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Summary.  For a simple class of Lagrangians and variational integrators, derived by 
time discretization of the action functional, we establish (i) the F-convergence of the 
discrete action sum to the action functional; (ii) the relation between F-convergence and 
weak* convergence of the discrete trajectories in WI '~(R;  Rn); and (iii) the relation 
between F-convergence and the convergence of the Fourier transform of the discrete 
trajectories as measured in the fiat norm. 
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1. Introduction 

This work is concerned with the application of F-convergence methods to the elucida- 
tion of the convergence properties of discrete dynamics and variational integrators. The 
theory of discrete dynamics has a relatively short but vigorous history. A recent review of 
this history may be found in [10], which can also be consulted for an up-to-date review 
of the subject. As understood here, discrete dynamics is a theory of Lagrangian mechan- 
ics in which time is regarded as a discrete variable ab initio, and in which the discrete 
trajectories follow from a discrete version of Hamilton's principle, obtained by replacing 
the action integral by an action sum. The mechanical properties of the discrete system 
are described by a discrete Lagrangian, defined as a function of pairs of points in config- 
uration space. Using generating functions, Veselov [13] (see also [11]) showed that the 
discrete Euler-Lagrange equations generate symplectic maps. Wendlandt and Marsden 
[14] pointed out that Veselov's theory of discrete dynamics can be used to formulate 
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numerical methods for time integration of Lagrangian systems, known as v a r i a t i o n a l  

i n t eg r a t o r s .  Wendlandt and Marsden [14] also showed that variational integrators are 
automatically symplectic and conserve discrete momentum maps, such as linear and 
angular momentum, exactly along discrete trajectories. By adopting a spacetime view 
of Lagrangian mechanics, as advocated by Marsden et al. [9], it is possible to devise 
variational integrators which preserve the energy, momentum, and symplectic structure, 
as shown by Kane et al. [7]. Extensions of the theory to partial differential equations 
based on multisymplectic geometry may be found in [9]. 

The convergence properties of variational integrators have been ascertained using 
conventional techniques, such as Gronwall 's  inequality [10], or by backward error anal- 
ysis [5], [12], [10]. In addition, time-stepping algorithms for linear structural dynamics 
have also been traditionally analyzed by p h a s e - e r r o r  a n a l y s i s  [1], [2], [6]. 

The elementary example of  the harmonic oscillator may conveniently be used to mo- 
tivate the approach developed in this paper. The action integral of  an unforced harmonic 
oscillator of mass m > 0 and stiffness C > 0 over the time interval (a, b) is 

fa 
b 

l ( u ,  (a,  b ) )  = ( ( m / 2 ) u Z ( t )  - ( C / 2 ) u 2 ( t ) ) d t ,  (1.1) 

where t denotes time, u the generalized coordinate of  the oscillator, and here and subse- 
quently, a superposed dot denotes time differentiation. The Euler-Lagrange equation of 
this system is 

mi~ + C u  = 0, (1.2) 

and the general solution of this equation is 

u ( t )  = ~ A o e  t~ (1.3) 

where COo = ~ is the natural frequency of the oscillator. The complex amplitude A0 
may be parameterized in terms of initial data, e.g., 

u(0) p(0) 
~A0 = a(0),  ~ A 0 - -  - -  -- , (1.4) 

wo m o90 

where p = mu is the linear momentum of the oscillator. The general solution (1.3) can 
also be characterized by its Fourier transform 

f ~(co) = u ( t ) e  -i~~ d t  = Ao6(co - 090). (1.5) 
O0 

It is important to note that fi(co) consists of a Dirac-delta function concentrated at w0. 
Consider now a partition a = to < tl = to + h < �9 .. < & < tk+l = tk + h < �9 �9 �9 < 

tN = b. In the theory of discrete dynamics (e.g., [10]), the discrete trajectories follow as 
the stationary points of the discrete action 

N-I  

lh(U, (a ,  b)) = ~ Ld(Uk, Uk+l),  
k=0 

(1.6) 
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where uk = u(tk) and the discrete Lagrangian Ld(u~, uk+l) approximates the action 
I (u, (tk, tk+l)).  A simple discrete Lagrangian for the harmonic oscillator is 

m ( U k + l  - -  u k )  2 C 2 
Ld(Uk, Uk+l) = 2 h - h ~ u  k. (1.7) 

The corresponding linear momentum is 

O L d ,  Uk -- Uk-I (1.8) 
Pk = ~uk  tUk, Uk- l )  = m h ' 

and the discrete Euler-Lagrange equation is 

uk+l - 2uk + Uk-I  
m + hCuk  = O, (1.9) 

h 

which is also the result of  applying the central difference scheme to (1.2). A trite calcu- 
lation shows that the general solution of this equation is 

Uk = ~ Ah  el~~ (1.10) 

for some discrete amplitude Ah and frequency 

COh = -- arccos 1 . (1.11) 
h 2 

As before, the amplitude can be parameterized in terms of  initial data which, in view of 
(1.8), leads to the relations 

hp(O)/m - u(0)(1 - cos COh h) 
~ A  h ~ u(O),  ~Ah  = (1.12) 

sin o) h h 

The general discrete solution (1.10) can also be characterized by its discrete Fourier 
transform 

~-iwkh 
l-lh(co ) = h 2_ ,  Ukc = Ah~(O9 -- ('Oh). (1.13) 

keZ 

We note that/~h (CO) again consists of  a Dirac-delta function concentrated at COh. 
It is evident from (1.10), (1.11), and (1.12) that, for given initial data, A h ~ A and 

COb ~ co. Thus time-discretization schemes that, as exemplified by the central differences 
scheme, result in oscillatory solutions introduce two types of  errors: ampli tude errors and 
frequency or phase  errors. We note in addition that, for the central differences scheme, 
we have 

l i m  (.o h = COo, (1.14a) 
h ~ 0  

lim A h ~ A0, (1.14b) 
h-~0 

i.e., the discrete frequency and amplitude converge to the corresponding continuous- 
time limits as the time step h becomes vanishingly small. This is a natural notion of  
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convergence that forms the basis of the traditional phase-error analysis of time-stepping 
algorithms for linear structural dynamics [1], [2], [6]. In this type of analysis, the focus is 
in establishing the convergence of the amplitude and frequency of oscillatory numerical 
solutions to the amplitude and frequency of the exact solution, a form of convergence 
which we shall refer to as spectral convergence. Phase-error analysis is a particularly 
powerful tool inasmuch as it establishes the convergence of solutions in a global, instead 
of merely local, sense. In particular, it allows to compare infinite wave trains. This is in 
analogy to backward-error analysis [5], [12], [10], which is also global in nature, and in 
contrast to other conventional methods of analysis, such as Gronwall's inequality [10], 
that merely provide local exponential bounds on discretization errors. 

The engineering literature on the subject of phase-error analysis relies on a case-by- 
case analysis of linear time-stepping algorithms, and general conditions ensuring spectral 
convergence do not appear to have been known, nor do extensions of phase-error analysis 
to nonlinear systems appear to be in existence. A hint as to how these extensions may 
be attempted is again provided by the simple harmonic oscillator example discussed 
above. We recall that the flat norm (cf. Section 3 for a brief review) supplies a natural 
distance between Dirac deltas of differing amplitudes and supports. Thus the convergence 
of A h t ( W  -- COh) to Ao~(w - O9o) in the flat norm is equivalent to the convergence of 
Ah ~ Ao and Wh --+ COO. It is therefore natural to investigate conditions ensuring the 
convergence of the Fourier transform of the discrete trajectories as measures in the flat 
n o r m .  

Another natural--and seemingly unrelated--notion of convergence for discrete dy- 
namics is F-convergence. Indeed, the variational character of variational integrators 
opens the way for the application of F-convergence methods to the problem of under- 
standing the convergence properties of discrete dynamics, a line of inquiry that appears 
not to have been pursued to date. The F-convergence of functionals, introduced by De- 
Giorgi and Franzoni [4] is a variational notion of convergence. It is a very versatile tool, 
and it implies convergence of minimizers under rather general conditions. In the present 
context, however, there seem to be two obstacles to bringing F-convergence to bear. First, 
stationary points of the action functional are typically not minimizers and F-convergence 
in general provides no information about nonminimizing stationary points. Secondly, we 
are interested in solutions on the entire real line such as infinite wave trains, and global 
variational methods such as F-convergence suffer from the fact that the functional is 
+ ~  or - c ~  on most trajectories. In this paper we point out how these difficulties can 
be overcome. We focus on a simple class of Lagrangians and establish 

(i) The F-convergence of the discrete action sum to the action functional. 
(ii) The relation between F-convergence of the discrete action sum and weak* conver- 

gence of the discrete trajectories in Wl '~ (~ ;  Rn). 
(iii) The relation between F-convergence of the discrete action sum and the convergence 

of the Fourier transform of the discrete trajectories as measured in the flat norm. 

It bears emphasis that these notions of convergence are not local, as are those derived 
from consistency and Gronwall's inequality, but apply to infinite wave trains. In particu- 
lar, (iii) forges a connection between phase-error analysis and spectral convergence, and 
extends the former to nonlinear systems. 
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Although we focus in this paper on a simple class of Lagrangians to keep the resulting 
calculations simple (and sometimes elementary), we would like to emphasize that the F- 
convergence framework is very flexible and allows for many extensions. In fact, based on 
our work, Maggi and Morini [8] have recently studied much more general Lagrangians. 

2. Formulation of the Problem 

To study problems on the entire real line, we work with functions that are locally in L 2, 
i.e., they are square-integrable on each bounded open interval. We set X = LZoc(R, ~n), 
and let S be the collection of all open bounded intervals of ~. We recall that the 
space L~oc(R, R n) can naturally be equipped with a countable system of seminorms 
I lUllL~oc~ak,~, ), where Ak is an increasing sequence of open bounded intervals such that 

t3k Ak = IK. These seminorms define a distance with respect to that L2oc (1~, ]K n) becomes 
a complete metric space. In the same way we define the Sobolev space Hl~, which con- 
sists of functions that are in L~o ~ together with their first derivatives. By C ~  we denote 
the space of smooth functions with compact support. 

Let m > 0 and V �9 C(R"). The functional I : X x S --+/K defined by 

l ( u ' A ) =  { fa(21{t(t)12-V(u(t)))dt'+~, otherwise,UEHl(A'~)' (2.1) 

is the action of u over the open bounded interval A. If V �9 C 1, the first variation of I is 
the functional ~ I:  Hloc(JK,l R ' )  • C ~  (R, ~ )  x S --~ R defined by 

M (u, ~o, A) = fa(mf~(t)(O(t) -- D V  (u(t)ko(t))  dt. (2.2) 

The stationary points of I are functions u such that 

I (u ,  A) < ~ ,  6I(u,  qg, A) = O, V A �9 s ~o �9 C ~ ( A ,  Rn). (2.3) 

One important ingredient in our variational approach is that stationary points are minimiz- 
ers when restricted to sufficiently short intervals. In fact, for sufficiently short intervals 
and fixed Dirichlet conditions the functional becomes convex (even though - V may be 
nonconvex), and this simplifies the subsequent analysis. 

Lemma 2.1. Let u be a stationary point of  the action functional (2.1). Assume in ad- 
dition that V is C 2 and that there is a constant C > 0 such that IDzVI < C. Let a < b 
be such that b - a < Jr /o9 o with O3o = C~v/-C-~. Then u minimizes I( . ,  (a, b ) ) among 
all functions v �9 X with v(a) = u(a), v(b) = u(b), where v(a) is understood as the 
left-sided limit and v(b) is understood as the right-sided limit. 

Remark 2.2. A generic function v E X is only defined up to sets of measure zero. Hence 
the value v(a) may not be defined. For the purpose of minimizers, however, it suffices 
to consider functions with I (v ,  A) < cx~. Then vf(a,b ) �9 Hl ( (a ,  b), ~ ' )  and hence the 
one-sided limits v(a) and v(b) exist in view of the Sobolev embedding theorem. 
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Proof Let q) c Cc~((a, b), Rn). Then 

I(u + q), (a, b)) - l(u, (a, b)) 

= 6l(u, q), (a, b)) 

fab m .2 + ( \ - ~  (t) - V(u(t) + ~o(t)) + V(u(t)) + OV(u(t)) .  ~o(t) l ] dt. (2.4) 

But u is a stationary point of  I and, hence, M (u, ~o, (a, b)) = 0. Therefore 

l (u + ~o, (a, b)) - l (u, (a, b)) 

fab (m .2 = ~q) (t) - V(u(t) + q)(t)) + V(u(t)) + DV(u(t)) .  ~o(t)! ~ dt. (2.5) 

But by Taylor's theorem we have 

]V(u + ~o) - V(u) - OV(u)~ol(x) = ~lO2V(u(x) + X(x)q)(x)) I k0(x)[ 2, (2.6) 

for some ~.(x) 6 [0, 1]. In addition, by the assumed upper bound on IDzV[, we have 

C 2 
IV(u +~o) -  V ( u ) -  OV(u)q)l < ~-I~ol , (2.7) Z 

and 

l a b (  m 2 C  ) l(u + ~0, (a, b)) - l(u, (a, b)) > - f q )  - I~01 = dt 

> 1~ol2 dt,  (2.8) 
- -  ( b  - a )  2 

where we have made use of Poincarf 's  inequality. Clearly, the right-hand side of  this 
inequality is strictly positive provided that 

m Jr 2 C 
> 0, (2.9) 

2 (b - a)  2 2 

which in turn holds if b - a < zr/~/-C-'~. By a density estimate (2.8) holds also for 
functions in Hd((a, b), Rn). Hence we may take ~0 = v - u, and the proof is finished. [] 

3. The Fiat Norm on Measures 

Definition 3.1. Let /z  be a Radon measure on IR n. Then the fiat norm o f #  is 

II~ll = sup {fR, f d t z [ f : lR - -~NLipsch i t z ,  Lip f <  1, sup l f ]  < 1 ] .  (3.1) 
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As a direct consequence of  the definition, one obtains 

I1~ II = 1, 116~ - ~b II : m i n ( l a  - bl ,  2 ) .  (3.2) 

We will apply the flat norms to measures in Fourier space, and the above examples 
indicate how convergence in the fiat norm is related to concepts of  spectral convergence. 

We recall that a sequence Ix(k) of  Radon measures by definition converges weak* to 
a Radon measure IX if f ~0dix ~) --+ f c0dix for all continuous ~p with compact support. 
In that case, in particular we have for each compact set IIX(k) I(K) < C(K). 

One important property of the flat norm is that it metrizes weak* convergence of 
measures, in the following sense. Here and in the following, A/I(R n) denotes the space 
of  Radon measures on Rn. 

Proposit ion 3.2. Let Ixk be Radon measures supported in a compact set K C IR n. 

(i) If ixk -~ IX in .Ad(IRn), then Ilixk -- IXll ~ 0. 

(ii) If Ilixk -- IXll --+ 0 and the mass of the Ixk is uniformly bounded, then Ixk ~ IX in 
A4 (~n ). 

Proof We recall the proof for the convenience of  the reader. The first assertion follows 
from the compactness of  Lipschitz functions with respect to uniform convergence. Indeed 
we may assume that # = 0 and we have to show that [hixkl[ ~ 0. Suppose otherwise. 
Then there exists a 6 > 0, a subsequence of  Ixk (not relabelled) and a sequence of 
functions fk such that I f~l < 1, Lipfk < 1, and f fkdixk >_ 6. For a further subsequence 
we have fk --~ f uniformly in K. By weak* convergence the mass IIIXkI[~ of the 
measures Ixk is uniformly bounded. Thus 

lim sup/k__,~ a fkdixk < limsup ( f k _ ~  f d # k +  sup I f ~ - - / ~  f l  sup [lixk I 1 ~ ) ~  = 0 .  (3.3) 

This contradiction proves assertion (i). 
As regards (ii), we first observe that IX has bounded mass. Indeed for all Lipschitz 

functions f 

[ fdix = lim I" fdixk < sup l f l  suplI#klI~.  (3.4) 
J k--+~ J K k 

Thus we may suppose again that IX = 0. Now let f c C(Rn), �9 > 0. Then there exists 
a Lipschitz function g such that supx I f  - g[ < �9 Thus 

l imsup f fdixk <limsup [ g d # k  + � 9  <_ C�9 (3.5) 
k-~ c<~ , /  k--+~ J k 

This proves assertion (ii) since �9 > 0 is arbitrary. [] 

4. Variational Integrators 

Let Th be a triangulation o f ~  of size h. Specifically, Th is a collection of  ordered disjoint 
open intervals (ti, ti+l) whose closures cover the entire real line, and whose lengths are 
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less than or equal to h. Let Xh be the subspace of X consisting of continuous functions 
such that ulE 6 PI(E),  VE ~ Th. Here Pk(E) denotes the set of polynomials over E of 
degree less than or equal to k. Define the discrete action functionals lh : X x g --+ IR as 

[ l ( u ,  A), u E Xh, (4.1) 
lh(U, A) = 1 + ~ ,  otherwise. 

The stationary points of  lh, or discrete solutions, are functions such that 

I(Uh,  A) < co, •l(Uh, q)h, A) = O, 

VAEg ,~Oh  6 X h ,  withtph-----0 o n R k A .  (4.2) 

Remark 4.1. In (4.2) it suffices to consider intervals (ti, tj) that are compatible with 
the triangulation Th. Indeed if (a, b) is a general interval and (ti, t j)  is the maximal 
compatible subinterval, then the conditions ~Ph C Xh and ~p = 0 in R \ (a, b) imply that 
~0 = 0 in (a, ti) and (tj, b). 

Let E = (ti, ti+l) E "Th and u i = Uh(ti). Then the discrete Lagrangian is 

Ld(Ui,  U i + l )  = lh(U, E ) .  

For piecewise linear approximations this gives 

(4.3) 

m ( U i + l - - U i ) 2 ~ t i + ~ ( t i + l - - t  t - - t i )  
- -  V u i  + - - u i + l  d t .  (4.4) 

Ld(Ui,  U i + I )  = 2 ti+l -- ti \ t i + l  ti ti+l -- ti 

In terms of the discrete Lagrangian, the discrete Euler-Lagrange equations take the form 

(4.5) D2Ld(Ui_ l ,  ui)  -'}- D i L d ( U i ,  U i + l )  = 0 ,  

or for piecewise linear approximations, 

- -  d t  = O. (4.6) 

] U i + l  - -  Ui Ui - -  u i - I  [ 
m 

I I ti+l -- ti ti -- t i - i  

ftiti+t f t i  -t- D V ( u h ( t ) )  ti+l - t t - t i - i  
ti+l - ~ d t  q- D V ( u h ( t ) )  

t i -  1 ti -- ti - 1 

L e m m a  4.2. Let u c Xh be a stationary point of  the discrete action functional lb. 
Assume in addition that V is C 2 and that there is a constant C > 0 such that I D2 V I _< C. 
Let a < b be such that b - a < 7r/o)o with O9o = x/C-/m. Then u minimizes lh( ' ,  (a, b))  

among all functions v ~ Xh with v = u on IR \ (a, b). 

Proof The proof of  Lemma 2.1 applies since Xh is a subspace of X. Note that functions 
in Xh are continuous; hence we do not need to distinguish between left and fight limits 
at a and b. [] 

As a first step to understand the relation between lh and I ,  we show that the spaces 
Xh approach X as h ~ 0. 
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L e m m a  4.3. (a) The sequence o f  spaces Xh is dense in X,  i.e., f o r  each u e X there 

exist Vh e Xh with Vh --+ u in X.  
(b) Suppose that V ~ C ( R  n) and V (s) < C(1 + Is12). I f  A is an open bounded interval 

and i f  l (u, A) < ~x), then the sequence Vh in (a) can be chosen such that in addition 

1)hi A --+ UlA in H I ( A ,  Rn). 

Proo f  Let r/ e C ~ ( - 1 ,  1) be a mollifier with q > 0, f o = 1, and define Oh(X) = 

h -10  (x/h) .  Let Nh w denote the nodal interpolation of a function w with respect to the 
triangulation Th. For u c X define ThU = Nh(rlh * u) and set Vh = Thu. We need to 
show that for every R > 0 we have 

f_ g IVh -- ~ (4.7) ulZ dt  O. 
R 

By standard interpolation estimates 

f R  f R+h 
INhW -- wlZ d t  < Ch 2 Itbl2dt. (4.8) 

R d -R-h 

Combining this with standard estimates for convolutions, we get 

f R  f R+2h 
IThu -- ul2 dt  < C lul2 dt ,  

R d -R-2h 
f R  f R+2h 

IThU - - u l Z d t  < Ch 2 I/~12dt. (4.9) 
R d -R-2h 

> 0 and write u = u ~1) + u ~2) with u ~1) ~ H I ( ( - 2 R , 2 R ) , R  n) and Now let 

Jfz~ ru~2)12 dt <- ~" Then 

f 
R 

l imsup IThu -- u l2d t  < C~, 
h---~O d -R 

(4.10) 

and this proves the first assertion. 
The proof of  the second assertion is almost the same. The main additional difficulty 

is that u may jump at the ends of  the interval A = (a, b) (note that u is continuous in 
(a, b) by the Sobolev embedding theorem and the left limit u(a)  and the right limit u(b) 

are well-defined and finite). To handle this difficulty we first define approximations of u 
that are continuous in the slightly large interval Ah = (a -- 2h, b + 2h). Set 

[u( t ) ,  t < a -- 2h, 
[ u(a) ,  a - 2 h < t < a ,  

Uh(t) = ~u ( t ) ,  a < t < b, (4.11) 
| u(b), b < t < b + 2 h ,  

[ u ( t ) ,  t > b + 2 h .  

Let Vh = ThUh Then Uh -- u --~ 0 in L2(~,  ]~n) and Vn - u = Th(Uh -- U) + (ThU -- U). 

Hence by the boundedness of  Th on L 2 (see (4.9)) and the proof of  assertion (a) we have 
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Vh ~ U in X. To establish the convergence in HI(A ,  Rn) we first recall the standard 
interpolation estimates 

d - J a - h  ~ w  , l a  -dt ( N h w -  w) 2 <  fb+h d 2 

I b d  11)) 2 fab_~h d2 2 (NhtO -- < Ch 2 ~-~W . (4.12) 

Since I (u, A) < cx~, the map u is in Hi(A ,  R~). Now decompose u la = U (1) + U (2) such 
that u (1) ~ H2(A, R n) with u(l)(a) = tJ(1)(b) = 0 and Ilu~2)[12,(a,~, ) < ~. Combining 
the above interpolation estimates with standard estimates for convolutions such as 

[b+h d(tTh • U -- U) 2 < fb+2h d u 2 

da-h -- da-2h ~ ' 

f 
h+h d 2 

da-h -- da-2h dt2 ' (4.13) 

we easily conclude that 

l 2 l b  d (2) 2 b d - u ~  < 
dt (v~l) 1)) __ Ch 2, ~ t v  h - u~ 2)) < Ce. (4.14) 

Taking first the limit h -+ 0 and then e ~ 0, we obtain assertion (b) since uh : u on 
(a, b). [] 

L e m m a 4 . 4 .  Let V E C(R n) with V(s)  < C(1 + Is]2). Then I(. ,  ( a ,b ) )  is lower 
semicontinuous in X. 

Proof In view of the continuity and growth conditions on V, the map u --+ fb a V(u)dt  

is continuous on LZ((a, b), ]~n) and hence on X. Moreover the map u ~ f~ ~u2dt is 
lower semicontinuous on L2((a, b), R n) since it is lower semicontinuous on the closed 
subspace H l((a, b), R n) (as a seminorm) and takes the value cx~ outside that subspace. 

[] 

One key ingredient of our argument is that the functionals lh are F-convergent to I .  
This is very closely related to convergence of the corresponding minimizers, and we will 
see that it can also be used to establish convergence of stationary points by restricting 
attention to sufficiently short intervals. For general information about F-convergence we 
refer to [3]. Here we only need the definition in the simplest case. 

Definition 4.5. Let X be a metric space. We say that a sequence of functionals lh: X 
[--oo, cx~] is F-convergent to I if 

(i) (lower bound) Whenever Uh ~ u in X, then 

liminflh(Uh) > l (u) ;  (4.15) 
h~0 
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(ii) (upper bound/recovery sequence) for each u 6 X, there exists a sequence vh ~ u 
such that 

lim lh(Vh) ---- I (U). (4.16) 
h--->O 

We write F - limb--,0 lh = I tO denote F-convergence. 

L e m m a  4.6. Let V ~ C(1R n) with V (s) < C(1 + Is12). Then F - limb--,0 Ih(', (a, b)) = 
I( . ,  (a, b)) in X. 

Proof  Let uh ~ X be a sequence converging to u c X. From the fact that lh (., (a, b)) > 
I( . ,  (a, b)) and the lower semicontinuity of I( . ,  (a, b)), it follows that liminfh 
lh(uh, (a, b)) > liminfh I (Uh, (a, b)) = l (u, (a, b)). Now let u 6 X. If  l (u, A) = co, 
there is nothing to show. If  I (u, A) < oo, then ulZ E H 1 (A, ]]~n). Hence by Lemma 4.3 
there exist Uh ~ Xh such that Uhl z --* UlA strongly in H I. Thus Ih(uh, A) --+ I (u, A). [] 

We now show that F-convergence implies convergence of stationary points. We first 
state an L ~ version of  the result and then make the connection with convergence of  the 
Fourier transform in the flat norm. 

Theorem 4.7. Let I be an action functional. Assume that V is C 2 and that there is a 
constant C > 0 such that ID2VI <_ C. Let Uh be a sequence of  stationary points o f  the 
corresponding discrete action integral lh and suppose that u is bounded in L ~ ( R ;  IRn). 
Then, for  a subsequence, 

(i) Uh --~ U in wl'ec(IR, IRn), and in particular Uh ~ u uniformly on compact subsets. 
(ii) u is a stationary point o f  I. 

In general one cannot expect convergence of the full sequence. If, however, one 
knows that for some time T the pair (Uh (T),  i~h (T))  converges, then the full sequence Uh 
converges, by uniqueness for the limit problem (to see this, one makes use of  the estimate 
(4.20)). A local version of the assertions of  the theorem holds if we only assume a bound 
in Lio~c, which can be obtained in the usual way from bounds on the initial data and a 
discrete version of  Gronwall's inequality. Global L ~ bounds for the continuous solution 
follow from energy conservation if V converges to ~ as lul ~ oc. The same reasoning 
applies to the discrete solutions if a discrete energy is conserved. This can be achieved 
by also considering the discrete time points ti as dependent variables (see [7], [10]), but 
the analysis of  the resulting scheme is beyond the scope of this paper. For analytic V 
and under suitable assumptions on the limiting behaviour of  the continuous solution at 
-t-co and the discrete approximations, the convergence of  discrete solutions was proved 
by Hairer and Lubich [5] through backward error analysis. 

Corol lary  4.8. Let I be an action functional. Assume that V is C 2 and that there is 

a constant C > 0 such that ID2VI <_ C. Let Uh be a sequence ofstat ionarypoints  o f  
the corresponding discrete action integral lh, and let (th be the Fourier transform o f  uh. 
Suppose that 
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(a) fih is a Radon measure o f  uniformly bounded mass. 
(b) No mass leaks to infinity in Fourier space, i.e., 

lira s u p f  Ifih(k)] dk  = 0. (4.17) 
R--*oo h dlkl>_R 

Then, f o r  a subsequence, 

(i) Uh ~ u in W 1'~176 ll~n), and in part icular Uh ~ u uniformly on compact  subsets. 

(ii) u is a stationary point  o f  I. 

(iii) Uh ~ u as measures in the f lat  norm. 

To illustrate the assumptions on the Fourier transform we note that for stationary points 
of  I ,  i.e., solutions of / /  = - V  V (u), a sufficient condition for the Fourier transform to 
be a measure is that u approaches a constant or a periodic solution as t ~ +oo.  

Proo f  o f  Theorem 4. 7. By assumption we have for a subsequence (not relabelled) Uh 

u in L ~176 Since Uh satisfies the discrete Euler-Lagrange equations (4.6), we have 

Ui+ 1 --  U i Ui --  Ui_ I 
m - -  

] t i+  1 ti ti t i -  1 

f t i+,  ti+l -- t f t f  t -- ti-I d t  
< DV(uh( t ) ) t i+ l  d t  + DV(Uh( t ) )  

d ti - ti t~ ~ ti - t i -  1 

<_ D V ( u h ( t ) )  ti+l - -  t + D V ( u h ( t ) )  t - -  ti-1 
ti + 1 -- ti ti -- t i -  l 

it/t'+' ti+l -- t ft, t~ t - t i - l  d t  <_ d t  + O V ( u h ( t ) )  
O V ( u h ( t ) ) t i + l  - ti ti i ti - t i -1 

fli  ti+l f ti ft~ li+l < D V ( u h ( t ) ) l  d t  + IDV(uh( t ) ) l  = IDV(uh( t ) ) l  dt .  
-I ti I 

(4.18) 

But, D V is continuous and IlUh]IL~ ~ C, and hence IIDV (uh)IILO~ ~ C and 

Ui--l ll ~ Clti+l -- t i - l l .  (4.19) 
Ui+l l Ui Ui 

ti+ l ti ti --  t i -  l l 

Iterating this bound, we obtain 

ItJh(a) -- t~h(b)l < C(la  - bl + 2h). (4.20) 

This inequality, together with the boundedness of  Uh in L ~ implies that [lU'h IIZ~ 5 C, 
and by the Arzela-Ascoli theorem we conclude that Uh --+ u uniformly on compact 

subsets and Uh *-~ u in W 1'~ We claim that in addition II//IIL~ _< C. Indeed consider 
again a standard mollifier 08(x) = 3-J rl(X/3) as above and let Uh,8 = 08 * Uh. It follows 
from (4.20) that 

It~h,8(a) - t J h , 8 ( b ) ]  < C(la  - bl + 2h + 23). (4.21) 
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We now take first the limit h ~ 0 and then the limit 3 ~ 0. Using the Lebesgue point 
theorem for/~ we conclude that [fi(a) - t~(b)l < Cla - bt, which proves the claim. 

To prove that u is a stationary point of  I it suffices to show that u minimizes I( . ,  A) 
among functions with the same boundary values, for all sufficiently short intervals A. Fix 
A = (a, b) with b - a < zr/o~0, where o90 = ~/C/m. We first note that, by Lemma 4.6, 
F - limh~0 Ih(', (a, b)) = I( . ,  (a, b)) in X, and hence 

l iminflh(Uh, (a, b)) > I(u ,  (a, b)). (4.22) 
h~0 

Now consider a competitor v c X with v e Hl ( (a ,  b), R n) (here and in the following 
we write v instead of  I)l(a,b ) to simplify the notation) with v(a) = u(a) and v(b) = u(b), 
where as usual v(a) is the left-sided limit of  v and v(b) is the right-sided limit. We claim 
that 

I (v ,  (a, b)) > I (u ,  (a, b)). (4.23) 

By Lemma 4.6 there exists a recovery sequence Vh ~ Xh with Vh ~ V in H l ((a, b), II~ n) 
and 

lim lh(Vh, (a, b)) = I (v ,  (a, b)). (4.24) 
h~0 

If  Vh and Uh agree and if the interval (a, b) is compatible with the triangulation Th (i.e., 
if a and b are endpoints of  intervals in Th), we can use the minimizing property of  
uh (see Lemma 4.2) to conclude. In general we can always find intervals (ah, bh) C 

(a, b) that are compatible with Th such that ah ~ a and b h ~ b. Since in view of  
the Sobolev embedding theorem vh ~ v and Uh ~ u uniformly in (a, b), we have 
1)h(ah) -- Uh(ah) --+ p(a) -- u(a)  = 0 and ~)h(bh) -- Uh(bh) ~ O. Hence there exist affine 
funct ions lh, converging to zero in C l such that Vh + lh and Uh agree at ah and bh. Define 
Oh e X by Vh = Vh + lh in (ah, bh), ~)h = Uh else. Now we can use the minimizing 
property of  Uh to obtain 

lh(Uh, (ah, bh)) <_ lh(~)h, (ah, bh)) -~- Ih(Vh -1- lh, (ah, bh)). (4.25) 

Moreover (4.22) can be sharpened to 

lim inf  lh (Uh, ( ah , bh ) ) >_. I (u, (a, b ) ). (4.26) 
h~O 

Indeed from strong L 2 convergence of  Uh we deduce convergence of  fbh V (Uh), and for 

the other term we first fix a < a '  < b' < b. Observe that for sufficiently small h we 

have f~ lUht 2 ___ f~0,, ]/~hl2, use lower semicontinuity, and finally take the limit a '  ~ a, 

b' ~ b. With the notation A h = (ah, bh) we finally get 

I (u, A) < l iminflh(Uh, Ah) < l iminflh(Vh +lh ,  Ah) 
h-.-~O h---tO 

---- l iminflh(Vh,  Ah) = l ( v ,  A) ,  (4.27) 
h~O 

and this shows that u is minimizing. [] 
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Proo f  o f  Corollary 4.8. Since the m a s s  o f t t  h is bounded, uh is bounded in L ~ Thus by 

Theorem 4.7 Uh ~ u in W 1'~ and u is a stationary point of  I.  Moreover, for a further 

subsequence, fih *" # in 3,4. Thus # = 2. Finally, assumption (b) guarantees that 
I[fih - fi l[ ~ 0 (where [[ �9 I1 denotes the flat norm). Indeed, let r 6 Cc~( - 1, 1), ~p = 1 in 

( -  1/2, 1/2), and let r = ~o(k/R). Then ~ORfih ~ r and, hence, ]l~oRfih -- q)RU [1 --+ 
0. But 

/ ,  
lim [l(l -- ~pR)fih, ( 1 - -  ~OR)~][ _< 2 lim s u p ~  ] f i h ldk=O.  

R---~oc~ R-- -~  h Jlk[>R/2 
(4.28) 

[] 

5. Numerical Integration 

In practice the discrete Lagrangian Ld has to be computed by means of a numerical 
integration scheme, leading to a new discrete functional an. Our approach can easily be 
adapted to cover the convergence of stationary points of  Jh to stationary points of  I .  The 
main elements of  this extension are: 

(i) Gamma  convergence: 1" - limh~0 Jh = I. 
(ii) Stationary points of Jh are minimizing on short intervals. 

(iii) A priori estimates for stationary points of Jh. 

These properties hold for a large class of  numerical quadrature schemes. For definiteness, 
here we restrict attention to the simple midpoint quadrature rule. Thus, if (a, b) = (ti, tj) 
is an interval which is compatible with the triangulation ~ ,  and if u c Xh (i.e., u is 
continuous and piecewise affine on Th), we set 

Jh(U, (ti, 9))  = 
j - I  H(l l+l ) __ U(tl ) 2 

m E ( t t + ~  _ h) 
-2  l=i ll+l tl 

J-~ (u(h+~)? u(tt) ) 
+ E ( h + l  - h ) V  - . 

l=i 
(5.1) 

In order to study the convergence properties of  Jh, it is convenient to extend the definition 
of Jh to intervals (a, b) that are not compatible with the triangulation Th. To this end, let 
(ti, tj) denote the largest subinterval of  (a, b) that is compatible with the triangulation. 
Then we set 

Jh(u,  ( a , b ) )  

+ &(u ,  (t~, q)) .  (5.2) 



On the F-Convergence of Discrete Dynamics and Variational Integrators 293 

Finally, if u ([ Xh, we set J(u,  (a, b)) = ~ .  As before, we say that Uh is a stationary 
point of  Jh, or a discrete solution, if 

Jh(Uh, A) < ~ ,  3Jh(Uh, ~0h, A) = 0, 

VAEs w i t h q g h = 0  o n ~ \ A .  (5.3) 

Remark 4. l still applies in the present setting, i.e., in (5.3) it suffices to consider intervals 
A = (ti, tj) which are compatible with the triangulation Th. The discrete Euler-Lagrange 
equations again take the form 

D2Ld(Ui_l, ui) q- DiLd(Ui, Ui+l) = 0, (5.4) 

where the discrete Lagrangian is now given by 

m l u i + j - u i l  2 (Ui'~-_2~_i+l) 
- -  V -- ( t i+ l  - -  t i ) .  ( 5 . 5 )  Ld(Ui' Ui+l) 2 ti+l - ti 

Again the convergence result can be stated in the L ~ or the Fourier setting. For 
brevity, we only consider the latter. 

T h e o r e m  5.1. Let I be an action functional. Assume that V is C 2 and that there is a 
constant C > 0 such that ID2VI <_ C. Let Uh be a sequence o f  stationary points o f  the 
discrete action integral Jh, and let Uh be the Fourier transform Of Uh. Suppose that 

(a) fih is a Radon measure o f  uniformly bounded mass. 
(b) No mass leaks to infinity in Fourier space, i.e., 

f 
lim sup ] It~h(k)l dk = O. 

R---~oo h Jlkl>R 
(5.6) 

Then 

( i )  Uh ~ u in W I ' ~ ( I K ;  ~ n ) .  

(ii) u is a stationary point o f  l.  
(iii) fih ~ fi as measures in the flat norm. 

As mentioned above, the main new element in the proof of Theorem 5.1 is the fol- 
lowing F-convergence result. 

L e m m a  5 .2 .  Under the assumptions o f  Theorem 5.1, we have 

F - lim Jh(', (a, b)) = I( . ,  (a, b)) in X. 
h-+O 

(5.7) 
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Proof To separate the contributions of u and V(u), we define 

J l , h ( U ,  (a, b)) 

J2,h(U, (a, b)) 

j -1 u(tl+l) - u(tl) 2 
m Z ( t l + l  - -  t / )  - -  

= ~ t=i I 0+1 tl 

m u(ti) -- u ( t i - l )  2 m u(tj+l) -- u(tj) 2 
+ -~(ti - a) - + ~ ( b  - tj) 

ti ti-I tj+l tj 

= 2 f a b l U ' 2 d t ,  

j - t  ( u(tl+,)_+ u(tt) ) 
= Z ( t t + l  - t l)V 

l=i 

-}- (t i -- a) V (u ( t i )  -t- 2 u ( a ) ) + ( b - t j ) v ( U ( t j ) - ~ u ( b ) ) .  
\ 

The upper bound for F-convergence follows directly from part (b) of Lemma 4.3. 
Indeed, if u 6 X = L~oc(R, Nn) and I (u ,  (a, b)) < cx~, then there exist Vh C Xh with 

vh -+ u in Hl( (a ,  b), Rn). Therefore, Jl,h(Vh, (a, b)) = fb  a IV'hi 2 --+ f~ lul 2. By the 
Sobolev embedding theorem we have that Vh --+ u uniformly, and from this we easily 

deduce that J2,h (Vh, (a, b)) ~ f~  V (u). This completes the proof of the upper bound. 
For the lower bound we consider a sequence Uh -+ u in X. We may fix a subsequence 

such that lim infh--,0 Jh (Uh, (a, b)) is actually a limit. Note that for any interval (ti, ti+l) 
of the triangulation Th we have 

f ti+~ u ] dt = 1 
~ ( t / + l  - -  ti) (U2(ti) -]-/~2(ti+l) -~ Uh(ti)uh(ti+l)) 

1 
g ( t i + l  - -  ti)(u2(ti) q- u2(ti+l)). (5.8) 

Thus 

f b + h  
J2,h(Uh, (a, b)) < C (1 --~ ]U h ]2)dt < C. (5.9) 

da--h 

If limh~0 Jh(Uh, (a, b)) = c~, there is nothing to show. Hence, we may suppose 
limh~0 Jh (Uh, (a, b)) < cx~ (along the subsequence chosen initially), and we thus have 

fa b [Uhl2 dt = Jl,h(Uh, (a ,b))  < C. (5.10) 

Therefore, Uh ~ u in Hl((a ,  b), ~n) and liminfh~o Jl,h(Uh, (a, b)) ___ fb lul2" More- 
over, by the Sobolev embedding theorem Uh --+ U uniformly, and thus J2,h (Vh, (a, b)) --+ 

f~ V (u). [] 

Next we verify that stationary points of Jh are again minimizers on sufficiently short 
intervals. 
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Lemma 5.3. Let u be a stationary point of  the discrete functional Jh. ASsume in addition 
that V is C 2 and that there is a constant C > 0 such that [D 2 V ] < C. Let a < b be such 
that b - a < 2/090 with wo = v/-C-~. Then u minimizes Jh (', ( a, b ) ) among all functions 
v ~ Xh with u = v in R \ (a, b). 

Proof It suffices to consider the case that (a, b) = (ti, tj) is an interval compatible with 
the triangulation (see Remark 4.1). Using the discrete Euler-Lagrange equations(5.4), 
(5.5) and the Taylor expansion of V as in the proof of Lemma 2.1, we obtain the following 
for all ~o c Xh that vanish at the endpoints a and b: 

Jh(U + ~o, (a, b)) - Jh(u, (a, b)) 

m f b c ~z~ ~~ + ~~ 2 > - -  [~bl 2 

- 2  - 2 -  2 

--  I~bl 2 -  (b - a) sup kol 2 > 
- 2  

( 2  C ( b 4 a ) Z ) f a b  > - I ~ t  2 > 0 .  
- 2 

[] 

We finally prove Theorem 5.1. 

Proof The proof is very similar to that of Theorem 4.7. Again we have for a subsequence 

Uh -~ u in L ~ and fih ~ fi in A4. The discrete Euler-Lagrange equations provide a 
W 1'~ estimate in complete analogy with (4.18). Indeed we have 

U i + l - - U i t i  + 1 ti U i - - U i - l < ( t i + l - - t i )  ti ti - 1 - -  D V (  ui+l-'}-ui ) 2 

l t 
Since D V  is continuous and IluhllL~ _< C, we get (4.19) again, i.e., 

Ui+l - -  Ui Ui - -  Ui--| I < Clti+l t i - 1 ] .  (5.12) 
I t i+l  ti ti - -  t i -1  

* W I , ~ .  Iterating the bound, we obtain as before (4.20) and deduce Uh --~ u in Now the 
proof can be finished exactly like the proof of Theorem 4.7, replacing Ih by Jh and using 
the F-convergence of Jh. [] 
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