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Abstract: The complete nucleotide sequence of the cyanelle genome of Cyanophora 
paradoxa Pringsheim strain LB 555 was determined (accession number U30821). 
The circular molecule is 135,599 base pairs in length. The physical map of this 
DNA molecule is shown along with identified genes and open reading frames. 

C Yanophora paradoxa (Glaucocystophyceae) is a bi-flagellated protist 
that contains cyanobacterium-like plastids termed cyanelles. The 
cyanelles of Cyanophora paradoxa are conspicuous because they 

are surrounded by a lysozyme-sensitive peptidoglycan wall that is 
typical of those associated with cyanobacteria but that is not found in 
other plastid types. Thus, this organism has frequently been considered 
a "living fossil" and a paradigm for the invasion of a eukaryotic cell by 
a cyanobacterium (for a review, see L6ffelhardt and Bohnert, 1994). The 
complete nucleotide sequence, 135,599 bp, of the cyanelle DNA from the 

Abbreviations: LSC, large single-copy region; SSC, small single-copy region. 
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unicellular alga Cyanophora paradoxa Pringsheim strain LB555 has been 
determined (GeneBank accession number: U30821). The chromosome 
(Fig. 1) has a G+C content of 30.4 percent and is characterized by two 
inverted-repeat segments of 11,285 bp each (IR A and IR B, respectively), 
separated by a large single-copy region (LSC) of 94,946 bp and a small 
single-copy region (SSC) of 18,083 bp. Approximately 192 identified 
genes and open reading frames (of which ten are duplicated in the 
inverted repeats) have been identified thus far. Although the genome is 
smaller than that of tobacco, it encodes about 30 percent more genes than 
does the tobacco chloroplast genome. Genes encoded in the chloroplast 
genomes of higher plants but not found in the cyanelle genome include 
ndhA-K, rps15, rp123, infA, atpI, accD, and matK. 

To catalog genes and reading frames on the cyanelle DNA, the 
molecule has arbitrarily been linearized at the beginning of the inverted 
repeat 5' to the end of one of the 16S rRNA genes. Counting proceeds 
through IRA, LSC, IRB, and SSC (Fig. 1). Identified genes are given names 
as recommended (Hallick and Bottomley, 1983; Hallick, 1989); unknown 
reading frames larger than 25 codons are labeled "ORF" followed by the 
number of codons. Unknown reading frames that have been found in 
other plastid DNAs are labeled ycf(Hallick and Bairoch, 1993). Genes for 
tRNAs are identified by the amino acid with which they are charged in 
the single-letter code. 

While a full discussion of the sequence characteristics will be pre- 
sented elsewhere, we should note the special features of cyanelle DNA: 

�9 a single type-I intron located in trnL(UUA) in a position that is 
conserved in many cyanobacteria and all plastid DNAs (Kuhsel et 
al., 1990; Xu et al., 1990); 

�9 a full complement of tRNA genes (36 in total) and the gene rnpB (= 
RNA subunit of RNAseP); 

�9 one set of rRNA genes (16 S, 23 S, and 5 S, with trnA and trnI genes 
in the 16 S-23 S spacers) in each IR; 

�9 37 ribosomal protein genes (18 small-subunit proteins; 19 large- 
subunit proteins); 

�9 four genes encoding RNA polymerase subunit proteins, and tufA 
encoding translation factor Tu; 

�9 seven genes encod ing  phycob i l i p ro t e in s  ( inc luding  all 
chromophorylated subunits of the phycobilisome); 

Fig. 1: Physical map and gene map of the cyanelle genome of Cyanophora 
paradoxa (opposite page). See table of gene symbols on p. 324. 
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�9 25 genes encoding subunit proteins of the photosystem I complex 
(8 proteins) and photosystem II complex (17 subunits); 

�9 seven genes encoding ATPase subunit proteins; 
�9 six genes encoding subunits of the cytochrome bdCcomplex; 
�9 the petF gene encoding type I [2Fe-2S] ferredoxin; 
�9 genes for the molecular chaperones GroEL, GroES, and DnaK 

located within IR segments; in addition gene secY is present, 
encoding a subunit of the preprotein translocation machinery; 

�9 two different genes (clpP1 and clpP2) encoding CIpP subunits of the 
CIp protease; 

�9 one gene with homology to fisW, possibly involved in cyanelle 
division or cell wall biosynthesis; 

�9 13 identified genes encoding proteins for fm~ctions in metabolism; 
�9 cyanobacterial LsS s RuBisCO encoded by an rbcL-rbcS operon; 
�9 three ORFs with possible functions in the transcriptional regula- 

tion of gene expression (two OmpR family members; one LysR 
family member); 

�9 15 ORF and 21 ycf(ranging from 27 to 333 codons); 
�9 five ORF/ycfwith possible functions as membrane transporters; 
�9 an ORF (ycf17) encoding a protein of 49 amino acids with strong 

homology to all members of the CAB/ELIP/HLIP protein super- 
family; 

�9 no ndh genes or pseudo-ndh reading frames (genes for NADH 
dehydrogenase). 

The sequences of four algal plastid DNAs are or will soon be available 
(Table I): those of the cyanelle genome of Cyanophora paradoxa described 
here, the 191,028-bp plastid DNA from the red alga PoT"phyra purpurea 
(Reith, 1995; Reith & Munholland, 1995), the 119,704-bp plastid genome 
of the diatom Odontella sinensis (class Bacillariophyceae) (Kowallik et al., 
1995), and the 143,170-bp plastid genome of Euglenagracilis (Hallick et al., 
1993). These sequences complement those of chloroplast DNAs from six 
higher plant species: the liverwort Marchantia polymorpha (Ohyama et al., 
1986); the gymnosperm Pinus thunbergii (Wakasugi et al., 1994); the 
monocots Oryza sativa (Hiratsuka et al., 1989) and Zea mays (140,386 bp; 
Maier et al., 1995); and the dicots Nicotiana tabacum (Shinozaki et al., 1986) 
and Epifagus virginiana, a parasitic, nonphotosynthetic species (Wolfe et 
al., 1992). 
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Table I. Fully sequenced plastid genomes. 

Plant Species Genome Size (bp) 

Algae 
Cyanophora paradoxa 135,599 
Porphyra purpurea 119,704 

Odontella sinensis 119,680 
Euglena gracilis 143,170 
Chlorella ellipsoidea 155,000 

Higher Plants 
Marchantia polymorpha 121,024 
Pinus thunbergii 119,707 
Nicotiana tabacum 155,844 
Epifagus virginiana 70,028 
Oryza sativa 134,525 
Zea mays 140,386 
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