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The Monte Carlo (MC) algorithm that currently exists in the literature for simulating curvature- 
driven grain growth has been modified. The modified algorithm results in an acceleration of 
the simulated grain growth and an early estimate of the grain growth exponent that is close to 
the theoretical value of 0.5. The upper limit of grain size distributions obtained with the new 
algorithm is significantly lower than that obtained with the old, because the new algorithm 
eliminates grain coalescence during grain growth. The log-normal function provides an excellent 
fit to the grain size distribution data obtained with the new algorithm, after taking into account 
the anisotropy in grain boundary energy. 

I. INTRODUCTION 

T H E  use of Monte Carlo (MC) technique to simulate 
grain growth evolved from the extension of the Ising 
model ~1'2J that was used for simulating systems with two- 
fold degeneracy to systems having infinite degeneracy. 
Grain structures in metallic and ceramic systems exhibit 
infinite degeneracy, since there can be a large number 
of grain orientations in a finite volume of material. How- 
ever, it was shown I31 in MC simulations that when the 
number of degenerate states was increased from a value 
of 2 (Ising model) to a number typically greater than 36, 
the simulation results approached the behavior of sys- 
tems with infinite degeneracy. Grain growth simulations 
that use such a model have been well documented in the 
literature.i3 17] The simulations, when extended to two- 
phase alloys, in which the second phase was a dispersion 
of insoluble particles t7] predicted the stabilization of grain 
size by the pinning of the boundaries by the insoluble 
particles. The technique has also been used to simulate 
abnormal grain growth, 19,1~ and primary 
recrystallization. ~101 

A. The MC Grain Growth Algorithm 

The algorithm used for simulating curvature-driven 
grain growth p-171 is as follows. A simulation domain of 
a suitable size (200 • 200) is chosen. Each of the points 
in the domain is assigned a random number Si between 
1 and NQ, where N e is the total number of grain orien- 
tations. A grain is defined by a collection of points that 
have the same orientation number. NQ is typically greater 
than 36, above which the grain growth exponent be- 
comes independent of NQ. I3'51 Each of the points is then 
accessed randomly, and the energy change associated with 
switching the orientation to another random value be- 
tween 1 and NQ is calculated. The energy change is cal- 
culated by measuring the local energy of a cluster of 
lattice points before and after the switching process. The 
energy of the cluster of lattice points in defined as 
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where J is a constant that is proportional to the grain 
boundary energy, 6ij is the Kronecker 6 function, Si is 
the orientation of the lattice point whose orientation change 
is being attempted, and Sj is the orientation of a nearest 
neighbor. The summation is taken over all the nearest 
neighbors. The probability of switching is based on the 
magnitude of the net energy change AE as a result of 
the switching process. The probability of switching is 
defined as follows: 

1 A E - < 0  
P =  e x p ( - Q / R T )  A E > 0  [2] 

The quantity T in Eq. [2] is not related to the physical 
temperature but is a quantity that is introduced to take 
care of certain lattice effects to be described sub- 
sequently. The simulation time is defined by a quantity 
known as the Monte Carlo step (MCS), which is related 
to the number of reorientation attempts. The MCS is equal 
to 1 when the number of attempts equal the number of 
points in the domain. It is related to the real time through 
a temperature-dependent jump frequency. Grain size in 
the simulations is calculated either from the mean of the 
number of lattice points within a grain, which is pro- 
portional to the grain area in two-dimensional (2-D) sim- 
ulations, and the grain volume in three-dimensional (3-D) 
simulations, or from linear intercept measurements car- 
fled out on grain structures obtained in 2-D simulations 
and on cross sections of grain structures obtained in 3-D 
simulations. Grain growth kinetics are followed by plot- 
ting the grain size as a function of the MCS. The grain 
growth exponent n is calculated from the "long-time" 
slope of the log-log plot of the grain size vs the MCS. 

The 2-D and 3-D simulations have been carried out 
by previous investigators on a variety of lattice models. 
Two-dimensional simulations used either a triangular lat- 
tice, in which the local energy was calculated by using 
a shell consisting of six first-nearest-neighbor lattice 
points, t3-j~ or a square lattice, in which the local energy 
change was calculated t3,4,51 by using either a shell of four 
first-nearest-neighbor lattice points (SQ I) or a shell of 
eight lattice points l~4l containing the first- and second- 
nearest neighbors (SQ 2). Three-dimensional simula- 
tions were carried out by using a cubic lattice with a 
shell of 26 lattice points containing the first, second, and 
third nearest neighbors. IJ~ 
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Earlier simulations in which square, triangular lat- 
tices I3,4,~j were used showed that grain growth kinetics 
was a function of the lattice type. In SQ 1 lattice, for 
example, the grain growth completely ceased unless an 
artificial "thermal" effect was introduced into the sim- 
ulations to allow for certain fluctuations that would per- 
turb the system into local, higher-energy states. The 
quantity T in Eq. [2] indicates this effect. In fact, it was 
shown that in SQ 1 lattice, the so-called "temperature" 
had to be increased to a value close to the melting point 
to make the grain growth go to completion. However, 
the triangular lattice showed a grain growth rate that was 
independent of temperature. Hence, no thermal activa- 
tion was necessary to complete the grain growth. A sim- 
ilar result was also obtained for the SQ 2 lattice. Hence, 
for lattices that do not curb grain growth because of cer- 
tain geometric restrictions, the following probability 
considerations can be used to carry out the simulations: 

10 A E < O  
P =  A E > O  [31 

B. Survey of Simulation Results 

1. Grain growth exponent 
In the simulations that first appeared in the litera- 

ture, [3-13~ the grain growth exponent was found to be sig- 
nificantly lower than that obtained for the Ising model. 
The simulations predicted an exponent of 0.41 -+ 0.03 
for grain growth in metallic and ceramic systems. Grain 
growth exponents were obtained from the long-time slope 
of the log-log plots of grain size vs the MCS. However, 
in the case of the Ising model, in which only two de- 
generate states exist, the exponent was approximately 
equal to 0.5, the theoretical limit for curvature-driven 
growth. This difference was believed to be a conse- 
quence of  the presence of vertices in a topologically con- 
nected grain structure and the absorption of curvature at 
these vertices. 13,4,51 More recent simulations [~4,15,16] car- 
ried out on bigger domains and extended to vary large 
growth periods showed that the growth exponent, at least 
in 2-D, did approach the theoretical limit of 0.5. The 
domain sizes used in 3-D simulations so far have not 
been large enough to predict the limiting growth expo- 
nent of 0.5. 

2. Grain size distribution 
Grain size distribution functions were obtained from 

both 2-D t4j and 3-D t~a simulations, by plotting the fre- 
quency of occurrence defined as the number of grains 
belonging to a size-class relative to the total number of 
grains as a function of the normalized grain size R/I•, 
where R is the size class and/~ is the average grain size. 
Grain sizes were calculated by measuring three different 
parameters: linear intercepts, grain areas, and grain vol- 
umes. The distribution curves were characterized by a 
sharp rise to a peak size fraction, followed by a gradual 
decay. The maximum size fraction occurred in the R/I~ 
range of 0.5 to 1.0, and the maximum grain size was in 
the R/I~ range of 3 to 3.5. The best fit to the simulated 
grain size distribution curve when the grain sizes were 
obtained from grain volume data was given by the log- 
normal functionJ TM However, when the linear intercept 

or grain area measures were used to calculate the grain 
sizes, the best fit was obtained by using a distribution 
function proposed by Louat. t181 Grain size distributions 
obtained from earlier 2-D simulations I4,6,t~ also matched 
closely the size distributions measured by using 3-D cross- 
sectional dataJ TM Hence, it follows that the distribution 
function proposed by Louat should also provide the best 
fit to the data obtained from 2-D simulations. The dis- 
tribution function proposed by Hillert ~9J was found to be 
inappropriate, because the function_predicted an upper 
limit to the grain size given by R/R = 1.8, which was 
very much lower than the simulated value of  3 to 3.5. 
Also, the peak of Hillert's function occurred at a higher 
grain size than in the simulations. The simulated grain 
size distributions obtained by using cross-sectional grain 
area data of 3-D simulations and grain area data from 
2-D simulations closely matched the distribution curves 
obtained experimentally for high-purity Fe and AI-Mg 
alloy.tlS~ 

3. Anisotropic grain boundary energy 
The simulation results described in Sections 1 and 2 

were obtained under the assumption that the grain 
boundary energy was isotropic. However, in real ma- 
terials, the grain boundary energy is anisotropic, because 
it depends on the misorientation between the two adja- 
cent grains. The effect of grain misorientation on grain 
boundary energy in 2-D simulations was related to an 
anisotropy parameter, [8~ which was proportional to the 
difference between two adjacent grain orientations. The 
analysis indicated that the presence of anisotropy in grain 
boundary energy lowered the grain growth exponent 
compared with the isotropic case and broadened the grain 
size distribution curve, t8j 

II. LIMITATIONS OF THE EXISTING 
GRAIN GROWTH ALGORITHM 

This section describes the limitations of the MC grain 
growth algorithm that currently exists in the literature. 
The limitations include (1) the prediction of a low value 
for the grain growth exponent at reasonable grain sizes, 
(2) the occurrence of grain coalescence, and (3) the oc- 
currence of grain nucleation. 

A. Low Grain Growth Exponent 

As explained previously, simulations with the old al- 
gorithm result in the prediction of a significantly lower 
value for the grain growth exponent than the theoretical 
limit of 0.5 at reasonable grain sizes. This section de- 
scribes why such a deviation occurs. 

Curvature-driven grain growth satisfies an equation of 
the form 

D m - D~ = k(t - to) [4] 

where D is the grain size at time t; Do is the grain size 
at time to; m is a constant ( l / m  is the grain growth ex- 
ponent, n) that depends upon the purity, texture, and an- 
isotropy in grain boundary energy; and k is the mobility 
that is temperature dependent. The mobility, k, can be 
represented as 

 : 0expt 
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where k0 is a constant, T is the absolute temperature, and 
Q is the activation energy for grain growth. The constant 
k0 can be expressed as 

C4J 
ko = C l a 2 v - -  [6] 

AT 

where C, is a constant, v is the atomic jump frequency, 
a is the atomic jump distance, CgJ is the grain boundary 
energy, A is Boltzman's constant, and T is the absolute 
temperature. If the MC grain size DMC is related to the 
real grain size DR as 

DR = aDMc [7] 

where a is the atomic size, Eqs. [5], [6], and [7] can be 
substituted into Eq. [4] to yield 

a2 4j 
,, m - - v - - e x p  - ( t - t o )  [81 DMC -- DOMc= CI  a m AT  

The MCS is related to the real time t as  [17'2~ 

19] 

It is known that for an ideal material (no solute-drag, 
texture etc.), m has a value of 2.0. Hence, Eq. [8] can 
be simplified as 

" C4J 
D~c - D~MC = C , ~  (MCS - MCS0) [101 

It can be seen from Eq. [10] that the quantity 
CI(C4J/AT) represents the "mobility" term in MC sim- 
ulations. The constant C1 can be represented as a product 
of two constants, Cz and C3. The term C2 is a geometric 
constant that relates the increase in the grain area (in 2-D 
simulations) and grain volume (in 3-D simulations) as a 
result of the atomic jump into an effective increase in 
grain size. The term C3 is a probability that the atomic 
jump is directed toward one of the nearest-neighbor atoms 
that belongs to an adjacent grain. In the MC simulation, 
an atomic jump is equivalent to the reorientation attempt 
at an MC lattice site described previously. 

In the old algorithm, the reorientation attempt at any 
point includes all orientations, 1 through No, in the sim- 
ulation domain. Hence, the constant C3 should be pro- 
portional to NL/(NQ - 1), where NL is the total number 
of nearest-neighbor orientations that are different from 
that of the central site and N o is the total number of ini- 
tial orientations. For example, in a triangular lattice with 
six nearest neighbors, NL varies from 6 to I, depending 
on the grain size and the location of the MC site. At the 
beginning of grain growth, when the orientations of the 
MC sites are randomly distributed and each site effec- 
tively represents a grain, NL is equal to 6. However, after 
sufficient grain growth has taken place, NL reduces to 
either 1 or 2, depending on whether the site is close to 
a grain boundary or a triple point. As further grain growth 
occurs, the fraction of triple point sites to grain boundary 
sites decreases and Nz. slowly tends toward a constant 
value of 1. The underlying reason for the low grain growth 
exponent and its asymptotic increase to the theoretical 

limit in MC simulations is that grain growth occurs in 
the presence of decreasing boundary mobility, as ex- 
plained in the following paragraph. 

Figure l(a) shows a set of grain growth curves for 
mobilities ranging from kl to k6, where kj is the highest 
and k6 is the lowest. The solid curve shows the effective 
grain growth kinetics that will be observed when the grain 
growth starts with the mobility kl, continues in the pres- 
ence of decreasing mobility, and ends with the mobility 
k6. The effective grain growth curve was computed with 
an initial k~ value of 2.0, which was allowed to change 
asymptotically to the final k6 value of 1, after an MCS 
of 1000. Such a variation is typical in MC simulations 
using the old algorithm, as explained in the previous 
paragraph. Figure l(b) shows the log-log plot of grain 
size vs the MCS for the effective grain growth kinetics 
curve shown in Figure 1 (a). Notice that the effective grain 
growth exponent remains lower than the theoretical value 
as long as the mobility is decreasing. Once the lowest 
mobility is reached the exponent becomes equal to the 
theoretical limit, and grain growth continues along the 
curve for which the mobility is k6. 

B. Grain Nucleation 

One of the potential sources of error in the old algo- 
rithm is grain nucleation, which can occur especially when 
the anisotropy in grain boundary energy is considered. 
The variation in grain boundary energy with mis- 
orientation involves the introduction of an energy func- 
tion t81 defined as 

n n  

E, = ~ v(s,, sj) [111 
J 

where the summation is taken over the nearest neigh- 
bors, Sj is one of the nearest-neighbor orientations, and 
V is a local anisotropy potential. The local anisotropy 
potential is related to the misorientation between two ad- 
jacent grains, which is given by: [8] 

(&- sj) 
00 = 2 ~ r - -  [121 

Q 

The local anisotropy potential is given by 0[ 
V(O)=Jb- 7 l - I n  0 ' < 0 "  

J 0' -> 0* [13] 

where 0* is the anisotropy parameter, 0' = 101, for 0 -< 
10[ -< rr, and 0' = 2rr - 101, for ~r -< 101 -< 2rr. The term 
0' is the misorientation angle above which the grain 
boundaries are considered to be high angle. Now, let us 
use the old algorithm and apply Eqs. [11] through [13] 
to calculate the local energy changes in the presence of 
anisotropy in grain boundary energy. Figures 2(a) and 
(b) show the orientations of a cluster of points before 
and after the orientation of the central point is changed 
from 1 to 11. For an anisotropy parameter of 0.3rr and 
a Q value of 64, the initial energy of the cluster is 4J. 
After the orientation of the central points is changed to 
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Fig. l - - G r a i n  growth in the presence of decreasing grain boundary 
mobility. The solid curve in (a) represents the effective grain growth 
kinetics, when the mobility decreases from K~ to k6 during grain growth. 
The log-log plot of  grain size v s  the MCS of the solid curve in (a) is 
shown in (b). Notice that the grain growth exponent is lower than the 
theoretical "limit of  0.5, as long as the mobility is decreasing. 

11, the energy of the cluster is 3.75J. Because the ori- 
entation change results in a net decrease of energy, it 
would be successful. However,  it results in grain nucle- 
ation, which does not occur during normal grain growth. 

C. Grain Coalescence 

According to the old algorithm, the total number of 
grain orientations No need only be greater than a finite 
positive value (typically 36) to prevent the coalescence 
of grains, which does not occur during normal grain 
growth. The probability of  coalescence is estimated to 
be 1 - (1 - 1/Q)Zy] where Z is the number of  second- 
nearest-neighbor grains and Q is the total number of ori- 
entations. In 2-D simulations, because an average grain 
has six sides, there will be 12 second-nearest-neighbor 
grains. For an No value of 64, for example, the proba- 
bility of  grain coalescence is about 0.17, which is not 
negligible. In 3-D simulations, in which an average grain 
has 14 sides, the number of second-nearest-neighbor grains 
on average is 28, resulting in a probability of  coales- 
cence of 0.36, which is quite significant. A careful ex- 
amination of the simulation results documented in the 
literature showed that some grain coalescence did indeed 
occur during grain growth. 

12 12 
80- 

LU 
N 
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n- 40 
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Fig. 2 - - T h e  potential for grain nucleation during grain growth in the 
presence of anisotropy in grain boundary energy using the old algo- 
rithm. Using Q = 64 and 0* = 0.3zr, the change in energy, AE = 
(E I - E,), when the orientation of  the central site is changed from 
1 in (a) to 11 in (b), is negative. Hence, the orientation change is 
allowed, even though it leads to grain nucleation, which does not 
occur during grain growth. 

III. P R O P O S E D  N E W  A L G O R I T H M  

In the original development of the MC algorithm, the 
individual lattice points are considered as microcrystals 
or atom clusters. A probabilistic change in the occu- 
pancy of an atom cluster close to a grain boundary from 
an existing grain to an adjacent grain results in the mi- 
gration of  the boundary. However,  in a real material, the 
migration of grain boundaries occurs as a result of ther- 
mally activated atomic jumps across a boundary. The 
change of a cluster of  atoms close to a grain boundary 
from one grain to another is a cumulative change in the 
occupancy of each of the atoms belonging to the cluster, 
as boundary motion occurs following each atomic jump. 
The driving force for the atomic jumps is a decrease in 
the local energy state of an atom as it jumps from the 
concave side of a highly curved boundary to the convex 
side, which causes a reduction in the curvature of the 
boundary. The vibrational modes of atoms can be con- 
sidered as linear oscillations in which the number of  de- 
grees of  freedom is determined by the number of  nearest 
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neighbors. Hence, atomic jumps should always be di- 
rected toward one of the nearest neighbors. If the acti- 
vation barrier can be surmounted with the available 
thermal energy, the atom can then lower the energy by 
establishing a bond with the neighboring atom toward 
which the jump is directed. Grain boundary migration 
occurs if the successful jump is toward a nearest-neighbor 
atom that belongs to an adjacent grain. Hence, from a 
fundamental mechanistic point of view, only interactions 
with the nearest-neighbor atom clusters should be con- 
sidered when a change of occupancy of an atom cluster 
is attempted. Hence, the new attempted orientation should 
be limited to one of the nearest-neighbor orientations and 
should not include all possible orientations in the sys- 
tem, as the old algorithm did. 

The suggested modification should result in a grain 
boundary mobility that is independent of the total num- 
ber of orientations in the system. Since the boundary 
mobility is not a function of the total number of orien- 
tations, the total number of initial orientations can be as 
high as the total number of sites within the domain so 
that no coalescence can occur at any stage of grain growth. 
(In the old algorithm, the mobility was inversely pro- 
portional to the number of orientations in the system. 
The number of orientations had to be kept finite so that 
the grain boundaries had a reasonable mobility.) The 
random number generator generates a number between 
1 and NN at every point, where NN is the number of near- 
est neighbors. The reorientation attempt is directed to the 
orientation of the nearest neighbor defined by the ran- 
dom number 1 through NN. 

In the new algorithm, the probability that a re- 
orientation is directed toward a nearest neighbor belong- 
ing to an adjacent grain would, as in the old algorithm, 
also depend on whether the MC site under consideration 
is close to a triple point or far away from it. Hence, the 
average mobility would still be a function of grain size, 
as in the old algorithm. However, the ratio of the mo- 
bility of  triple point sites to that of grain boundary sites 
is 2 for the old algorithm, while it is ~1.5  for the new 
algorithm. Hence, the average mobility as a function of 
grain size should decay to a constant value much faster 
in the new algorithm than in the old algorithm. Conse- 
quently, the theoretical limit of the grain growth expo- 
nent should be reached much faster in the new algorithm 
than in the old algorithm. This point is illustrated through 
actual simulations that are discussed in Section VI. 

The proposed modification should also eliminate the 
problem of grain nucleation when the anisotropy in grain 
boundary energy is taken into consideration. Because only 
the nearest-neighbor orientations are considered during 
a reorientation attempt, the grain nucleation that oc- 
curred with the old algorithm (Figure 1) will be totally 
eliminated in the new algorithm. 

IV. S IMULATIONS 

The new algorithm had to be tested on problems of 
known solution to see if the predictions of curvature- 
driven growth would be confirmed by the proposed al- 
gorithm. One such problem, which is a special case of 
the von Newmann law, t2~,221 is the shrinking of a sphere 

(in three dimensions) or a circle (in two dimensions) in 
an infinite matrix, demonstrated by Anderson et al. t51 The  
2-D simulations of a shrinking circle in an infinite matrix 
were carried out for old and new algorithms, with the 
same initial diameter and starting seed for the random 
number generator for both. 

The modifications described in Section III were im- 
plemented in 2-D and 3-D simulations of grain growth 
in single-phase materials. A triangular lattice t3-1~ of 
200 x 200 points was used for 2-D simulations, and a 
cubic lattice of 50 x 50 x 50 points was used for the 
3-D simulations. The simulations were carried out ac- 
cording to the switching probabilities given by Eq. [3] 
(T = 0 simulation). 

The following simulations were carried out. 

(1) The old algorithm was run on the 200 x 200 tri- 
angular lattice with 64 initial grain orientations. The pur- 
pose of these simulations was to generate baseline data 
against which the results of the new algorithm could be 
compared. 
(2) The old algorithm was modified so that the re- 
orientation attempts were restricted to the orientations of 
the nearest neighbors only. The total number of initial 
orientations in the system was still 64, the same as in 
(1). The purpose of these simulations was to determine 
the change in the grain growth characteristics introduced 
by restricting the reorientation attempts to the orienta- 
tions of the nearest neighbors. These simulations will 
hereafter be referred to as "modified old" algorithm. 
(3) The "new" algorithm was run on the 200 x 200 tri- 
angular matrix. In the new algorithm, the total number 
of initial orientations was 2002. The reorientation at- 
tempts were restricted to the orientations of the nearest 
neighbors. The only difference between the modified old 
and new algorithms was in the total number of initial 
orientations. 
(4) The new algorithm was also run on a 200 x 200 
triangular lattice, with the condition that the grain 
boundary energy was not isotropic. The use of the new 
algorithm for simulating the effect of anisotropy in grain 
boundary energy should eliminate the occurrence of grain 
nucleation, because the reorientation attempts cover only 
the nearest-neighbor orientations. The methodology used 
for treating grain boundary energy anisotropy was iden- 
tical to that in the literature, 181 described previously. 
(5) The 3-D simulations on the 50 x 50 x 50 cubic 
lattice were carried out by using 503 initial orientations 
for the new algorithm and 64 orientations for the old 
algorithm. The purpose of these simulations was to com- 
pare the grain growth characteristics in 2-D and 3-D cases 
obtained by using the old and new algorithms. 

In the previous studies t~aj the grain growth exponent 
was obtained from the long-time slope of the log-log plots 
of grain size vs the MCS. The long-time slope is used 
because Eqs. [8] and [9] when D >> Do and MCS >> 
MCS0, can be simplified as DMC = k ( M C S )  l/m, so that 
a log-log plot of DMC vs the MCS would yield a straight 
line of slope ( 1/m). However, the use of long-time slope 
is not satisfactory, because it can fail to detect the pres- 
ence of curvature in the plots due to other fundamental 
reasons. For example, the slow, asymptotic increase in 
the grain growth exponent with grain size was not de- 
tected until grain growth simulations were extended to 
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much larger grain sizes for which bigger simulation do- 
mains were used. The grain growth exponent can also 
be obtained by plotting the quantity D m - D ~  vs 

(MCS - MCS0), where D is the grain size at time t, Do 
is the grain size at time MCS0, and m is a constant that 
can be varied so that a straight line passing through the 
origin is obtained. However,  in the MC simulations, the 
quantity Do is not known. Because the initial grain size 
distribution resulting from assigning a random number 
to each lattice site is far removed from the equilibrium 
grain size distribution, it is not reasonable to assume that 
Do is the grain size at the beginning of the simulations. 
However, the grain size distribution stabilizes after a 
certain amount of  grain growth, and the value of Do cor- 
responds to the grain size at which the grain size distri- 
bution has just stabilized. 

The grain growth exponent in the present simulations 
was obtained by fitting to the log-log plot of  grain size 
vs the MCS an equation of the form 

Y = Pl  y + P2 exp (-p3x) + P4 [14] 

where Pl, P2, P3, and P4 are constants, y is log (grain 
size), and x is log (MCS). The grain growth exponent 
at a given value of x is obtained by the derivative of 
Eq. [14] given by 

dy 
- -  = Pl  - P2P3 exp ( -p3x)  [15] 
dx  

Notice that the slope given by Eq. [15] increases con- 
tinuously and reaches a steady-state value when x be- 
comes very large. The grain size for these plots was 
obtained by linear intercept measurements. Each simu- 
lation was repeated five times, and in each simulation, 
different seed values for the random number generator 
were used; the results given are the average of the five 
different runs. Grain size distribution curves were ob- 
tained by calculating the number fraction of grains be- 
longing to a size interval and plotting this fraction against 
the midpoint of the corresponding size interval. The grain 
size for these plots was calculated from the grain areas 
in the 2-D case and from grain volumes in the 3-D case. 
The grain areas and grain volumes in 2-D and 3-D cases 
were obtained by computing the total number of  points 
within each grain. In the 2-D case, the grain size was 
the square root of the grain area, whereas in the 3-D 
case, the grain size was the cube root of the grain vol- 
ume. Grain size distributions were obtained at an MCS 
value of 5000 for the old algorithm, corresponding to a 
grain size ~10.  The distributions were obtained at the 
same MCS value for five different seed values, and the 
result shown is the average of the five runs. Grain size 
distributions for the modified old and new algorithms 
were obtained at an identical average grain size by using 
the different seed values, and an average distribution curve 
was obtained for each case. 

The potential for grain coalescence, when the number 
of grain orientations in the system was finite, was ex- 
amined by plotting the ratio R .... //~ against the MCS. 
The occurrence of grain coalescence was marked by a 
sudden increase in the ratio. The occurrence of grain co- 
alescence was monitored for the same grain growth range 
by using the old, modified-old, and new algorithms. 

V. RESULTS 

Initially, the simulation results for the shrinking of a 
circular grain in an infinite matrix will be compared for 
the old and new algorithms, in order to check the valid- 
ity of the new algorithm for curvature-driven grain growth. 
Subsequently, the simulation results of  grain growth ex- 
ponent, grain size distribution, and the occurrence of grain 
coalescence will be presented for 2-D and 3-D simula- 
tions with the old, modified-old, and new algorithms. 
The effect of  anisotropy in grain boundary energy on the 
grain growth exponent and the grain size distribution in 
2-D simulations will be presented for the new algorithm. 

A .  S h r i n k i n g  o f  C i r c u l a r  G r a i n  in a n  I n f i n i t e  M a t r i x  

Figure 3 shows the temporal evolution of a circular 
grain in an infinite matrix for the old and new algo- 
rithms. In both cases, the shrinking grain remains cir- 
cular, except for statistical fluctuations. Figure 4 shows 

i 
(a) MCS = 0 (b) MCS = 1000 (c) MCS = 2500 

(d) MCS = 3500 and (e) MCS = 4000 

(a) MCS = 0 (b) MCS = 100 (c) MCS = 300 
(d) MCS = 400 and (e) MCS = 450 

Fig. 3 - -Tempora l  evolution of a circular grain in an infinite matrix 
for old (top) and new (bottom) algorithms. In both cases, the shrink- 
ing grain remains almost circular, except for statistical fluctuations. 
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Fig. 4--(a)  Average size and (b) area of the circular grain shown in 
Fig. 3 as a function of  the MCS for the old a lgor i thm.  

the grain size and the grain area as a function of  the MCS 
for the old algorithm, and Figure 5 shows the same for 
the new algorithm. The time exponent is close to the 
theoretical value of  0.5 for both cases. Also, the grain 
area linearly decreases with the MCS for both algo- 
rithms. It is clear that the new algorithm essentially re- 
produces the result obtained for the old algorithm and, 
hence, clearly depicts curvature-driven grain growth. 

B. Isotropic Grain Bounda~ Energy 

1. Grain growth exponent 
Figures 6 through 8 show the log-log plot of grain size 

v s  the MCS for 2-D grain growth obtained by using the 
old, modified-old, and new algorithms. The grain growth 
exponents at various grain sizes obtained from the fitting 
functions are shown in Table I. The grain growth ex- 
ponents shown in Table I for the old algorithm are con- 
sistent with the results available in the literature. 13,5,~~ 
However,  the results presented in Table I may be more 
accurate than the values in the literature, t3,5't~ because 
the fit obtained using Eq. t4 is better than the straight 
line fit to the long-time data presented in the literature. 
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Fig. 5--(a)  Average size and (b) area of the circular grain shown in 
Fig. 3 as a function of the MCS for the new algorithm. 
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Fig. 6 - - L o g - l o g  plot of  grain size v s  the MCS in 2-D simulat ions 
with the old a lgor i thm.  The  dotted line is a fit to the s imulat ion data 
using the function shown.  
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Fig. 7 - - L o g - l o g  plot of grain size vs' the MCS in 2-D simulations 
with the modified-old algorithm. The dotted line is the fit to the sim- 
ulation data using the fitting function shown. 

1.5 

- -  AVERAGE OF 5 RUNS 
FITTING CURVE: y = pl+ x p2 exp(-p3 x) + p4 
Chi2=5.7159E-6 

1.o P1 o.6 
P2 1.36637 

.~, P3 0.22685 
P4 - 

~ 0.5 

0.0 . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  
1 2 3 4 5 

LOGlo(MCS) 

Fig. 9--Log-log plot of grain size v s  the MCS in 3-D simulations 
with the old algorithm. The dotted line is the fit to the simulation data 
using the fitting function shown. 

N~" 1.2 

c 

1.0 

~  
0 . 8 -  

0.6- 

y = pl* x + p2* exp(-p3* x) + p4 
chi2= 0.005 

pl 
p2 
p3 
p4 

i! i! J 
= -0.057 

f .......... FIT 
o SIMULATION 

0 5  . . . .  1:0 . . . .  1'5 . . . .  2'.0 . . . .  2:5 . . . .  3.0 
LOGlo(MCS) 

Fig. 8 - - L o g - l o g  plot of grain size v s  the MCS in 2-D simulations 
with the new algorithm. The dotted line is the fit to the simulation 
data using the fitting function shown. 
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Fig. 10--Log-log plot of grain size v s  the MCS in 3-D simulations 
with the new algorithm. The dotted line is the fit to the simulation 
data using the fitting function shown. 

Table I. Variation of the Grain Growth 
Exponent with Grain Size for the Old, 

Modified-Old, and New Algorithms 

Grain Growth 
Algorithm Grain Size Exponent 

New 15.8 0.49 
10.0 0.47 

Modified-old 15.8 0.48 
10.0 0.48 

Old 15.8 0.44 
10.0 0.43 

The grain growth exponents for the modified-old and new 
algorithms are significantly higher than those of  the old 
algorithm at corresponding grain sizes. Figures 9 and 10 
show the log-log plot of  grain size v s  the MCS for 3-D 
grain growth using the old and new algorithms. Table II 
shows the grain growth exponents in 3-D simulations using 

Table II. Variation of Grain Growth 
Exponent with Grain Size in 3-D 

Simulations Using the Old and the New Algorithms 

Grain Growth 
Algorithm Grain Size Exponent 

New 12.6 0.46 
10.0 0.45 

Old 12.6 0.38 
10.0 0.37 

the two algorithms at various grain sizes. Notice that the 
grain growth exponent obtained by using the old algo- 
rithm is again significantly lower than that obtained by 
using the new algorithm at corresponding grain sizes. 
Also,  for the old algorithm, the grain growth exponents 
obtained for 3-D simulations are significantly lower than 
those obtained for 2-D simulations at identical grain sizes, 
as seen by comparing Tables I and II. 
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2. Grain size distribution 
Figures 11 and 12 show the grain size distribution curves 

obtained in 2-D simulations with the old and new al- 
gorithms, respectively, at an identical mean grain size. 
The grain size distribution for the modified-old algo- 
rithm was identical to the one obtained with the old al- 
gorithm. The grain size distributions corresponding to 
the old and modified-old algorithms are characterized by 
an upper limiting grain size given by R/I~  ~ 3.0 and a 
peak size fraction of =0.20 occurring at an R/I~ value 
of =0.6. However, the grain size distribution curve ob- 
tained by using the new algorithm is distinctly different 
from those obtained by using the old and modified-old 
algorithms. The upper limiting grain size obtained by 
using the new algorithm is R / R  ~- 2.2, which is signif- 
icantly lower than the value of 3.0 obtained for the old 
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Fig. 11- -Two-d imens iona l  grain size distribution obtained with the 
old algorithm at a mean grain size of  ~10.  The dotted lines are fits 
to the simulation data using the Louat function and the log-normal 
function. The Louat function gives a better fit to the simulation data 
than the log-normal function. 
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Fig. 12- -Two-d imens iona l  grain size distribution obtained with the 
new algorithm at a mean grain size of  = 10. The dotted lines are fits 
to the simulation data using the function proposed by Louat and the 
log-normal function. The log-normal function gives a better fit than 
the Louat function. 

and  modified-old algorithms. Both the Louat function 
and the log-normal function were fitted to the 2-D grain 
size distributions corresponding to the old and new al- 
gorithms. The Louat function was obtained by using 

y = p , x  exp ( - p 2 x  z) [16] 

where Pl and P2 are constants. The log-normal function 
was obtained by using 

a3 [ ( l o g ( x ) - a z )  2] 
y - ~ e x p  - 2  a~ + a l  [17] 

where at, a2, a3, and a 4 are constants. The Louat func- 
tion was shown to provide a better fit than the log-normal 
function to the 2-D simulation data obtained by using 
the old algorithm (Figure 11), in agreement with the re- 
sults obtained by Anderson et al. tjS] However, the log- 
normal function appears to give a better fit than the Louat 
function to the 2-D grain size distributions obtained by 
using the new algorithm (Figure 12). Figure 13 shows 
the grain size distribution obtained in 3-D simulations 
by using the new algorithm. The log-normal function ap- 
pears to provide a much better fit to the 3-D simulation 
data than the Louat function, also in agreement with the 
results of Anderson et al. t~5] 

3. Grain coalescence 
Grain coalescence during grain growth was monitored 

by plotting the ratio Rmax/ /~  a s  a function of the MCS. 
Any grain coalescence that gives rise to the formation of 
unusually large grains will be reflected by Rmax/l~ values 
much greater than the expected range of 2 to 3. 
Figures 14, through 16 show the R .... / R  ratio as a func- 
tion of the MCS in 2-D simulations, obtained by using 
the old, modified-old, and new algorithms, respectively. 
Notice that the occurrence of grain coalescence resulted 
in the formation of unusually large grains with both the 
old and modified-old algorithms, especially in the early 
stages of grain growth, with the Rm~/I~ value in the range 
4 to 5. With continued grain growth, the grain coales- 
cence becomes much less probable, although its occur- 
rence at later stages of grain growth causes sudden jumps 
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Fig. 1 3 - - G r a i n  size distribution in 3-D obtained with the new al- 
gorithm. The dotted curves are fits to the simulation data using the 
Louat and the log-normal functions. 
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Fig. 1 5 - - T h e  variation of R~/I~ ratio with grain size in 2-D sim- 
ulations with the modified-old algorithm. Grain coalescence is indi- 
cated by the same criterion as that described in Fig. 14. 
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throughout the grain growth range. 

in the ratio, as can be seen in Figures 14 and 15. On the 
contrary, the Rmax///~ ratio for the new algorithm remains 
in the 1.8 to 2.4 range throughout the grain growth range, 
indicating absence of grain coalescence. The fluctuations 
in the initial stages of grain growth in Figure 16 result 
essentially from the fact that, initially, all grains have 
the same size (1.0). Figures 17 and 18 show the Rmax///~ 
ratio as a function of the MCS in 3-D simulations ob- 
tained by using the old and new algorithms, respec- 
tively. Notice the frequent occurrence of grain coalescence 
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Fig. 1 7 - - T h e  variation of R,~x/l~ ratio with grain size in 3-D sim- 
ulations with the old algorithm. Grain coalescence is again indicated 
as in Figs. 14 and 15. The limiting value of  Rmax//~ is higher than in 
2-D simulations using the old algorithm shown in Fig. 14. 
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Fig. 1 8 - - T h e  variation of  Rmax/)~ with grain size in 3-D simulations 
with the new algorithm. Grain coalescence is absent, and the limiting 
value of  Rmax/R is the same as in 2-D simulations using the new al- 
gorithm shown in Fig. 16. 

in Figure 17 and its absence in Figure 18. By comparing 
Figures 14 and 17, it can be seen that the limiting value 
of Rmax//~ obtained by using the old algorithm is higher 
in 3-D compared with 2-D simulations, suggesting that 
the frequency of grain coalescence in 3-D simulations is 
higher than that in 2-D ones for the old algorithm. Be- 
cause grain coalescence is completely eliminated in the 
new algorithm, the limiting value of Rmax//~ is the same 
for both 2-D and 3-D simulations. 

C. Anisotropic Grain Boundary Energy 

1. Grain growth exponent 
Figure 19 shows the grain growth kinetics obtained in 

2-D simulations with the new algorithm for various de- 
grees of anisotropy. Notice that the presence of an- 
isotropy results in a reduction of the grain growth exponent 
at a given grain size, as can be seen in Figure 19 and 
Table III. 
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Fig. 1 9 - - T h e  effect of anisotropy in grain boundary energy on grain 
growth kinetics in 2-D simulations, with the new algorithm. The grain 
growth exponent decreases with increasing degree of anisotropy. 

Table III. Effect of Anisotropy in Grain 
Boundary Energy on Grain Growth Exponent 
in 2-D Simulations Using the New Algorithm 

Anisotropy Grain Growth 
Parameter (0") Grain Size Exponent 

0 14.5 0 .487  
10.0 0 .47  

0.37r 14.5 0 .487  
10.0 0 .468  

0.67r 14.5 0 .410  
10.0 0 .395  

2. Grain size distributions 
Figure 20 shows the variation of Rmax//~ with the MCS 

for 2-D simulations obtained using the new algorithm for 
different seed values and an anisotropy parameter of 0.67r. 
The Rmax//~ increases from an initial value of -~2.2 and 
appears to stabilize at =3.0  with grain growth. Figure 21 
shows the grain size distribution in 2-D simulations ob- 
tained with the new algorithm for an anisotropy param- 
eter (0") of 0.67r. Notice that the fit to the log-normal 
function is significantly improved when the anisotropy 
in grain boundary energy is taken into account. The fit 
of the Louat function is shown for comparison, although 
there is no theoretical significance to the Louat function 
in the presence of anisotropic grain boundary energy. 

VI. DISCUSSION 

A. Isotropic Grain Boundary Energy 

1. Grain growth exponent 
A major difference between the old-algorithm, on one 

hand, and the modified-old and new algorithms, on the 
other, is in the magnitude of n. The old algorithm yielded 
a significantly lower grain growth exponent than the 
modified-old and new algorithms at any given grain size. 
Both the modified-old and new algorithms gave a grain 
growth exponent close to the theoretical value of 0.5 at 
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growth and appears to stabilize at about 3.0. 
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Fig. 2 1 - - F i t s  of  log-normal and Louat functions to the grain size 
distribution obtained in 2-D simulations obtained by using the new 
algorithm, with an anisotropy parameter of 0.67r. Notice that the fits 
are much better than those in Fig. 12, in which grain boundary energy 
was considered isotropic. 

a grain size --~16, whereas at the same grain size, the 
old algorithm yielded an exponent ~0.44.  Because a sig- 
nificantly higher grain growth exponent was obtained in 
2-D simulations by using the new and modified-old al- 
gorithms vs the old algorithm at a constant number of 
triple points or vertices (constant grain size), the ab- 
sorption of curvature at the vertices does not seem to be 
the only reason that the grain growth exponent obtained 
in the old algorithm is lower. A comparison of the re- 
suits based on the old and new algorithms only might 
lead to the conclusion that the difference in the grain 
growth exponents between these two algorithms could 
be caused by the occurrence of grain coalescence in the 
former and its absence in the latter. However, a com- 
parison of the results based on the modified-old and new 
algorithms indicates that the modified-old algorithm, in 
spite of producing grain coalescence, yielded an almost 
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identical grain growth exponent as the new algorithm, 
in which grain coalescence was completely absent. Hence, 
it is clear that grain coalescence does not have any sig- 
nificant effect on the magnitude of the grain growth 
exponent. 

However, there is a significant difference between the 
old algorithm, on one hand, and the modified-old and 
new algorithms, on the other, with regard to the total 
number of orientations that are considered when a given 
MC site makes a reorientation attempt. As already ex- 
plained, in the old algorithm, the reorientation attempt 
is toward all the possible orientations in the system, 
whereas in the modified-old and new algorithms, it is 
limited to those of the nearest neighbors only. The ob- 
served difference in the grain growth exponents can be 
fully attributed to this. As already explained, this dif- 
ference between the two sets of algorithms results in a 
much faster decay of the average mobility as a function 
of grain size for the new and modified-old algorithms 
than for the old. Since a constant mobility is reached 
much faster, the asymptotic limit to the grain growth ex- 
ponent is also reached much faster in the new and 
modified-old algorithms than in the old. 

Figure 22 shows the variation of the average grain 
boundary mobility for the old and new algorithms. The 
simulations were carried out using a 200 • 200 lattice, 
with 64 initial orientations for the old algorithm, and 2002 
initial orientations for the new one. For the new algo- 
rithm, the asymptotic limit to the mobility (in arbitrary 
units) occurs at 0.33, while for the old algorithm, it oc- 
curs at 1.0. Notice that the mobility decays much faster 
in the new algorithm than in the old. An estimate of the 
grain growth exponent as a function of grain size for the 
old and new algorithms can be obtained as follows. At 
a given time, the total number of grains G(t) ~- A / D  2, 
where A is the area of the simulation domain and D is 
the average grain diameter. The total number of triple 
points or vertices V(t) is twice the number of grains, TM 

hence, -~2A/D 2. From stereology, the total length of grain 
boundaries in the simulation domain equals (zr/2D)A. 
For a triangular lattice, the distance between two grain 

2.0 

I -  
1.5 

>. 
r r  
< 
r r  
I.- 

1.0 
E 

I - "  

- . I  

0 . 5  

0 

0.0 

= % N e w  A l g o r i t h m  

�9 % O ld  A l g o r i t h m  

\ 

. . . .  I . . . .  i . . . .  I . . . .  i . . . .  i . . . .  I . . . .  

5 10 15 20 25 30 35 

GRAIN SIZE 

Fig. 22--Variat ion of average grain boundary mobility with grain 
size for the old and new algorithms. The horizontal lines at mobility 
equaling 1 and 0.33 indicate the asymptotic limits for the old and new 
algorithms, respectively. 

boundary points is equal to 1/2, and hence, the total 
number of grain boundary points - ~ r A / D .  The ratio of 
triple points to grain boundary points is then given by 
2/rrD. Since the ratio of triple points/grain boundary 
points varies as 1/D, the plots shown in Figure 22 were 
fitted to equations of the form M = p~ + p2/D,  where 
Pl and P2 are constants, M is the mobility, and D is the 
grain size. The constant PR is proportional to the rate of 
change of mobility at any grain size. Since the grain 
growth exponent increases at the same rate that the mo- 
bility decreases, it is assumed that the grain growth ex- 
ponent can be expressed in the form n = n I - p2 /D,  
where n i is the theoretical limit to the grain growth ex- 
ponent and n is the grain growth exponent at any grain 
size D. Hence, it can be shown that 

old 
hold -- 0.5 P2 

- - -  [ 1 8 ]  

nne w -- 0 . 5  p~eW 

The old algorithm gave grain growth exponents of 0.43 
and 0.44 at grain sizes of 10 and 15.8, respectively 
(Table I). From Eq. [18], grain growth exponents 0.478 
and 0.481 are obtained for the new algorithm at the same 
grain sizes. These values are in good agreement with the 
values obtained for the new algorithm, as shown in 
Table I. 

A comparison of Table I and II shows that there is a 
significant reduction in the grain growth exponent on going 
from 2-D to 3-D simulations with the old algorithm. In 
2-D simulations, the fraction of sites with enhanced jump 
probability is limited to those sites surrounding the triple 
points. However, in 3-D simulations, the fraction of sites 
with enhanced jump probability occurs near both quad- 
ruple points and triple edges. Hence, at a given grain 
size, the fraction of the total number of sites with en- 
hanced mobility is higher in 3-D simulations compared 
to 2-D ones. Consequently, the deviation from the lim- 
iting mobility is higher than in 2-D simulations, and hence, 
the grain growth exponent is lower than in 2-D simu- 
lations. However, the new algorithm gives a signifi- 
cantly higher growth exponent than the old one at 
corresponding grain sizes because of the much faster at- 
tainment of equilibrium mobility as in the 2-D case. From 
the values of p, ,  P2, and P3 for the fitting function shown 
in Figure 10 and from Eq. 18, the grain size at which 
the grain growth exponent becomes very close to the the- 
oretical limit can be calculated. For example, a grain 
growth exponent of 0.49 can be obtained at a grain size 
of 8924. As mentioned previously, the apparent reduc- 
tion in the grain growth exponent in MC simulations in 
the isotropic case is due to the increased mobility at the 
quadruple points and triple lines in the case of 3-D sim- 
ulations and at triple points in 2-D simulations. Assum- 
ing an atomic dimension of 0.3 nm, MC grain size of 
8924 roughly corresponds to 3 /zm. Hence, in real ma- 
teriafs, where the grain sizes are of the order of several 
microns, the ratio of atoms near quadruple points and 
triple lines to the atoms near grain boundaries is ex- 
tremely small, and a grain growth exponent close to the 
theoretical limit of 0.5 is generally observed, provided 
there are no impurity drag and texture effects. 

2. Grain size distribution 
As previously described, there was an excellent fit be- 

tween simulated and experimentally measured grain size 
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distributions for the old algorithm, in both 2-D and 3-D 
simulations. Hence, it was concluded that the old al- 
gorithm adequately described the grain size distribution 
function in real materials. However, one cannot over- 
look the fact that the shape of the grain size distribution 
curves obtained by using the old algorithm could be sig- 
nificantly influenced by the occurrence of grain coales- 
cence. Comparison of Figures 14 through 18 shows that 
the effect of grain coalescence on the upper limiting grain 
size could be significant for both 2-D and 3-D simula- 
tions with the old algorithm. In fact, Figures 14 and 17 
show that grain sizes in the range R/I~ = 3 to 3.5 are 
produced exclusively by grain coalescence. 

Comparison of Figures 11 and 12 shows that a better 
fit to the Louat function is obtained in the 2-D simula- 
tions with the old algorithm than with the new algorithm. 
This is essentially due to the fact that the old algorithm 
produces a longer tail in the grain size distribution, which 
extends to Rmax/l~ ratios greater than 3.0. A log-normal 
fit to the 3-D grain size distribution produced by using 
the old algorithm has not been obtained in this study. 
However, the extent of grain coalescence in 3-D simu- 
lations obtained by using the old algorithm shown in 
Figure 17 demonstrates that a similar tail in the 3-D grain 
size distribution would also have been obtained by using 
the old algorithm, thereby improving the fit to the log- 
normal distribution. Hence, it can be concluded that the 
excellent fits of the Louat and log-normal functions to 
the 2-D and 3-D grain size distributions, respectively, 
obtained by using the old algorithm were essentially the 
result of the occurrence of grain coalescence in the sim- 
ulations. The fact that real materials show such a grain 
size distribution could result from the presence of an- 
isotropy in grain boundary energy, which also increases 
the upper limit of Rm.x/R ratio in the grain size distri- 
butions. Grain coalescence could also occur, probably 
in the presence of subgrains or texture in the initial 
microstructure. However, the effect of the presence of 
subgrains or texture on grain growth kinetics and grain 
size distribution should be dealt with in a more funda- 
mental manner than in the old algorithm. It is important 
to note that these parameters were not intended variables 
in the old algorithm. 

B. Anisotropic Grain Boundary Energy 

1. Grain growth exponent 
From Figure 19 and Table III, it can be seen that the 

presence of anisotropy in grain boundary energy results 
in a reduction in the grain growth exponent. This re- 
duction is apparently related to changes in the grain size 
distribution. With increasing anisotropy, there seems to 
be a larger number of both fine and coarse grains in the 
microstructure, with a corresponding decrease in the 
number of grains with mean grain size. This result is 
similar to that obtained by Grest et al. 18] with the old 
algorithm. However, the effect of anisotropy on grain 
growth exponent appears to be more pronounced. For 
example, with the old algorithm, the grain growth ex- 
ponent appeared to be insensitive to the anisotropy pa- 
rameter up to 0* = 0.6~'. However, in the simulations 
presented here, the grain growth exponent drops signif- 
icantly (from 0.49 to 0.41 at a grain size ~15) at 0* = 

0.67r. A comparison of the grain size distribution curves 
obtained with the old [81 and new algorithms at 0* -= 0.67r 
shows that the reduction in the peak size fraction is much 
more significant in the old algorithm than in the new 
algorithm. Also, with the old algorithm, the increase in 
the Rm~Jl~ ratio compared with the isotropic case be- 
comes significant only at 0* = 0.9~r. However, with the 
new algorithm, the ratio increases from 2.2 in the iso- 
tropic case to about 3.0 for 0* = 0.67r. As described 
previously, the use of the old algorithm can result in grain 
nucleation during grain growth in the presence of an- 
isotropy in grain boundary energy. However, the effect 
of grain nucleation on grain size distribution and the grain 
growth exponent is not clear at this point. 

Recently, 123j curvature-driven grain growth in the pres- 
ence of anisotropic grain boundary energy has been stud- 
ied using the linear bubble model (LBM). The results 
indicate that in the presence of anisotropic grain bound- 
ary energy, the asymptotic limit to the grain growth ex- 
ponent does not change from the theoretical limit of 0.5 
obtained for the case of isotropic grain boundary energy. 
The log-log plot of grain size vs time in the presence of 
anisotropic grain boundary energy shown in Figure 19 
does show a curvature. Fitting Eq. [14] to the 0* = 0.6~r 
curve, one obtains a grain size of 26,103,418, at which 
the grain growth exponent becomes 0.49. Hence, it is 
clear that it is impossible to achieve a grain growth ex- 
ponent of 0.5 in MC simulations for the preceding level 
of anisotropy in grain boundary energy, since the lattice 
size required for such a simulation would become pro- 
hibitively large. 

In addition to the decrease in the grain growth expo- 
nent, there seems to be a decrease in mobility. From 
Eq. [10] it can be seen that the mobility is a function of 
the grain boundary energy. In MC simulations with iso- 
tropic grain boundary energy, the quantity J is consid- 
ered to be a constant. In simulations where the grain 
boundary energy is not isotropic, it varies from 0 to J, 
depending on the misorientation between the grains that 
form the boundary. Hence, the average grain boundary 
energy decreases with the increasing degree of an- 
isotropy. It can be seen readily from Eq. [10] that the 
average mobility decreases with the increasing degree of 
anisotropy. 

2. Grain size distribution 
Figure 21 shows that the grain size distribution ob- 

tained by using the new algorithm in 2-D simulations 
shows an excellent fit to the log-normal function after 
taking into account the presence of grain boundary an- 
isotropy. The effect of anisotropy in grain boundary en- 
ergy on the grain size distribution in 3-D simulations is 
rather difficult to simulate, because there are additional 
degrees of freedom in defining the axis-angle pairs for 
grain boundaries in 3-D cases. The fraction of grain 
boundaries that are special boundaries is a function of 
prior thermal history and composition. For example, the 
presence of small amounts of impurities can effectively 
eliminate the difference in the mobility between special 
and general boundaries. Because these features are not 
treated in the simulations from a fundamental viewpoint, 
the degree of anisotropy should at best be considered to 
be an adjustable parameter at this time. In any case, the 
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consideration of anisotropy in grain boundary energy in 
3-D simulations is also expected to improve the log-normal 
fit to the 3-D grain size distribution, which is very much 
similar to the 2-D case shown in Figure 21. Hence, it 
can be concluded that the log-normal function can pro- 
vide an excellent fit to grain size distributions both in 
2-D and 3-D simulations, provided the anisotropy in grain 
boundary energy is taken into account. 

VII. SUMMARY AND CONCLUSIONS 

The following modifications have been implemented 
to the existing MC grain growth algorithm. The first re- 
lates to limiting the reorientation attempts to the orien- 
tations of the nearest neighbors only. The second 
modification involves increasing the number of initial grain 
orientations to the total number of points in the domain, 
so that grain coalescence can be completely eliminated 
during grain growth. Implementation of these modifi- 
cations has resulted in a significant acceleration of the 
simulated grain growth kinetics and routine estimates of 
the grain growth exponent that are close to the theoret- 
ical value of 0.5 at smaller grain sizes than is possible 
with the old algorithm. Comparison of the old and mod- 
ified algorithms showed that grain coalescence did not 
have a significant effect on the grain growth exponent. 
Careful comparison of the simulation results obtained by 
using the old and new algorithms showed that the slower 
attainment of the theoretical value of 0.5 for the grain 
growth exponent with the old algorithm essentially re- 
suited from the slower rate of decay of the average grain 
boundary mobility with grain size compared with the new 
algorithm. The absorption of curvature at triple points 
did not appear to be a significant factor in reducing the 
grain growth exponent. The analyses also showed that 
the excellent fits to the Louat function and the log-normal 
function to the grain size distributions obtained in 2-D 
and 3-D simulations, respectively, by using the old al- 
gorithm resulted from the presence of the coarse grains 
in the microstructure produced by grain coalescence. The 
log-normal function gave a better fit than the Louat func- 
tion for 2-D simulations obtained using the new algo- 
rithm. The closeness of fit significantly improved after 
a certain degree of anisotropy was introduced for the grain 
boundary energy. The log-normal function also gave an 
excellent fit to the grain size distribution in 3-D simu- 
lations obtained using the new algorithm in the absence 
of grain boundary anisotropy. However, based on the 
2-D results, it is expected that the closeness of fit can 

be further improved in 3-D simulations also, in the pres- 
ence of anisotropy in grain boundary energy. 
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