Co-Pr (Cobalt-Praseodymium)

H. Okamoto

The Co-Pr phase diagram in [Massalski2] was adopted from [74Ray] and included nine intermetallic compounds: $Co_{17}Pr_2$, Co_5Pr , $Co_{19}Pr_5$, Co_7Pr_2 , Co_3Pr , Co_2Pr , $Co_{1.7}Pr_2$, Co_2Pr_5 , and CoPr_3. [92Wu] reinvestigated the Co-Pr system and observed eight intermetallic compounds: $Co_{17}Pr_2$, Co_5Pr , $Co_{19}Pr_5$, Co_7Pr_2 , Co_3Pr , Co_2Pr , Co_3Pr_4 , and $CoPr_3$. The Co-Pr phase diagram shown in Fig. 1 is redrawn from [92Wu] with some modifications as described below.

Table 1 compares the melting temperatures of the intermetallic compounds as reported by [74Ray] and [92Wu]. They are mostly in good agreement except for the type of melting of $Co_{17}Pr_2$ and the presence or absence of Co_2Pr_5 . Table 2 shows crystal structures of compounds listed in [Pearson3] plus Co_3Pr_4 reported by [92Wu].

Because is crystal structure is known, stable Co_2Pr_5 may exist in a temperature range not studied by [92Wu]. A dashed line is added in Fig. 1 at the composition of Co_2Pr_5 .

According to [92Oka], it is unlikely that two compounds with very similar compositions exist in a wide temperature range. $Co_{19}Pr_5$ may be a high-temperature phase such as $Co_{19}Sm_5$ in the Co-Sm system (see [Massalski2]). The low-temperature region of

 $Co_{19}Pr_5$ is not shown in Fig. 1, in order to emphasize this possibility.

 Co_7Pr_2 may be dimorphic with crystal structures shown in Table 2. The structure type of the high-temperature phase may be rhombohedral [70Bus] or hexagonal [74Kha]. XRD results of [92Wu]

Table 1Melting Temperatures of IntermetallicCompounds

Compound	[74Ray]	[92Wu]	
Co ₁₇ Pr ₂	1271	1352(a)	
CosPr.	1229	1231	
Co19Pr5	1125	1130	
Co ₇ Pr ₂	1118	1120	
Co ₃ Pr	1057	1065	
C02Pr	931	938	
Co ₃ Pr ₄	598(b)	588	
Co ₂ Pr ₅	558	Not observed	
CoPr3	558(a)	579(a)	

Note: Temperatures are in °C. (a) Congruent melting. Others are peritectic. (b) For $Co_{1,7}Pr_2$.

Table 2 Co-Pr Crystal Structure Da

Phase	Composition, at.% Pr	Pearson symbol	Space group	Strukturbericht designation	Prototype
(αCo)	0	cF4	Fm3m	A1	Cu
(£Co)	0	hP2	P63/mmc	A3	Mg
Co ₁₇ Pr ₂	10.5	hR19	R3m		Th_2Zn_{17}
CosPr	16.7	hP6	P6/mmm	$D2_d$	CaCu ₅
Co19Pr5	20.8	hR24	R3m		Co19Ce5
Co ₇ Pr ₂	22.2	hR18	R3m		Co7Er2
		hP36	P63/mmc		Ni7Ce2
Co ₃ Pr	25	hR12	R3m		Be3Nb
Co ₂ Pr	33.3	cF24	Fd3m	C15	Cu ₂ Mg
Co ₃ Pr ₄	57.1	hP14			Co3Nd4
Co ₂ Pr ₅	71.4	mC28	C2/c		PdsB2
CoPr3	75	oP16	Pnma	$D0_{11}$	Fe ₃ C
(βPr)	100	cI2	Im3m	A2	W
(αPr)	100	hP4	P63/mmc	A3'	αLa

disagreed with the view of [74Kha]. The polymorphic transformation temperature, if it exists, is still unknown.

Cited References

70Bus: K.H.J. Buschow, Acta Crystallogr. B, 26, 1389 (1970). 74Kha: Y.Khan, Acta Crystallogr. B, 30, 1533-1537 (1974). 74Ray: A.E. Ray, Cobalt, (1), 3-20 (1974).

920ka: H. Okamoto and T.B. Massalski, submitted to J. Phase Equilibria (1992).

92Wu: C.H. Wu, Y.C. Chuang, X.M. Jin, and X.H. Guan, Z. Metallkd., 83(1), 32-34 (1992).

Er-Lu (Erbium-Lutetium)

H. Okamoto

The Er-Lu phase diagram in [Massalski2] was redrawn from [Moffatt]. The liquid and solid phases were separated by a single, straight line based on the qualitative feature of intra-rare earth systems reported by [85Gsc]. The L + (Er,Lu) two-phase field was believed to be very narrow.

[910ka] showed that the two-phase field of an intra-rare earth system is indeed narrow when the difference in the melting points of two elements is small, as in the Er-Tm system (16 °C difference). However, the two-phase field may be discernible in the Er-Lu system (134 °C difference).

Figure 1 shows a calculated Er-Lu phase diagram. Both liquid and solid solutions were assumed to be ideal. The lattice stability pa-

rameters used are given in Table 1. The maximum separation between the liquidus and solidus is expected to be \sim 2 at.%, which may not be negligible.

Table 1 Er-Lu Thermodynamic Data

 G^{0} (Er,L) = 0 J/mol G^{0} (Lu,L) = 0 J/mol G^{0} (Er,cph) = -19 900 + 11.042 J/mol G^{0} (Lu,cph) = -18 650 + 9.633 J/mol