

tide)₂ (chalcogen)₃ phases (see [Massalski2]) are essentially line compounds.

Cited References

68Eif: J.R. Eifert and E.A. Peretti, J. Mater. Sci., 3, 293-296 (1968).

73Cor: J. Cornet and D. Rossier, *Mater. Res. Bull.*, 8, 9-19 (1973).
90Rou: J.C. Rouland, R. Ollitrault-Fichet, J. Flahaut, J. Rivet, and R. Ceolin, *Thermochim, Acta, 161*, 189-200 (1990).

Au-Sn (Gold-Tin)

H. Okamoto

The Au-Sn phase diagram in [Massalski2] was adopted from [870ka] but included minor modifications with regard to the

formation reactions of β and ζ phases from [87Leg]. Even so, the boundaries of these phases and possible eutectoidal de-

Table 1 Au-Sn Crystal Structure Data

Phase	Composition, at.% Sn	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Au)	0 to 6.6	cF4	Fm3m	<i>A</i> 1	Cu
β or Au ₁₀ Sn	8.2 to 9.1	hP16	P63/mmc	$D0_{24}$	Ni ₃ Ti
ζ	9.1 to 17.6	hP2	P63/mmc	AĴ	М́д
ζ or Au ₅ Sn	16.7	hR6	<i>R</i> 3		
δor AuSn	50 to 50.5	hP4	P63/mmc	B 8 ₁	NiAs
εor AuSn ₂	66.7	oP24	Pbca		
η or AuSn ₄	80	oC20	Aba2	$D1_c$	PdSn₄
(βSn)	99.8 to 100	tI4	I4,/amd	A5	βSn
(αSn)	99.994 to 100	cF8	Fd3m	A4	C(diamond)

compositions at roughly 250 and 60 °C, respectively, were still only approximate.

The phase relationship in the Au-rich region, shown in Fig. 1, was clarified by [93Ciu], who showed with DTA, DSC, and EPMA, that the β and ζ phases do not decompose above 200 °C, which was the lowest temperature of measurement. The possibility of decomposition of these phases below 200 °C cannot be excluded because the existence of phases with very similar compositions (~1 at.% difference in Fig. 1) in a wide temperature range (> 500 °C) is unlikely [93Oka]. Au₅Sn forms by a peritectoid reaction at 190 °C as shown in Fig. 1 rather than by a congruent reaction from ζ as earlier reported by [74Osa].

Current Au-Sn crystal structure data are given in Table 1.

Cited References

- 74Osa: K. Osada, S. Yamaguchi, and M. Hirabayashi, *Trans. Jpn. Inst. Met.*, 15(4),256-260(1974).
- 87Leg: B. Legendre, H.C. Chhey, F. Hayes, C.A. Maxwell, D.S. Evans, and A. Prince, *Mater. Sci. Technol.*, 3, 875-876 (1987).
- 870ka: H. Okamoto and T.B. Massalski, *Phase Diagrams of Binary Gold Alloys*, ASM International, Metals Park, OH, 278-289 (1987).
- 93Ciu: J. Ciulik and M.R. Notis, J. Alloy. Compd., 191, 71-78 (1993).
- **93Oka:** H. Okamoto and T.B. Massalski, J. Phase Equilibria, 14(3), 316-335 (1993).

Ce-Rh (Cerium-Rhodium)

H. Okamoto

The Ce-Rh phase diagram in [Massalski2] was drawn by combining data from [Moffatt] and [73Gha]. The possible existence of seven compounds (six compounds shown in Fig. 1 plus Ce_4Rh_3) was indicated. The liquidus boundaries were very uncertain and were derived by assuming similarity to the Nd-Rh diagram, which has not been well established.

The Ce-Rh phase diagram shown in Fig. 1 was determined by [93Pal] through the composition range 0 to 70 at.% Rh by

means of metallography, XRD, DTA, and electron microscopy. The β to α transition of Ce₅Rh₃ is from [Massalski2]. XRD examination by [93Pal] of variously heat-treated alloys of several compositions near Ce₄Rh₃ indicated that Ce₄Rh₃ does not exist.

Ce-Rh crystal structure data with revisions from [93Pal] are shown in Table 1. The tetragonal crystal structure of Ce_5Rh_3 reported by [93Pal] is tentatively assigned to αCe_5Rh_3 , as a cu-