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THE METHOD OF GLOBAL EQUILIBRIUM SEARCH 

V. P. Shilo UDC 519.854.33 

The development and analysis of methods of solution of discrete optimization problems is now being 
given increasing attention all over the world. A method of adaptive random search for the solution of discrete 
global optimization problems is offered in this paper. This method is hereinafter called the global equilibrium 
search (GES). It is described as applied to problems of integer linear programming with Boolean variables 
(ILP BV). The method offered is conceptually related to the simulated annealing [1 ], which, despite successful 
application for solution of many complex optimization problems [10 ], has an asymptotic effectiveness lower 
[2 ] than that of even the conceptually trivial method of repeated local random search (RLMS). The GES 
method preserves all the advantages of the simulated-annealing method and, at the same time, has a higher 
asymptotic efficiency. The results of numerical experiments using this method allow us to speak about revival 
of the ideas of the Boltzmann optimization, which is, from our point of view, the most natural since it was 
borrowed from nature. 

We will consider an ILP BV problem that is formulated as follows: it is necessary to minimize 

n 

= .jxj 

j - 1  

(1) 

with constraints 

n 

E a i j x j =  bi' 
]=1 

i =  1 . . . .  , m ,  
(2) 

where 

O ~ x ] ~  l, ]-'-1 . . . .  ,n ,  (3) 

xj are integers, ] = 1, . . . ,  n. 

It is assumed that cj ~ O, j = 1 . . . . .  n .  

Let a set S consist of admissible solutions of problem (1)-(4) and, for any/z  ~ 0, 

Z ~u) = ~ exp ( - ~ f (x)).  
x E S  

We will define a random vector ~ ~ ,  co)- 

z ~ ( x , ~ ) = P { ~ , a ~ ) = x } = e x p ( - ~ f ( x ) ) / Z ~ ) ,  x E S .  

(4) 

(5) 
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Distribution (5) is known in statistical physics as the Boltzmann distribution. The annealing method is 
related to the same distribution: the stationary probability of being at the point x of a Markovian chain 
generated by this method is defined by expression (5). 

Denote by S/ and S? the sets consisting of admissible solutions of problem (1)-(4),  whose jth component 

is equal, respectively, to 1 or 0: 

S l = { x ' x ~ S ,  xj=l},  S ~  xy=O}. 

Let us define 
Z I ~) = ~ exp ( -/~ f (x)), 

X E S j  I 

z fl(u) = ~ ~xp ( - ~, I (x)), 

xE Sy ~ 

pj(su)=P {~'/~u, co) = 1}, j= I . . . . .  n. 

It is easy to see that 

S=S; U V,  Z(ju)=Z 1 + Z?, j = l  . . . .  , n ,  

pjQt) = Z~ (,u) / Z (,u), j = 1, . . . .  n, 

0 t l  

Q')~ = M f (~5 (u, co)) = - -Eft In Z O) = ~, cj PjO). 
v ~  

j = l  

Let us calculate the derivative of the probability py(,u): 

0z ]  f,u) oz(u) 
opj~  ) = o__ z ]  cu ) _ _ z ~, ) o~, - z )  ~, ) ou 

Off Off Z(/z) Z( f l )2  

(6) 

It is easy to see also that 

Okt = Pj( ,u)(  1 Pj(t't)) 
(7) 

where the conditional expectations are defined as 

y (x) exp ( - /~  f (x)) 
1 

= M 0 ~ (~ (~, co)) I ~j = 1) - J  E sj z~u) 

~r~-~ 
E f (x) exp ( - /~  f (x)) 

= M ( f  (~ O, co)) t xj = O) =~,, ~ sJ~ 
z o o )  

The following obvious equality was used earlier: 
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) Xj = 1  
= - , j = l , . . . , n .  

We will introduce the  independent  random variables ~TjOz, co), ] = 1 , . . . ,  n: 

P {r/]~, co) = 1} = p]~), P {r/]~, co) = O} = 1 - pi(,u) 

and a random vector ~ ~ ,  w) = (~0~, co), ~1 Q,t, 09 ) , . . . ,  ~m(fl, CO))" 

rt n 

~o(U, a~) = X c] rl](u, co), ~i(,u, co) = E ai] rl] Or' co)' i = 1 . . . .  , m. 
]=1 1=1 

Under  definite a s sumpt ions  it is possible to show the asymptotic normal i ty  of the normalized r andom 
variables ~ i~ ,  co), i = 0 , . . . ,  m. For the sake of simplicity, we formally assume normal i ty  of these quantit ies 

and,  therefore,  no rmal i ty  of the conditional distribution of the quantity ~o(bt, co) under  the conditions 

~i~, co)= hi, i = 1 , . . . ,  m. In this case we can calculate the conditional expectat ion [5] 

m 

i--1 

= E cj pl~u) + E riO't) b i -  ai] pj(,u) = c] p1~u), 
1=1 i--1 1=1 1--1 

where ri(lu ), i = 1 . . . .  , m, a re  the regression coefficients that are determined from the following systems of 

linear equations: 

X akj aij pl~u)(1 -- pfl/z)) ri~ ) 
i=1 -1 

n 

= E cj aij p j~ ) (1  - p j ~ ) ) ,  k = 1, . . . .  m. 
] -1  

(8) 

It is natural  to assume tha t  

0,~ -~ = M ( ~ 0 ~ ,  co) I ~i(~u, co) = b i, i =  1, . . . .  m ,  x] = O) 

- - M  (~O(fl, c.o)I ~i(~, 09)= bi, i =  1 . . . . .  m, xj = 1) .  

Then we will obtain 

- ~  

= ck Pk(J u) + rl ~ )  b i -  aik Pk~)  
k = l , k ~ ]  i=1 k = l , k ~ ]  

-cj  - c~ p ~ ( ~ )  - r ~ )  b ~ -  a~j - a ~  pk(u)  = r 1 ( ~ )  a~j - 
k = l , k ~ ]  i=1 k = l , k ~ ]  i=1 

C j* 

Therefore,  
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O,u = p j ( , u ) ( 1  - -  pj(Jz)) ri(lu ) a i j -  cj , j = 1 , . . . ,  n. 
i = 1  

Formula (9) defines a variant of a continuous analog of the interior-point method for the problem of 
linear programming with two-sided constraints (1)-(3) ([6, pp. 7-12],  [13, pp. 139-150]).  

Since, on the strength of (8), the relations below are fulfilled, 

t/ 

j - 1  
= akj pj(/t)(1 -- pj(,u)) ri(lu ) aq -- O~ j=1 

= ~_~ akj aij pj~)(1  - pj(su)) ri(lu ) 
i - -1  

tl 
- ~ ,  cj akj pj~)(1 - py~))  = 0, k = 1, . . . .  m, 

j--1 

if limitations (2) are fulfilled with p = 0 

t/ 

~ ,  aq pj(O) = b i, i =  l . . . .  , m,  
j - 1  

they will be fulfilled for any p > 0 and pj~u), j = 1 . . . .  , n, obtained after integration of system (9). 

Let us calculate the derivative of the mean value of the objective function in the annealing method: 

0~ 0~ 

x ~ / (x) exp ( - /~  / (x)) 
__o Es  

z6u) 

/2(x) exp ( - p f (x)) 
x E S  

zoo) 

x ~ f (x) exp ( - ~ f (x)) 
E S  

z ( ~ )  

It is equal to the variance of the values of the objective function with the negative sign. 
On the other  hand,  

0e>  
- ~  cj pj(~u) = ~ cj pj~)(1 - pj(ju)) ri(kt ) aij - cj 

=1 j r 1  i = 1  

= -- c? pj(ff)(1 -- pj(u)) + ~ .  ri(tt ) cj aij pj(,u)(1 -- pj(tz)) 
=1 i=1 =1 

= D 2 ( ~ o Q ,  t,  (.o) I ~i(].t, 03) = hi, i =  1 . . . . .  m) .  

The penultimate expression with the minus sign represents the conditional variance of the random 
normally distributed quantity ~0(/z, aJ). 

Thus, it has been established that under conditions providing asymptotic normality of the random 
variables ~iQz, r i = 0 , . . . ,  m, the annealing method is similar to the interior-point method, which is one 

of the most effective methods in solving linear programming problems (as was noted in [7 ], the Karmarkar 
methods [8 ] and Dikin-Barnes  method [9 ] are quite similar to them). 
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It is easy to obtain an integral solution of systems (6)-(7)" 

(10) 

and 
1 

p]~u)= 1 - p/(0) ( "~ (('/"):j 0 1 +  pj(O) exp - 

Using (9), we obtain the following formula: 

= 0  X .  

- (:)t ' 

=1 
(11) 

pj(u)  = 

1 +  
1 - pj(O) 

pj(o) 

I 

(- ! "' 1 
I (12) 

1 -  p / { 0 ) ( / z  2 ~ )" 
1 + p](O) exp c / -  ai] ri(t)dt 

i = 1  0 

Let us describe a schematic diagram of the method of global equilibrium search for problem (1)-(4). 
N 

We set the numbers K and/~0 < fl l  < ' ' "  </ZK" Let the set S be some subset of solutions of problem (1)-(4) 
obtained by the GES method and 

# f - - 
= x ' x E S ,  x y = l  , = { x ' x E S ,  x] =o} 

We define the following quantities for k = 0 . . . . .  K: 

... _ .  F k 
Zk = Z exp { - / z f f  (x)}, Fk = Z f (x) exp { - /~f f  (x)}, E k = : - ,  

- Z k 
x E - S  x E  S 

-1 5 :  Zkj = exp { -/~kf (x)}, j = 1 . . . . .  n, 
- 1 X ~  Sj 

F2J = Z f (x) exp { - /~ff  (x)}, j = 1 . . . . .  n, 
- I 

x E  Sy 

--1 --0 Z Ekj= , j =  1 . . . . .  n, Zky= exp {--,uff(x)}, j =  1 . . . . .  n, 

x E  Sy ~ 

" 0  
- o  % =  I (~ )exp{ -~ ,kI (~ ) } ,  : = 1  . . . . .  n, % =  , : = 1  . . . . .  ~, 

x E ~jo 
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p ~ =  
1 P'0/ 0 . ~ k y  1 " 0  -" "1 "" 

1 + - exp -- Eij .4- E ~  j -  Eij - E i l l  j (itti +1 - ~ti) 
Poj i = o 

j =  1 . . . .  ,n .  

Expression (13) is obtained by application of the trapezoid rule to the integral in formula (11). 
Let us present the schematic diagram of the GES method. 

(13) 

procedure global equilibrium search 

repeat 

repeat for k = O  to K - 1  

determination of the number  of tosses n k in random search 

repeat for t = 1 to rt k 

random search with the probabilities ~'/q, j = 1, . . . .  n, 

x is obtained 

the solution 

if (x q~ S) S = S U x 

"-1 " o  calculation of the quantities Ekj, E~j, k = 1 , . . .  , K, j =  1 . . . . . .  n 

calculation of the probabilities P'k+l ], J = 1, . . . .  n, by formula (13) 

determination of the set S 

until (stopping criterion is satisfied) 

Let us consider this scheme in more detail. 
The Probabilities of Random Search. The probabilities pj(0), j = 1 , . . . ,  n, can be obtained for/~ = 0 

with the help of statistical simulation in the following way. The equiprobable permutations of the indices of 
the problem variables are generated a desired number  of times. Then,  to solve initial problem (1)-(4) ,  the 
algorithm of sequential assignment of units using the obtained permutation is applied. The calculated frequency 
of a single value of the variable xj can be used as a good estimate for the quantity pj(0), j = 1 , . . . ,  n. If 

/z 0 = 0, then ~'0j= pj(0), j = 1 , . . . ,  n. For the values of /z that are not very large, we can calculate pj(u) 

through a numerical integration of expression (12) and by putting /z 0 =/z,  ~'0j= pj(/z). For setting /z k, the 

choice of a > 1 and/z  k = a k/~ 0 and the condition where, at the " temperature"  /zk (see [1 ]), the probability 

p-~j would approximately be equal to the best obtained solution seems to be natural. 

If an improving solution is not found in the temperature cycle in k, then it is advisable to increase 
nk; if an improving solution is obtained, then it is expedient not to change (to reduce) n k. 

Definition of the Set S. If an improving solution is found in the temperature cycle, then it is advisable 
to leave in S only the~mproving solution or some best .solutions. But if an improving solution is  not obtained, 
then preservation of S can be more preferable. To store the obtained solutions (the set S), the hashing 
technique can be used [11 ]. 

Let us point out that  it is sometimes expedient to use for "acceleration" of the GES method a fast and 
effective approximate method,  e~g., the method of the drop vector [12 ]. Then, before the first calculation of 
the temperature cycle, the set S will consist of a solution obtained by the "acceleration" algorithm. 

Efficiency of the Algorithm. Clearly, the GES method is more effective for solution of the knapsack 
problem than the annealing method. This method produces an exact solution in a finite number of steps. The 
results of test calculations testify to the high performance of this method (this is discussed in more detail in 
a special publication). For  example, out of 400 problems described in [4 ], the GES method has found exact 
solutions of all the problems at given stopping criteria, while the RTS method (the reactive taboo method) 
has found exact solutions of 259 problems, and 317 with a 1 ~ accuracy. The results of solution of problems 
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of a large dimension (500 x 500) are even more impressive. Improving solutions are obtained for all the 
problems at a value of the stopping criterion 1020 times less than in [4 ]. 

All the problems offered at the All-Union Competition RANETs-85 were solved in 15 rain on a Pentium 
166 MMX computer, with the solutions obtained in all the problems being not worse than the declared one. 
Moreover, improving solutions were obtained for many problems. In other words, it was not possible, based 
on the totality of the solutions presented to this competition, to distinguish this algorithm from the exact one. 

Let us point out that not only the computational performance but also the command property is of 
primary importance for the GES method. By the command property will be meant the capability of the method 
to effectively use the solutions obtained by other algorithms. For example, the command figure is equal to 
zero for the classical local search method. The command properties allow us (this is discussed in more detail 
in subsequent papers) to use the GES method rather effectively in the case of parallel computations, which 
is especially important for optimization on the Internet with the use of several computers. 

The knapsack problem is selected in this paper as a convenient model. From our point of view, any 
optimization problem that satisfies certain requirements for the structure of optima can be effectively solved 
within the framework of the approach proposed in the present paper. 
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