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Let R N be an N-dimensional real space, C N a n  N-dimensional complex space, and &, $, g respectively spaces of 

infinitely differentiable functions, infinitely differentiable functions with a compact support, and rapidly decreasing inf'mitely 

differentiable functions on R N. these spaces are endowed with the topologies accepted in the theory of generalized functions 

[1, 2]. Denote by & ~ $ ', I//'the corresponding spaces of generalized functions. We refer to &, by its the accepted name, i.e., 

the space of generalized functions with a compact support. In what follows, A stands for the space ~ o r  S .  Let (f~, E, P:, 

P2) be a statistical structure, i~: i2 x A --, C z - a Gaussian real homogeneous field on A [3-6]. We assume that the field/~ 

has zero expectations over each of the measures P:,  P2. We also assume that spectral densities corresponding to P:, P? exist. 

We denote these densities by f : ,  f2, respectively (or f:(X), f2(k), X E RN). 

For T C R N denote by ,I, the set Co~*(T) (i.e., I, is the set of infinitely differentiable functions with a compact support 

concentrated in 7"), by E~ 'I' C E the a-algebra generated by the values of/~ on ,I,, and by pj,t, the restriction of the measure Pj 
to E~ 'I', j = 1, 2. 

It is well known [6] that criteria of equivalence of p,I, and P2 'I' (p,l, -. P2,1,) and criteria of their orthogonality (p,I, 

.i. P2 'I') play an essential role in the statistics of stochastic processes and random fields, In this article we present a number 

of such criteria in terms of the mutual behavior of spectral densities f : ,  f2. Although many such results have been published 

in the literature [6-8], necessary and sufficient conditions formulated in terms of Ji, f2 are not easy to find [9]. 

AUXILIARY I N F O R M A T I O N  

Let us state some helpful results. We use the following notation: : is the Fourier transform, ". is the inverse Fourier 

transform,- is the complex conjugate. For nonnegative x, y, we write x < < y for x < cy, c = const ;e 0, oo. x . = .  y stands 

for x < < y, y < < x. Always f = f , and 1 u is the Lebesgue measure in R N. For s, t E RN: s - -  ( s  1 . . . . .  SN), t = ( t  1 . . . . .  

R ,~ 

tN), the scalar product stt:  + ... + SNt N is denoted by (s, t). 

T H E O R E M  1 [10]. Let T be a bounded set in R N and assume that the function f: satisfies the inequality 

f~ (2) > > J k o 12(,1,), (1) 

where k o E g ' ( i . e . ,  k o has a compact support) and is not identically zero. If for some p E [1, 2] we have 

~ -I21t ,-o I -  : ~ L c R '  o )' (2) 

then P:~' - P21'. 
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T H E O R E M  2 [10]. Assume that the conditions of Theorem 1 are satisfied. If for some open V C R N 

inequality 

we have the 

f f ~ I2)~ (~,) t f e ~'' - '  '~ lvir)a~ iza:~a, < + ~.  (3) 

where v,(X) = (/1 - f2 )(X) [/(ol-2(X), and I v is the indicator function of the set V, then P1 + - P2 +. 

T H E O R E M  3 [8, 11]. Let 7" be an arbitrary subset of R N, assume that the function fl satisfies the inequality 

/1 (2 )<<  I ~o I -2(2). (4) 

where s o E & ' and moreover the difference fl - f 2  does not change its sign. If there exists a bounded open S C R N such that 

S O + S C T (an algebraic sum), where S o is the support of s 0, then for equivalent P1 ~', P2 ~ we have the inequality 

f f ~ (~t),~ O) If e - ' (; - "" t )d t  l 2 d ; t d p  < o~, 

S 

where u(X) = J~ol2(X)(fl - f2)(X). 
L E M M A  1. Let f be an arbitrary measurable function on R N, T and V measurable bounded subsets of R N, V C T. 

Then convergence of 

f f f (a}/(a) l f e -  ~" -:'" '~dt tZdaa~ (5) 
T 

implies convergence of 

f f f O)f (:t). e f e - "* - "" '~at , z ~ j u .  
I/ 

Proof. In the usual sense we mean absolute convergence, and it is thus sufficient to consider a nonnegative function 

f. Denoting the integral (5) by J(T), we will show that J(T) is a monotone increasing function of T, i.e., J(V) ___ J(T) for V C 

T. Since f is nonnegative, this will complete the proof. 

F o r n  = 1 ,2  . . . . .  let 

We have 

1 ( 2 ) ,  if .t"(2) ~< n,  121 .< n ,  

f n ( 2 )  = n,  if f ( 2 )  > n,  121 ~ n .  

0,  if 121 ( - n .  

- - , - t  ( ) .  - / . ~ .  t )  ( z  - J~. 
y ~73 = tim fff.~;~)/.~.. ), f e  ''~ u. "'a, , :~aa ' . .  = lira ff/,,{;*)/.,t*.l f e  dt f e" S)dsd)tdu. 

n - . , .  ~x T n - . *  x T T 

Denoting rn(t)  = [ e i (X ' t ) fn(k)dX and noting that the function / , , (2~fn(u ) e - '  (~ - " '~  e ' (~-u,s)  is absolutely integrable in 

the space R N X R N X T x T, we change the order of integration under the sign of the limit and obtain 

J (,T) = lim f f JG(t- s )21a tas .  
n - - . = T T  

The double integral under lim in the last equality is monotone in T. Therefore, J(T) is also monotone in T. Q.E.D. 

L E M M A  2. If the integral (5) converges for T = T c = {t: t  = (t 1 . . . . .  tN), - - s  < tj < e, j = 1 . . . . .  N} for some e 

> 0, then it also converges for T = T2c. 

The proof is elementary, using the equality [8] 
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~ sin2e0t I - . u i )  ~ 
- i ( ;~  / , ,  

f e - t)dt = H 2 - u 

r c : = !  : ' :  

Combining Lemmas 1 and 2, we easily obtain the following corollary. 

C O R O L L A R Y  1. If the integral (5) converges for a bounded T C R N 

converges for any open bounded T. 

L E M M A  3. Let A be a compact subset of R N and for some functional k o 

where 

fl (2) > > I k" o 12(2), 2 E e N \ A ,  

I k o 12(A) ~ const > 0,2 E A. 

Then for any open bounded set T C R N and ,I:, = Co'~(T), given that 

Y 
R '~\A 

~:2 ' 
k o 

0 

dJl < + ~ 

with at least one interior point, then it 

6 ' w e  have the inequality 

(6) 

(7) 

(8) 

with some p E [1, 2], we have P1 ~ - P2 'I'. 

Proof.  Let c 1 be a constant such that fl(~,,) >__ c 11kol2(X) for ~, E / ~ \A .  Define the spectral density fl'(X)" 

{/2( a~ + c~ I k- o 12(~),a ~ ^, 
/'~('~) = /~(~), ,l ~ R ~ \ A .  

The Gaussian measure P1 '~ corresponding to./'1' is equivalent to PI '~. Indeed, noting that f l '  satisfies inequality (1), we apply 

Theorem 1 for p = 1. We have 

f I/'~ k -~-/10 
i 

(,,l) /2 + "~ J~'o 12-:, 
--2 
k o 

(2)d;t ~ c I l N ( A )  + cons t  f I,f 2 - f l Ida < + ~ . 
A 

It remains to show that given condition (8) we have P'I 'I' - P2 4'. This follows directly from Theorem 1" 

f ' i  - - ] ' 2  
�9 ""2  

k o 

p 
(a)~ = q t N(A) + f 

N 
R \A 

-2 
k o 

p 
(2)da < + 

C O R O L L A R Y  2. Given conditions (6), (7), the measure P1 ~' is equivalent to the measure Q1 

spectral density g" 

f f(~),  ~ , x  g(2)= fl (2),,1. "E R'N \ A, 

where f is any nonnegative summable function on A. 

,t, corresponding to the 

MAIN R E S U L T S  

T H E O R E M  4. Let T be a bounded open subset of R N, k o 

hold for some r >__ 0 
E & ' ,  ~ o E & '  Assume that the following relationships 
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fl (~ ) '="  I 1:O 12(X) for 121 >I r, (9) 

f l ( J t ) '="  I st0 I -2('al ) for I~,l ~ r, (lO) 

f l ( ' l )  - f 2  (~) ~ 0 or fl ()') - ] ' 2  (2) ~>0 for I),I >I r, (11) 

I k0(2) I >--,oos! > 0  for 121 ~< r. (12) 

Then a necessary condition for equivalence of P1 ~', P2* is that for every bounded open subset V C R N we have 

f f ; f ,  
lal ~ , ' i ~  >-- 

6 - 6  (,I) ~ C.) - i ( .  ~, f e - t )d t  

v 

2 

d2d~, < 4- ~. (~3) 

A sufficient condition for equivalence of Pi 4', P2 'I' is that inequality (13) is satisfied for some open V C R N. In 

particular, it is necessary and sufficient that the integral converges. 

f ffl~f2 
l:il >_~ ! ~  ._;  I 

fl -- ]'2 N Sill 2(ali_ U 2 
( a ) - ~  (-)j_,l-] a - . ; )2  ,va~,. (14) 

Sufficiency. Note that we need to consider only the first inequality in (11). Indeed, if the second inequality holds, then 

we can define the spectral density f2' = 2fI - f2 and the corresponding measure P'2 ~'. Noting that f l  - f ' 2  = - ( [ I  - f 2 ) ,  

we see that if P1 'I' -- /:'2 'r then P1 ~' - P2 ~ (the last follows directly also from general conditions of equivalence of P14, P2~'; 

see, e.g., [11, Theorem 1]). In this case,f2' > f l  at least for k E R :v such thatfl(X) > f2(X). Moreover, the integrand in (13) 

is invariant to substitution of3~' for f2. We thus assume that f2(k) > f l (k) ,  IX] > r. In this case it follows from (9) that for 

iX] < r the values of both f2 and3"1 can be replaced with the values of any locally summable nonnegative functions (Corollary 

2). We therefore assume that for these X we havefl(k)  = f2(~k) = c 1 /~ol2(X), where c I is such thatf l  >_ C 1 //~oi2(X) for 

IX I _> r (condition (9)). We may thus assume that fl(X) satisfies (1) for all X E R N and apply Theorem 2. The integral in (3) 

is equal to the integral in (13); (14) is obtained when V is identified with the rectangle { t : t  = ( t  1 . . . . .  t s ) ,  - 1  <__ tj <_ 1, j = 

1 . . . . .  N } .  

Necessity. First assume that (11) holds for all X E R N, and for definiteness again consider the first inequality. Define 

the spectral density 

/'~ (~) = d~i ~ i -z( / l ) ,  I,tl ,; ~, 

/t, ,~l >,-, 

where d 1 is a constant such thatfl(X) > d 11go l -2 (x )  for IXl _> r. By Lemma 3, the measure Pt '4, corresponding tol l ' (X) 

is equivalent to P1 ~, and everywhere in R N we have fl '(X) _<_ f2(k), and also f l '  -= Igol-2(X). Therefore Theorem 3 and 

Lemma 3 are applicable to the pair ]'1', f2- Finally, if (11) is satisfied only for I Xl _> r, then define the spectral density 

I lz(~), lal ,; r, 
1 " ~  (,l) = I~ (~) e,~l > ,-, 

and the corresponding measure P" I ~', which by Corollary 2 is equivalent to the measure P1 'I', and 3"I" - < f 2 everywhere in R N. 

We have thus reduced this case to the previously considered particular case. Q.E.D. 

We give one corollary of Theorem 4, which holds under an additional assumption about the behavior of the spectral 

densities fl and f2- To this end we define the function W: 

w (2) = 

0, I~I ~ r ,  

I~ -12 (~1, ~ >r. 

6 
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The function W is defined for almost all X E R ~', because from (9) it follows that the set of zeros of the function fl 

for I)"1 > r is of Lebesgue measure ze ro  

C O R O L L A R Y  3. Assume that conditions (9)-(12) are satisfied and, moreover, there exists a set H C R N of positive 

Lebesgue measure such that for any h E H, 

W(2 + h )  
0 < tim < + r (t,t.t -- ~o). (15) 

- -  w (~) 

Then for equivalence of Pl ~', P2* it is necessary and sufficient that 

f w 2 ( 2 )  d 2 <  . |  

I z t > R  

for some R >_ 0. 

Sufficiency. It is easy to see that if (16) holds, then integral (14) converges. 

Necessity. Convergence of (14) implies convergence of 

^' sin 2(~. - pi) 
f f w (~ ) w O~ )1-1 , J a,a.d~,. 

j=:l (lj -- fl? 2 

(16) 

Rewriting the last integral as a repeated integral and making the change of variables X - ~ = h, we obtain convergence of 

N sin 2 h. 

f f w O,)w O, + h)1-I z j d~dh. 
]=!  h .  

I 

Changing the order of integration, we obtain the convergent integral 

fi f h~ " ( f w o , ) w o ,  + 
j -  ! 

In particular, ~ W(~)W(~ + h)d~ should convergefor  almost every h E R N. 
Condition (15) at the same time implies that for some such h there exist constants R _> 0 and c > 0 for which 

Thus, applying also (11), we obtain 

W (,u + h) ;,c. 
r.ra/ inf w ~ )  

I~,1 >R 

+oo > f w o, ) w o, + h ) d~, = f w ~ 
I~ >R 1~ >R 

Cu) W(,u +h) 
w o,) 

~1~ >R 

As an application, consider the case with asymptotic power isotropic spectral densities. We use the notation 

in the sense that for every m, 1 < m < n, 

g ( 2 ) = ~  gt0.), 2-- ,a ,  n ;~ 1, 
k = l  

nl 

g (;t) = ~ g~,(2) + o (g,,,(,l)),,l --- a. 
k = l  

Example .  Let T be a bounded open subset of R N and for [)"l --" ~ ,  

k=l  
(17) 
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/2(:') = ~ bk~'~ ~:*, (18) 
k = l  

wherea  k ,b  k, c~ k,/5 k are real numbers, a k ~ 0, b k ;~ 0 (k  = 1 . . . . .  n), c~ 1 > ~2 > ..- > C~n,r > /32 > -- > r 

Application of Corollary 3 leads to the following criterion: given conditions (17), (18), P1 ~, P2 ~' are equivalent only 

if for all k = {1 . . . . .  n} such that 

N N - a s < ~  or xi --~3k ~ '  (19) 

we have 

al: = bk' a t  = fl/t" (20) 

If the greatest k for which (19) holds is less than n, then (20) is also sufficient for equivalence of P1 <I', P2 <I'. 

Remark.  This example and equivalence criterion constitute a generalization and a certain refinement of the well-known 

examples and criteria from [13] (N = 1, n = 1) and [14] (N = 1, n = 1, 2). 
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