Fatty Acid Spectrum of Mediterranean Wild Cruciferae

P.R. KUMAR1 and **S. TSUNODA**, Plant Breeding Laboratory, Faculty of Agriculture, Tohoku University, Sendai-980, Japan

ABSTRACT

Seed samples of 54 species of wild Cruciferae were newly collected from natural populations of the west Mediterranean and adjacent areas in a search for "new" oil crops. Oil contents and fatty acid compositions were determined simultaneously by gas liquid chromatography using methyl heptadecanoate as the internal standard. The study revealed large variations in oil content (6-48.8%), oleic acid (5-31.3%), linoleic acid (2-24.8%), linolenic acid (1.7-64.1%), and erucic acid (0-55.1%). Correlation coefficients between component fatty acids inter se and oil content were determined separately for all species, the tribe Brassiceae, and the genus *Brassica*. The promising species identified are being studied further.

INTRODUCTION

Several species of the family Cruciferae produce seed oils which differ in fatty acid composition from other vegetable oils. While the majority of cruciferous oilseeds are used in edible products such as edible oils, margarine, and shortening, some are utilized as raw materials for various technological purposes. Much interest has been shown in recent years in finding seed sources free from erucic and linolenic acids and high in linoleic acid (1-11), and rich in erucic acid (1,12-17) in wild and cultivated species of Cruciferae.

At this laboratory, we initiated a study of wild species of Cruciferae in 1975 in order to search for "new" oilseed crops having favorable lipid composition, viz., zero or low erucic and linolenic acids and high linolenic acid for the food industry, and high erucic or high linolenic acid for industrial raw material. In the present study, seeds of a wide array of wild species of Cruciferae which include 30 species, being reported for the first time and 24 species already reported earlier (12,14,15,17), were evaluated for their oil content and fatty acid composition. In addition, correlation coefficients between component fatty acids have been worked out so as to provide useful information to plant breeders.

MATERIALS AND METHODS

Seed Material

Seed samples analyzed were the original seeds of 54 species of wild Cruciferae collected from natural populations of the west Mediterranean and adjacent areas – Morocco, Algeria, Spain, Tenerife de Canarias, Portugal, and Madeira by the second author during the plant exploration of *Brassica* and allied genera in June-July 1975.

Analytical Methods

The procedures followed for the extraction and methylation of seed oil have been described in detail recently elsewhere by Kumar and Fujimoto (18). Oil content and fatty acid composition of seed samples were determined simultaneously in duplicate by gas liquid chromatography (GLC) using methyl heptadecanoate (C17:0) as the internal standard (18). Dried seed samples (5 mg) were weighed and crushed in a test tube having a screw cap. Then, 1 mg of the benzene solution of methyl heptadecanoate and 2.5 ml of

¹ Present address: Department of Plant Breeding, Haryana Agricultural University, Bawal-123501, India. the mixture of methanol-acetyl chloride-benzene (20:1:4) were added and heated at 70 C for 1 hr. Contents were extracted with 5 ml of light petroleum ether, and the petroleum ether layer was washed with saturated NaCl solution. After dehydration, petroleum ether was evaporated under reduced pressure. Methyl esters of fatty acids were separated by GLC (Model JGC 20 KF) using a 1 m x 3 mm glass column packed with 10% LAC-2R-446 on 80-100 mesh, acid washed Chromosorb W. A column temperature of 190 C was used with nitrogen as the carrier gas. Detection was by flame ionization.

RESULTS AND DISCUSSION

Oil Content and Fatty Acid Composition

The results of our survey on oil content and fatty acid composition of 54 wild species of Cruciferae are presented in Table I. The data are classified into different tribes of Cruciferae on the basis of Schulz's system of classification (19), viz., Brassiceae, Arabideae, Sisymbrieae, Hesperideae, and Matthiolcae. Further, species belonging to tribe Brassiceae are grouped into subtribes Brassicinae, Raphaninae, Cakilinae, Zillinae, Vellinae, Savignyinae, and Moricandiinae. Species of tribe Sisymbrieae are grouped into subtribes Sisymbrinae, Brayinae, and Descurainiinae.

The major fatty acids recorded are palmitic, stearic, oleic, linoleic, linolenic, eicosenoic, and erucic acids. Minor amounts of myristic, palmitoleic, and behenic were also detected in many seed samples.

As is evident from Table I, oil content of wild species show a wide range of variation from 6% in *Rapistrum rugosum* to 48% in *Cakile maritima*. The maximum frequency of species are observed between 30-35%. Miller et al. (14) evaluated the fatty acid composition of a large number of species of Cruciferae and reported similar oil content in *Cakile maritima*, but found higher oil content, 38% for *Rapistrum rugosum*.

The fatty acid composition of seed samples reveals a large variation for most of fatty acids examined. The variation, however, is found to be greater for erucic (0-55.1%) and linolenic (1.7-64.1%) acids than for oleic (5-31.3%) and linoleic (2-24.8%) acids (Table I). Since our objective was to identify genotypes having zero or low levels of erucic and linolenic acids and high linoleic acid; and high erucic or high linolenic acid, therefore, in the following text, reference will be made only to species exhibiting the aforesaid characteristics.

Most of the species of the tribe Brassiceae were found to produce oil rich in erucic acid, while those belonging to tribes Matthioleae, Hesperideae, and Sisymbrieae produced the lowest erucic acid (Table I). Among 54 species examined, 13 species, all belonging to tribe Brassiceae produced oil high in erucic acid concentration (45.5-55.1%). Of these, 7 belonged to subtribe Brassicinae, 4 to Raphaninae, and 2 to Vellinae. Mikolajczak et al. (12), Stefansson et al. (2), Downey (3), Miller et al. (14), Goering et al. (15), and Appelqvist (20) reported similar high concentrations of erucic acid in seed oil of cultivated and wild species of Cruciferae. Crambe scaberrima (55.1%), Sinapis alba (54.6%), and Sinapidendron angustifolium (52.7%) were found to produce the richest sources of erucic acid (Table I). Similar high concentration of erucic acid was reported in Crambe hispanica, Sinapis alba, and Erucastrum strignosum, respectively, by Miler et al. (14).

TABLE I

Oil Co	ntent and Fa	tty Acid Compo	osition o	f Seeds of	Wild Spec	ies of Cruc	iferae			
	Fatty acid composition a %									
S. Name of species	Place of collection	Oil content (% (Irv hasis)	16:0	18:0	18:1	18:2	18:3	20:1	22:1	acids
no. Name of species	concerton	Tribe Brassic	eae (Sub	tribe Brass	sicinae)	10.1	10.0			
1, CBrassica amplexicaulis (Desf.)	M	20 5	(040	2.1	12.0		22.0	10.9	114	
2 Brassica ad pressa Boiss	Algeria	29.7	6.0 7.5	2.1	13.0	11.7	23.0	5.9	33.4	1.6
3. Brassica barrelieri (L.) Janka	Spain	43.5	6.0	3.9	15.6	12.9	20.1	7.4	34.1	
4. ^c Brassica cossoneana (Boiss. et	Cardia	22.4	10		10.0		12.0	110	42.4	
5 Brassica fruticulosa Crrillo	Morocco	26.2	3.9 7.0	1.3	12.8	19.7	10.4	6.5	39.8	2.3
6. Brassica gravinae Ten. Brachyloma		20.2	7.0	1.0				010		
(Boiss, et Reuter) O.E. Schulz	Algeria	33.4	5.0	2.3	11.9	14.8	14.8	10.2	37.3	3.4
7. Brassica maurorum Dur. 8. Brassica nigra (L.) Koch	Algeria	23,9	4.2	1.9	13.9	17.1	15.5	8.5	46.3	1.5
9. ^c Brassica oleracea L. ssp.	7 ige 11a	51.2	4.0	1.7	2.0	1010	1010	1.0		
robertiana (Gay) Rouy et Fouq.	Spain	33.7	3.5	1.1	9.6	15.8	15.0	18.0	31.8	5.3
10. Brassica oxyrrhina (Cosson)	Morocco	26.4	3.4	15	10.5	12.6	14.4	9.1	473	11
11. ^c Brassica repanda (Willd.) DC.	Spain	17.2	6.8	1.4	15.9	9.1	18.9	20.9	24.0	3.0
12. CBrassica spinescens Pomel	Algeria	35.0	4.0	2.5	11.2	14.9	12.7	9.2	44.6	1.0
13. Brassica tournefortii Gouan.	Algeria	28.9	3.9	1.1	9.2	12.2	12.9	7.6	47.8	5.2
15. Diplotaxis catholica (L.) DC.	Spain	30.8	9.01	4.3	11.4	15.8	32.2	2.6	24.4	
16. Diplotaxis erucoides (L.) DC.	Algeria	37.0	9.0	3.7	12.6	17.1	36.1	3.7	17.7	
17. ^c Diplo taxis harra (Forsk.) Boiss.	Morocco	36.3	10.2	1.8	13.4	16.3	25.5	6.96	25.0	0.8
19. Diplotaxis silfolia G. Kunze	Morocco	31.3	4.1	2.0	9.0	18.1	15.1	6.7	44.9	
20. ^c Diplotaxis tenuisiliqua Del.	Morocco	30.3	6.3	2.5	7.7	14.6	19.0	4.7	19.2	25.9 ^d
21. Diplotaxis virgata (Cav) DC	Spain	23.4	11.7	1.0	15.1	14.9	30.2	3.5	23.6	
OF Schulz	Tenerife	29.4	4.1	2.1	9.9	12.0	13.7	4.7	51.7	1.7
23. ^c Erucastrum nasturtiifolium	10000000			2.1						
(Poiret) O.E. Schulz	Spain	32.4	5.6	2.5	12.7	20.6	27.4	6.3	24.9	
24. <i>Enicastrum varium</i> Durieu	Algeria	35.0	8.1	2.2	9.5	12.1	28.3	6.7	30.4	2.6
26. ^c Hutera leptocarpa Gonzalez-Albo	Spain	28.6	3.7	1.1	14.9	13.7	28.5	2.9	35.2	1.7
27. ^c Rhynchosinapis longirostra						_				_
(Boiss.) Heywood	Spain	23.2	6.1	1.5	11.7	17.9	23.9	6.1	31.2	1.7
(DC) Lowe	Madeira	17.2	3.1	2.6	5.0	19.5	8.4	4.5	52.7	4.1
29. Sinapis alba L.	Morocco	35.2	5.5	1.8	15.4	8.4	10.9	3.1	54.6	0.3
30. Sinapis arvensis L.	Morocco	26.2 [•]	4.6	2.1	13.0	14.9	15.1	15.4	33.0	1.7
		Tribe Brassiceae	(Subtri	be Raphan	inae)					
31. ^c Crambe scaberrima Webb.	Tenerife	11.0	3.2	1.0	14.1	12.2	13.0	1.5	55.1	
32, ^c Crambe kralikii Coss.	Morocco	19.0	4.0	1.2	22.2	8.4	7.5	11.2	45.5	
33. Crambe fruticosa L. fil	Madeira	6.9	6.0	1.2	17.7	13,4	9.5	1.8	50.4	
34. Coraylocarpus muricanis Desi.	Morocco	14 1	15.9	3.9	13.6	2.0	4.9	13.0	46.7	
36. ^c Guiraoa arvensis Coss.	Spain	29.5	7.0	1.6	10.8	18.3	24.8	5.4	32.1	
37. Muricaria prostata (Desf.) Desv.	Algeria	33,6	9.7	3.0	23.6	15.6	18.6	10.4	19.1	
38. Raphanus maritimus Sm. ssp.	Spain	30 7	6.2	17	14 3	12.8	15.1	10.1	37 8	2.0
39. Rapistrum rugosum (L.) All,	Algeria	6.0	9.3	1.1	13.9	15.3	17.7	2.5	39.8	
	0	Tribe Brassic	ea (Subt	ribe Cakili	nae)					
40 Cakile maritima Scon	Morocco	48.8	5.4	2.1	13.1	20.7	20.6	7.9	27.6	2,5
		Tribe Brassic	oon (Sub	triba Zilli						
	.	25.2			24.0	10.2	10.1		27.6	
41. Zilla spinosa (L.) Pranti.	Algeria	25.3	/.5	1.7	24.8	19.3	10.1	8.9	27.0	
		Tribe Brassice	ae (Subt	ribe Vellin	ae)					
42. Carrichtera annua (L.) DC.	Spain	11.8	10.1	3.4	7.9	19.7	19.4	1.7	37.7	
43, Vella annua L. 44 SPsyching stylosg Desf	Morocco	14.7	5.0	1.0	5.6	17.5	14.2	7.2	48.5	2.9
44. Tayenine aryiosu bear.		Triba Brassican	. (Subte	ibe Saviens	vinae)					
		THE DIASSICE	. (50011	ibe Darigity	, mac)					
45. CEuzomodendrom bourgaenum	Snain	214	92	24	11.6	20.3	22.3	7.2	27.0	
C033011.	opun	Teibo Benericano	(Subteil	ha Municar	viinee)					
		THUE Brassiceae	(Subtrin		iumae)			20.0	22.2	67
46. Conringia orientalis (L.) Dumort,	Algeria	15.1	4.4	1.9	9.2	24.8	3.7	40.0 6.4	28.3	3.8
47. Moricanala arvensis (L.) DC. 48. ^c Pseuderucaria teretifolia	Molocco	56.7	3.7	1.7	0.7	14.0	50.1	0	1010	0.0
(Desf.) O.E. Schulz	Algeria	27.2	9.8	2.5	17.9	12.0	28.9	9.4	16.1	2.6
		Tri	be Arabi	ideae						
49 Nasturtium officinale B Br	Alceria	31.4	9.0	1.4	31.3	22.7	1.7	11.3	21.9	0.7
		T-1L	a Manhi	iolese						-
		1110	e Mattin	lote de						
50.~ Matthiola parviflora (Schouboe) R. Br	Мотоссо	24 4	10.0	3 3	14.8	9.8	62.1			
(denouose) iv Dr.		 T-:1	- U	rideoc						
		111	e nespe	nueae			• • •			1 /
51.ºMalcolmia ramosissima	Morocco	31.6	9.1	6.1	22.6	20.2	36.8	1.7		3.0
	т	ribe Sisymbriea	e (Subtr	ribe Sisyml	briinae)					
52. Sisymbrium erysimoides (Desf.)	Morocco	26.7	14.3	0.6	13.4	16.3	30.5	4.0	19.7	1.2
		Tribe Sisymbr.	ieae (Sul	btribe Bray	/inae)					
53. Torularia torulosa (Desf.)	Algeria	23.7	12.3	1.8	12.5	9.4	64.1			
	 Ti	ribe Sisymbriese	(Subtri	be Descura	ainiinae)					
54 ° Descurainia bourgaeana Webb	Tenerife	36.6	9.6	2.1	14.8	20.2	28.2	14.7	10.3	
			- • •							

^aNumbers refere to the length of fatty acid carbon chain and to the number of double bonds in the chain.

^bMyristic and palmitoleic were the major components.

^dContains 22.5% licosadienoic acid (C22:2).

^cNew report.

TABLE II	[
----------	---

Correlation Coefficients for Pair of Fatty Acids and Oil Content in Wild Species of Cruciferae

oil content	acid	acid	acid	acid	acid	acid	acid	content	
			А	Il Species					
Palmitic acid		0.268	0.192	-0.029	0.458 ^a	-0.240	-0.549 ^a	-0.139	
Stearic acid			0.147	-0.037	0.352 ^b	-0.269	-0.376 ^a	0.256	
Oleic acid				0.042	-0.057	0.052	-0.324 ^a	0.058	
Linoleic acid					-0.081	0.087	-0.282 ^b	0.131	
Linolenic acid						-0.461	-0.735 ^a	0.184	
Eicosenoic acid							0.014	0.059	
Erucic acid								-0.254	
Oil content									
			Tril	be Brassiceae	;				
Palmitic acid		0 3710	0.131	-0.048	0.3898	-0.177	-0.452 ^a	-0.171	
Stearic acid			0.053	-0.102	0.360b	-0.224	-0.299b	0.287	
Oleic acid				-0.201	-0.079	0.073	-0.214	-0.003	
Linoleic acid					0.170	-0.011	-0.393a	0.067	
Linolenic acid						-0.362	-0.668 ^a	0.361	
Eicosenoic acid							-0.207	0.018	
Erucic acid								-0.302 ^b	
Oil content									
			Ge	nus Brassica					
Dalmitic sold		0 305	0 5 3 0	.0.132	0.555	-0.081	-0 625b	-0 348	
Stannia noid		0.393	0.339	-0.132	0.555	-0.001	-0.223	0.446	
			0.550	-0.157	0.219	0 2 19	-0.641b	-0.089	
Linglaid and				-0.080	0.219	-0.345	0.242	0.103	
Linolene acid					-0.370-	0.005	-0 560b	-0 153	
Enorencia acid						0.003	.0 587b	-0.245	
Encosenoic aciu							-0.502	0 2 67	
Oil content									

^aSignificant at 1% level. ^bSignificant at 5% level.

Matthiola parviflora (Tribe Matthioleae), Malcolmia ramosissima (Tribe Hesperideae), and Torularia torulosa (Tribe Sisymbrieae) were found to produce oil free from erucic acid. Similar results were obtained by Miller et al. (14) in other species of Matthiola and Malcolmia, such as Matthiola longipetala and Matthiola tritis; Malcolmia africana and Malcolmia cabulica; and by Mikolajczak et al. (12) in Matthiola bicornis. However, Goering et al. (15) reported 2.4% erucic acid in Matthiola bicornis, and Joshi and Bhakuni (21) reported erucic acid as a major fatty acid component in Matthiola incana. Likewise, in Malcolmia maritima Mikolajczak et al. (12) reported higher concentration of erucic acid. Further, our results on erucic acid concentration in Torularia torulosa differ markedly from earlier findings of Miller et al. (14) where they reported higher concentration of erucic acid. Similar interspecific variations have been reported earlier within Brassica campestris, B. napus, B. oleracea, and B. juncea (13), and B. napus (2). Oils of Matthiola parviflora and Torularia torulosa found to be free from erucic acid were further characterized by high levels of linolenic acid. A comparison of the fatty acid composition of the three erucic acid free species shows the presence of nearly seven times as much linolenic, 64.1% and 62.1%, as linoleic acid, 9.4% and 9.8%, in Torularia torulosa and Matthiola parviflora, respectively (Table I). Malcolmia ramosissima, however, contains nearly twice as much linolenic (36.8%) as linoleic acid (20.2%). These results suggest that Torularia torulosa and Matthiola parviflora with the richest concentration of linolenic acid among 54 species studied may possibly be utilized in industry for preparing high quality paints and varnishes.

Taking into consideration the above-mentioned facts, we tried to find a possible relationship between the erucic acid and the phylogeny of cruciferous plants based on Schulz's system of classification (19). It was observed that tribes which include species having the zero level of erucic acid are positioned at the top of the Schulz's phylogenetic tree, while those with higher concentrations of erucic acid occupy a lower position.

With regard to polyenoic fatty acids, none of the 54 species studied produced oil with zero linolenic acid. However, two species, e.g., Conringia orientalis belonging to tribe Brassiceae (Subtribe Moricandiinae) and Nasturtium officinale of the tribe Arabideae produced oil with very low concentration, 3.7% and 1.7% of linolenic acid, respectively (Table I). Surprisingly Conringia orientalis also showed the highest concentration of linoleic acid (24,8%) among species examined. Further, the eicosenoic and erucic acid concentrations in the seed oil of this species were found to be 28.8% and 23.3%, respectively. Such a favorable composition of fatty acids of Conringia orientalis suggests that this species might have potential as a "new" oilseed crop for the food industry if the growth and the yield behavior can be improved. Miller et al. (14) and Appelqvist (16) reported similar values of linoleic and linolenic acids in Conringia orientalis. For Nasturtium officinale, we found that this species, besides producing oil with the lowest (1.7%) linolenic acid content, produced the highest concentration of oleic acid (Table I). Furthermore, the linoleic concentration was also relatively high (22.7%) in this species. These findings are in agreement with the earlier report of Mikolajczak et al. (12).

The promising species identified have been grown, and evaluation of their potential as a possible "new" oilseed crop is in progress.

Relationship between Fatty Acids and Oil Content

Correlation coefficients between various fatty acids inter se and oil content were determined separately for all species, the tribe Brassiceae and the genus *Brassica* (Table II).

The long chain erucic acid showed strong negative correlations with C16 and C18 fatty acids significant either at

5% or 1% probability level. The decrease in the concentration of erucic acid will result in an increase of C16 and C18 fatty acids. Similar inverse relationships between oleic and erucic acid, and linolenic and erucic acid have been reported earlier (1,7,12,22). The correlation between oleic and linoleic acid was found to be not significant in each of the groups. Gross and Stefansson (23) carried out similar correlation studies in rapeseed and reported a negative correlation. Loof and Appelqvist (24) and Shiga et al. (25), however, found positive correlation between oleic and linoleic acid. Shiga et al. (25) explained such discrepancies as being caused by the variation of the materials used. The correlation coefficients between linoleic and linolenic acid for all species and the Brassiceae tribe were also found to be low (0.08 and 0.17, respectively) and nonsignificant. However, a strong negative correlation (-0.590) was observed within the genus Brassica. A similar high negative correlation between linoleic and linolenic acid was reported earlier (26). However, a number of workers (7,23-25) have reported positive correlation between linoleic and linolenic acid in their studies with rapeseed. Another interesting feature was the negative correlation between oil content and erucic acid concentration among the species of tribe Brassiceae (Table II).

ACKNOWLEDGMENTS

K. Hinata made the statistical analyses of data on the computer, and K. Fujimoto provided technical advice during the gas liquid chromatographic analysis.

REFERENCES

1. Craig, B.M., Can. J. Plant Sci. 41:204 (1961).

- Stefansson, B.R., F.W. Hougen, and R.K. Downey, Ibid. 41:218 (1961).
- 3. Downey, R.K., Ibid. 44:295 (1964).
- Appelqvist, L.A., in "Recent Plant Breeding Research, Svalov, 1946-1961," Edited by E. Åkerberg et al., Almqvist and Wicksells, Stockholm, 1961, p. 301.
- 5. Jonsson, R., Z. Pflanzenzuecht, 69:1 (1975).
- Jonsson, R., Sver. Utsaedesfoeren. Tidskr. 85:19 (1975).
 Lee, J.I., K. Takayanagi, and T. Shiga, Bull. Natl. Inst. Agric.
- Lee, J.I., K. Takayanagi, and T. Shiga, Bull. Nati. Inst. Agric. Sci. Series D. 25:1 (1974).
- 8. Rakow, G., and D.I. McGregor, Can. J. Plant Sci. 55:197 (1975).
- 9. Röbbelen, G., and A. Nitsch, Z. Pflanzenzuecht. 75:93 (1975).
- 10. Kumar, P.R., and S. Tsunoda, SABURAO J. 8:177 (1976). 11. Tsunoda, S., and P.R. Kumar, Gamma Field Symposia No. 15,
- Japan (In press).
- 12. Mikolajczak, K.L., T.K. Miwa, F.R. Earle, and I.A. Wolff, JAOCS 38:678 (1961).
- 13. Downey, R.K., Can. Food Ind. 34:34 (1963).
- 14. Miller, R.W., F.R. Earle, I.A. Wolff, and Q. Jones, JAOCS 42:817 (1965).
- 15. Goering, K.J., R. Eslick, and D.L. Brelsford, Econ. Bot. 19:251 (1965).
- 16. Appelqvist, L.Å., JAOCS 48:740 (1971).
- 17. Nieschlag, H.J., and I.A. Wolff, Ibid. 48:733 (1971).
- 18. Kumar, P.R., and K. Fujimoto, Yukagaku 26:41 (1977).
- 19. Schulz, O.E., in "Die naturichen Pflanzenfamilien," Vol. 17b, Edited by A. Engler and H. Harns, 1936, pp. 227-658.
- 20. Appelqvist, L.-Å., Fette Seifen Anstrichm. 72:783 (1970).
- Joshi, B.C., and D.S. Bhakuni, Proc. Natl. Acad. Sci. India, 28(4):190 (1959); C.A. 54, 14735 C (1960).
- 22. Downey, R.K., and B.M. Craig, JAOCS 41:475 (1964).
- 23. Gross, A.T.H., and B.R. Stefansson, Can. J. Plant Sci. 46:389 (1966).
- 24. Loof, B., and L.-Å. Appelqvist, Z. Pflanzenzuecht. 52:113 (1964).
- 25. Shiga, T., K. Takayanagi, L.I. Jung, and M. Saito, Jpn. J. Breed. 24:291 (1974).
- 26. Appelqvist, L.A., Hereditas 61:9 (1969).

[Received May 31, 1977]