which the 
detail of  the flow in the vicinity of  the dendrite tips is 
depicted in Figure 8 at 1890 seconds. In all these fig- 
ures, we should keep in mind that the streamline patterns 
obtained are not unique; they depend on the initial per- 
turbations, and, hence, only the qualitative features of  
the flows are significant. 

Further computations have been performed for this 
system for the parameters of calculation 8 in Table II but 
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Fig. 7 - - R e s u l t s  for the same case of  Fig. 6 magnified to show 
the effect of  convection near the dendritic interface. (a) Isotherms,  
(b) solutal isoconcentrates, and (c) streamline contours. 
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Fig. 8--Magnification of the flow field in calculation 12 (Table II) 
showing the streamlines near the dendritic interface. 

with the gravitational vector oriented slightly off the 
negative vertical direction. Results show that very small 
deviations off the vertical direction produce a system en- 
tirely dominated by natural convection. The effect of both 
thermosolutal and natural convection could only be ob- 
served for deviations of up to 0.01 deg off the vertical 
direction. For a slightly larger angle of  0.05 deg, natural 
convection completely dominated the flow. These results 
have been reported elsewhere, t151 

V. CONCLUSIONS 

Under the simplifying assumptions of steady-state so- 
lidification and that the tips of the dendrites describe a 
plane undeformable surface that advances at a constant 
velocity, nonlinear calculations of thermosolutal con- 
vection during vertical solidification of  dendritic alloys 
have been performed. The model is an extension of the 
plane-front model analyzed by Coriell et al .  [161 and 
McFadden e ta / .  t171 to include a dendritic zone. The anal- 
ysis shows significant differences when compared with 
the plane-front interface models, because of the presence 
of the mushy zone, in that the systems can be stable for 
higher solutal concentration values and were stable for 
all cases studied at a reduced gravity of 10 -4 go. This 
suggests that the plane-front model is not relevant to so- 
lidification in the presence of  a mushy zone. 

The nonlinear calculations are in full agreement with 

the linear stability analysis presented in Nandapurkar 
et at. TM and show that the presence of  the mushy zone 
can have a stabilizing effect and suppress convection under 
low gravity conditions or when the lateral dimensions of 
the container are properly chosen. When the system is 
unstable, "fingerlike" convection develops in the all-liquid 
region that can entrain the interdendritic liquid in the 
mushy zone and significantly affect the solute concen- 
tration in the neighborhood of the tips of the dendrites. 
Furthermore, the calculated convection in the mushy zone 
under these conditions is always weak and very sensitive 
to the choice of the permeability function. For the per- 
meability models used in this work, convection in the 
mushy zone never reached further than the upper 20 pct 
of the mushy zone and appeared to be driven mainly by 
convection in the all-liquid region. 

It was also concluded that at gravity levels of  10 -4 go, 
the Pb-Sn alloys considered were always stable to 
thermosolutal convection; moreover, when gravity is not 
acting exactly vertically, the presence of natural con- 
vection fully dominates the dynamics of the flow, under 
the conditions of this model. 

The model presented here is only valid at the onset of 
convection. After some time, constitutional equilibrium 
is not satisfied, because it is assumed that the distribu- 
tion of the volume fraction liquid remains constant with 
time. For this reason, calculations have been performed 
for a short time after the onset of  convection that de- 
scribe the main qualitative features of  the dynamics of 
the flow in the vicinity of  the dendrite tips. Extension 
of the present model to relax the condi t ion- - tha t  the 
volumetric fraction of interdendritic liquid in the mushy 
zone is cons tan t - - i s  currently being pursued with the 
expectation that it will allow us to model the severe lo- 
calized segregates in which remelting must take place, 
known as "channel segregates" or "freckles." 
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