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BINGSS is a program for least squares optimization of thermodynamic descriptions using experi- 
mental phase diagram and thermodynamic data. The number of measured values used is unlimited. 
Some special features and improvements since the fh-st publication of this program are outlined. 

The models for the thermodynamic description and their adjustable coefficients must be well se- 
lected. Missing parameters may disable the fit between experimental and calculated values. Too 
many coefficients may be undefined and may cause divergence of the calculation. Some ideas on how 
to handle these problems are demonstrated using the Mg-Zn system as an example. 

1 .  I n t r o d u c t i o n  

A knowledge of phase equilibria is fundamental to all aspects of 
materials science. Amodem method of providing this knowledge 
for a particular application is by thermodynamic calculation of the 
equilibria using data stored in a computer data bank. Hence, the 
generation of reliable computer-readable thermodynamic data is 
very important. 

For computer application, the data are stored as analytical expres- 
sions for the thermodynamic functions of state and as numerical 
values of the adjustable parameters of these expressions. The ana- 
lytical expressions are derived from more-or-less simplified 
models of statistical thermodynamics. The most important 
descriptions as well as the methods for use of these data for the 
calculation of equilibria have been reviewed several times, for ex- 
ample by [82Luk]. 

For the determination of the adjustable coefficients of the analyti- 
cal expressions, [77Luk] applied the least squares method using 
all kinds of experimental data giving quantitative information on 
thermodynamic properties. Besides calorimetric, emf, and vapor 
pressure data, all types of phase diagram measurements are valid 
for this purpose. The computer programs that perform this opera- 
tion for binary and ternary systems are called BINGSS and 
TERGSS, respectively. The additional programs BINFKT and 
TERFKT are mainly tailored to calculate phase diagrams and pro- 
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duce plots of thermodynamic functions for testing the results of 
BINGSS and TERGSS. Less emphasis has been given to their use 
for calculations using data extracted from a data bank. 

The least squares method has some limitations, which usually are 
not well satisfied by experimental thermodynamic data. This for- 
bids the use of the method as a''black box" and demands a careful 
check of the quality of the results. The aim of this paper is to elu- 
cidate these problems and provide some hints on how to handle 
them using as an example the recently optimized Mg-Zn system 
[92Aga]. 

After selecting the appropriate model for the thermodynamic de- 
scription of each phase, the user has to decide how many and 
exactly which of the adjustable coefficients will be used. With an 
insufficient number of coefficients, the description may be unable 
to reproduce experimentally well-established features of the ther- 
modynamic properties. At the same time, too many coefficients 
may lead to bad results. The program uses these coefficients to 
smooth the experimental scatter, and it may produce strange rer 
suits in areas that are not covered by experimental values. Thus 
the selection of the parameters to be adjusted is like navigation be- 
tween SciUa and Charybdis, and each selected parameter must be 
justified by thermodynamic considerations. If insufficient experi- 
mental data are available, estimates may be necessary in order to 
provide a complete set of parameters. Examples of such estimates 
are enthalpies of formation calculated from the Miedema [76Mie] 
formulas or the use of a relationship between enthalpy and excess 
entropy of mixing first introduced by Kubaschewski [79Kub] and 
recently refined by Tanaka et aL [90Tan]. 

2 .  L e a s t - S q u a r e s  M e t h o d  

To understand the problems arising in our application software 
due to the least squares method, the main steps of the method are 
repeated here. 
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The purpose of the least squares method is to adjust variable coef- 
ficients of an analytical expression to experimental values. In our 
case, the analytical expression contains all thermodynamic func- 
tions of state, and the experimental values may be any thermody- 
namic or phase diagram measurements. 

Starting with a set of approximate values for the adjustable coef- 
ficients, the analytical expressions enable a calculated value to be 
obtained for each measured value. The difference between the 
measured and this calculated value, multiplied by a weighting 
factor p, is called the "error": 

(measured value-calculated value) x p = error (Eq 1 ) 

As the condition of best fit, the sum of the squares of these "er- 
rors" of all the m measurements should have a minimum value: 

m 

(error/) 2 = Minimum (Eq 2) 

i=1 

To solve this problem, the derivatives of this sum of the squares of 
the errors with respect to the adjustable coefficients are set to zero. 
The result is a set ofn equations for the n unknown corrections of 
the adjustable coefficients: 

m 

O2(error i )2 

i=1 
- 0  

m 

1 

(j = 1...n) 

O~(errori )2 

i - 1 error/x O coeffj) - 0 (j= 1...n) (Eq3) acoeffj -i= 

To make these n equations linear, Gauss expanded the"error" into 
a Taylor series and truncated after the linear term: 

n { 0 error/ ) 
(Eq4) 

This approximates the error by a linear function of the corrections, 
Acoeff k, of the adjustable coefficients. The derivative, 0 error i/O 
coeff k, is of course identical to-p times the derivative of the cal- 
culated value, since the measured value does not depend on the 
coefficients. 

InsertionofEq4 intoEq 3 generates a system ofn linear equations 
of the n unknown corrections of the n adjustable coefficients: 

err~176 + ~ [O co~e-ffk • Acoeff • 0coeff] 
i-I k=l 

=0 (j=l...n) 

or finally: 

~ O  coe------ffj x c~ coeff k x Acoeffk 
k-1 ira1 

m 
0 error/ 

- - -  E err~176 x coe  (j-- 
i = l  

(EqS) 

This system of linear equations is solved for the corrections, 
Acoeff k, which are added to the starting values of the coefficients. 
The calculation is repeated iteratively until each of the corrections 
becomes smaller than a selected fraction e of the corresponding 
coefficient. 

There are two main problems associated with the application of 
this method for thermodynamic optimization: (1) The condition 
of best fit, Eq 1, is valid only if the errors satisfy a "Gaussian nor- 
mal distribution" around the mean value. This is especially not the 
case when there are systematic errors in a series of experimental 
values. (2) The step of linearization in Eq 3 is problematic if the 
starting values of the adjustable coefficients are far from their fi- 
nal optimized values. In thermodynamic optimization this often 
cannot be avoided, and a divergence of the iteration after Eq 5 may 
result. This problem does not occur if the "equations of error," Eq 
1, are already linear in the coefficients. 

Due to the first point, the data must be carefully checked for sys- 
tematic errors. Mostly, these are recognized from discrepancies 
between different sets of measurements. If the same quantity is 
measured several times and there is significant disagreement, a 
systematic error must be supposed, and one of the contradicting 
series of measurements must be omitted. If a discrepancy occurs 
between different types of data, then in general a check must be 
made to ascertain whether this contradiction is intrinsic to ther- 
modynamic rules or is simply caused by an insufficient number of 
adjustable coefficients. 

The second point illustrates that in the first iteration steps, equa- 
tions of error (Eq 1) linear in the coefficients are better than 
nonlinear ones. For several types of data, BINGSS and TERGSS 
offer two different equations of error, one linear in the coeffi- 
cients, the other one more exactly related to the measurement but 
nonlinear. An example is given in section 3.1. 

3 .  E x p e r i m e n t a l  D a t a  

Most of the experimental data used in BINGSS are taken from the 
hterature. Although there is a large variety of different types of 
measurements, they can be reduced to a few standard types, each 
of which is described by the same equation of error,/.e, the same 
formula for the "calculated value" of Eq 1. Within the three main 
types---phase diagram data, enthalpy data, and chemical potential 
data---the "calculated value" depends on the number of phases in- 
volved in the "measured value." 

The different equations of error have already been discussed by 
[77Luk], but some of them have been improved upon in the pre- 
sent version of BINGSS. These are given in the following subsec- 
tions. 
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3 .1  P h a s e  D i agram Data  

A single two-phase equilibrium in a binary system can be meas- 
ured in two different ways: (1) The concentration of one of the two 
phases is given, and the temperature of equilibrium is meas- 
ured---for example the determination of the liquidus temperature 
by DTAon a sample with given composition. (2) The temperature 
is given and the concentration of one of the phases is measured-- 
for example from the kink of a lattice parameter vs concentration 
plot of a series of samples annealed at the same temperature or by 
microprobe analysis of a single grain in an annealed sample. The 
equations of error of these two types of measurements are: 

(Tmeas- r ~ c  ) xp  = error (Eq 6) 

(x' meas-X'cal# xp = error (EqT) 

The "calculated values," T~c and Xealc, of these two equations are 
the results of equilibrium calculations, which start from the 
slightly modified equilibrium conditions of Gibbs: 

.'ge,r) - , ; q  , .  o 

- - o 

lx~' (x",T} - I xeq = 0 (Eq 8) 2 

where ix} i) (x; T) are expressed by the analytical expressions con- 
taining the coefficients to be optimized. The five quantities--- 
x', x" ,  T, IXl eq, and Ix2eq---are treated as unknowns. The set of 
equations (8) is usually nonlinear. It may be solved for the un- 
knowns by an iteration method, for example the Newton-Raph- 
son method. However, since there are five unknowns and only 
four equations, one of the unknowns has to be fixed, which for- 
really is done by adding a fifth equation, either: 

x' - x' 0 -- 0 (Eq 9) 

or 

T-To=0  (Eq 10) 

wherex' 0 and T O are fixed values. 

To calculate the value Tcalc of Eq 6, the fifth equation added to the 
set of equations (8) is Eq 9. To calculate Xcalc of Eq 7, Eq 10 is 
added to the set of equations (8). 

In the paper by [77Luk], the equation of error for both cases is de- 
rived from the common tangent in a G vs x plot as condition for 
equilibrium: 

G'(x ' ,T)  + (x"  - x ' )  x (O--~G' I - G"  (x",T) = error (Eq 11) 
0x)x,,r 

The three definitions of the error are illustrated in Fig. 1. In the up- 
per part, two different measurements of a phase boundary are 
shown with the same calculated tie-line. The lower part of Fig. 1 

explains Eq 11 in a G vsx plot. The first two terms of Eq 11 define 
the point corresponding to the concentration of the second phase, 
x" ,  on the tangent of the G' (x) curve taken at the measured con- 
centrationx'meas. If the measured and calculated equilibrium con- 
centrafions coincide, this tangent is also tangent to the curve G" 
(x) atx", and the error is zero. Equation 11 has the advantage that, 
if the Redlich-Kister description is used, the Gibbs energies G' 
and G" are linear functions of the coefficients. Then, in Eq 11, the 
error is also related linearly to the coefficients, whereas in Eq 6 
and 7 it is related nonlinearly. On the other hand, in Eq 11 the error 
depends on the concentration x", although this dependence is 
weak. Often x" andx' are not measured in the same investigation, 
and x" must be interpolated between measurements from another 
source. In any case, x" must be given in the input file. 

In the program BINGSS, values in the input file are defined as 
corresponding either to Eq 6 or 7, but by use of a switch variable 
in the program, Eq 11 may be selected as the equation of error. For 
the reasons given in section 2, Eq 11 is to be preferred if the start- 
ing values of the adjustable coefficients are rough estimates, since 
with the linearization involved in the least squares method, Eq 4, 
the nonlinear Eq 6 and 7 may cause divergence of the iteration. In 
the final steps, however, the dependence on x"  is a handicap for 
Eq 11, and Eq 6 and 7 should be preferred. 
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Fig. 1 The different equations of error in the treatment of a binary 
two-phase equilibrium in the program "BINGSS." 
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The choice of Eq 6 or 7 depends on the slope of the measured 
phase boundary. This is demonstrated in Fig. 2. The nearly verti- 
cal solubility limit of the (.4) solid solution cannot be measured by 
thermal analysis of a sample of known concentration orB, nor can 
it be treated using Eq 6. It must be treated using Eq 7 in the least 
squares optimization. The liquidus near a congruent melting 
point, however, cannot be determined by measuring the composi- 
tion of a liquid subjected to equilibrium annealing at a fixed tem- 
perature. In this case, Eq 6 must be used. Most other equilibria can 
be treated by each of the two equations. 

An invariant three-phase equilibrium in a binary system is treated 
using an equation of error identical to Eq 6, but here Tcalc is the 
calculated three-phase equilibrium temperature. To the set of 

l i q u i d  

1^1 _ 
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I 

A x = m01e f r ac t i on  B 

Fig. 2 Phase diagram illustrating regions where only concentration 
can be measured at a given temperature (square) or temperature can 
be measured at a given concentration (diamond). 

equations (8), two more equations of the same type are added for 
the third phase, and the resulting set of six equations is solved for 
the unknowns x', x", x'", T, I.t~q, and i.t~q by the Newton-Raph- 

son technique. 

The concentrations of the phases in this three-phase equilibrium 
are usually extrapolated from the adjacent two-phase fields and 
therefore, contrary to [77Luk], are not treated as measured quart- 
rifles of the invariant equilibrium. If they are to be considered, 
they are entered as an additional measurement of a two-phase 
equilibrium with one of the two other phases using Eq 7. 

A linear equation of error for three-phase equilibria is also pro- 
vided in BINGSS. It is based on the condition that the Gibbs ener- 
gies of the three phases lie on a straight line in a G vsx plot, or that 
the following determinant is equal to zero: 

G' 1 xl,, xl, x" =o (Eq 12) 
G" G 

Analogous to Eq 11, Eq 12 depends on the concentrations 
x', x", and x'" of the three phases. In BINGSS, either Eq 6 or 12 
can be selected by the switch variable "IVERS." 

3 . 2  E n t h a l p y  Data  

Calorimetric enthalpy measurements are of two basic types: (1) 
values obtained using mixing calorimetry and (2) drop or scan- 
ning calorimetry data. 

In case (1), the heat effect is measured when two separate sam- 
pies, each characterized with respect to phase, temperature, and 
composition react in the calorimeter to form a single well-charac- 
terized sample. The corresponding calculated value is represented 
by the formula: 

! 

X' 5"=1 
m01e f r a c t i o n  

I 

X"X' 
m01e f r a c t i o n  

i 
H2 

x'"=l  
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X" =0 X" X' X'" 
mole f r a c t i o n  

a b c 
Fig. 3 Illustration of different experiments in a mixing calorimeter according to the concentration of the samples to be mixed. All measurements are 
treated with Eq 13 in"BINGSS." (a) Integral enthalpy of mixing.(b) Partial enthalpy of mixing.(c) Experiment to determine the curvature of the H(x) 
c u I ' v e .  
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H ' ( x ' , T  1) - [(1 - m )  x H"(x",T2) 

+ m x H ' " ( x " ' , T 3 )  l (Eq 13) 

where (1 -m)  and m are the amounts of the two samples necessary 
to form 1 mol of atoms of the reaction product. The concentration 
of phase 1,x',is calculated f r o m m , x ' ,  andx'". The three tempera- 
tures may be different, but in BINGSS either T 1 and T 2 or T 2 and 
T 3 are assumed to be equal, since in real experiments, usually not 
more than two different temperatures are used. 

Equation 13 describes three types of measurement, which in ex- 
perimental theImodyvarnics are usually treated as being different. 
This is explained in Fig. 3. If the two samples to be mixed are the 
two pure elements, the result is an integral enthalpy of mixing 
(Fig. 3a). If only one sample is a pure dement 
(x'" .. 0 or x '"  .. 1) and its amount, m, is smali~ the result can be 
expressed as the partial enthalpy of this pure element (Fig. 3b). 
The differential quotient defining the partial enthalpy, dH/dn, is 
in this case approximated as the quotient of differences, AH/An, 
which is the measured value divided by the amount m. Finally, it 
is possible to mix two liquid solutions of different composition in 
the calorimeter. If the two concentrations are not very different, 
the result mainly reflects the curvature of the enthalpy vs concen- 
tration curve (Fig. 3c). This type of measurement is very seldom 
described in the literature as it cannot be connected directly with a 
commonly used thermodynamic function such as the integral or 
partial enthalpy. In the least squares optimiTation, however, it is 
very valuable, since the curvature of the H(x) plot may show fea- 
tures that are hidden by the scatter of the measurements in integral 
or partial enthalpy plots. Entering these measurements directly 
into the calculation using Eq 13 forces the analytical expression to 
reproduce well the curvature of the H(x) curve. 

In the literature, measurements are often reported whereby suc- 
cessively small amounts of one element are added to a calorimet- 
ric bath consisting of the second pure dement. The measured 
values are tran.~formed to integral enthalpies by adding all the pre- 
vious results. In Fig. 3b, this corresponds to the addition of the en- 
thalpy of sample 2, H(x"), multiplied by its amount, (1 - m). This 
is a good procedure for the transformation of the results into a 
standardized thermodynamic function, but it must not be done for 
use in the least squares optimization. Each step must be treated as 
a separate measurement using Eq 13, otherwise the first measure- 
ment would have a much higher weighting than the last. The re- 
quirement that the least squares method have normal Gaussian 
distribution of the errors would in this case be violated. If the re- 
ported integral enthalpies allow recalculation of the measured 
quantifies by subtracting the results of the previous steps, this 
must be done. 

Another type of calorimetric measurement is that obtained from 
drop calorimetry. In this method, a single sample is dropped from 
a furnace or thermostat maintained at temperature T 1 into a calo- 
rimeter held at temperature T 2. The measured heat is the enthalpy 
ditterenceH' (T 0 - H "  (T2), and the equation of error is therefore: 

[meas. value -H'ealc(T1)+H"calc(T2)] xp = error (Eq 14) 

At each of the two temperatures, the sample may be either single 
phase or a mixture of two phases in equilibrium. In the latter case, 
the value Hcalc (T) includes an equilibrium calculation. 

Results of scanning calorimetry measurements are treated using 
the same Eq 14, but here the two temperatures T 1 and T 2 lie close 
together and the accuracy of the difference AT = T 1 - T 2 is much 
better than that of T 1 or T 2 itself. In this case, the measurements 
give "true heat capacities," because All~AT approximates very 
well dH/dT = C o. Drop calorimetry measurements also provide 
heat capacities if there are enough values to allow differentiation 
of the plotted H(T) curve. However in drop calorimetry large 
changes of Cp in small temperature intervals are smoothed and 
therefore not well represented. 

3 . 3  Gibbs Energy  Data  

Partial Gibbs energies or chemical potentials are measured using 
methods such as emf, vapor pressure, or solubility in a dilute so- 
lution with a third element as solvent. The results of measure- 
ments reported as Gibbs energies of formation of stoichiometric 
compounds are also really partial Gibbs energies of one dement 
in a two-phase equilibrium between this phase and the nearly pure 
second element. Data reported as activities, a, are transformed to 
partial Gibbs energies using the relation AI, t = R x T x Inn. It has 
been argued that a normal Gaussian distribution of errors of the 
activity does not transform into a normal Gaussian distribution of 
errors of the partial Gibbs energy, ~t. Although this is true, it is 
often difficult to judge which of the two quantities has an error 
distribution closer to a normal Gaussian distribution. In any case, 
the linearization step, Eq 3, results in the distinction between a 
and IX being lost. 

4. Calculat ion Strategy  

4 .1  Data  Entry  T e c h n i q u e  

The first stage in the optimization of a system is a literature re- 
search. All experimental data giving quantitative information on 
a thermodynamic function or on a boundary in a phase diagram 
are of interest. Qualitative information such as the statement "by 
micrography the sample was found to be single phase" cannot be 
used, whereas the information "at temperature T sample 1 is sin- 
gle phase ct and sample 2 contains two phases a and ~" can be in- 
terpreted as the ct/a+13 boundary is atx • Ax, wherex is the mean 
between the concentrations of the two samples and 2 • Ax is the 
difference between these two concentrations. 

Before the calculation can be started, it must be decided whether 
the system is to be denotedA-B orB-A. Then all phases are num- 
bered sequentially, and these numbers are used as codes for the 
phases. The input and output files of the programs are summa- 
rized in Fig. 4. Three input files are used in BINGSS. They have 
the FORTRAN file codes 01, 03, and 04. In the MS-DOS version, 
they have the common name "sys" and the different extensions 
.coe, .dat, and .bgl, respectively. The common name "sys" is usu- 
ally composed of the chemical symbols of the two elements. 

File 03 (sys.dat) contains all experimental data. An auxiliary pro- 
gram "BINDAT" assists in compiling the data from the various 
styles used in the literature to the standard formats used in the least 
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LITERATURE DATA o OWN EXPERIMENTS UNARY.SGT 
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select data / more experiments 
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$ 
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/ c h a n g e  m o d e l  

4 Flow diagram of the program package BINGSS. 

squares program. It also performs all necessary transformations 
such as mass fractious to mole fractions, cal to J, etc. The interac- 
tively entered data are stored in a file "name2V.out," which after 
correcting errors is taken as input for "BINDAT" without the ne- 
cessity of typing all the data once more. The output file 
"named.app" contains the data formatted for "BINGSS." Several 
of these files can be added to one file "sys.dat." 

File 01 (sys.coe) is prepared by a text editor. For metallic systems, 
where the components are the elements, the unary data are copied 
from a file containing the already formatted data of [91Din]. The 
"excess term part" then is prepared choosing the model and the 
adjustable coefficients as described in the next sections. 

File 04 (sys.bgl) may be replaced by terminal input. It decides 
how many iteration loops are calculated until the next input, what 
is the value of the switch variable "IVERS" discussed in section 
3.1, and if the present result is put out. Also tables of either the"er- 
ror" of each measurement or of the input, formatted to a better 
readable form, may be selected. A short output is given on the 
screen to enable selection of the next input from the terminal. 

Besides printing on the screen, the BINGSS program has two out- 
put files. File 07 (store.coe) contains the adjusted coefficients; the 
rest of this file is identical to sys.coe. K the output is satisfying, this 
file is renamed to sys.coe, overwriting the old file sys.coe. Other- 
wise it may be edited, redefining the models and/or which coeffi- 
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Table 1 Matrix of Adjustable Coefficients of the Redlich- 
Kister Formalism 

( x ~ x x z ~  x 

1 T T x inT 

ao bo co 1 
al bl ci (x~s-xz.) 

a2 b2 6"2 (XMg-XZn) 2 

cients shall be adjusted. File 11, output.lst, contains details of the 
calculation including a table of the errors of each measurement. 

The optimiTed file sys.coe is read into program BINFKT to calcu- 
late phase diagrams and plots or tables of thermodyoamic func- 
tions vs temperature or vs concentration. The main purpose is to 
checkthe result of BINGSS with the input data. An additional file, 
sys.bfl, prepared using a text editor, gives details as to which func- 
tions or parts of the phase diagram shall be calculated. The output 
files contain tables in file 11, output.lst, and sequences ofx-y pairs 
for curves to be plotted in file 08, sys.pnt. 

Program BILDER finally transforms sys.pnt into plots, taking de- 
tails for the layout from file 24, sys.bld. Program PLOT at PC's 
quickly transforms file sys.pnt into diagrams for different screen 
modes using a standard layout, which may be changed interac- 
tively. 

G = - Y S  

o'l 

J 

S' 

it 
0 temperature 

Fig. 5 G~bs energy measured at one temperature or in a small tem- 
perature range only. 

4 . 2  M od e l s  

The choice of model for each phase in a system has a decisive in- 
fluence on the quality of the optimized description. Several ana- 
lytical descriptions can be found in the literature. The simplest is 
that used for a stoichiometric compound, which contains only 
temperature-dependent and no concentration-dependent terms. 
Such an expression is also used for phases with a small range of 
solubility if the experimental data are not sufficient to quantify the 
solubility range. Except for a few phases that require a magnetic 
contribution to the Gibbs energy, G is expressed as: 

G-I-lSER=a+bxT+cxTxlnT+d• (Eq 15) 

For solution phases, the most commonly used description is the 
Redlich-Kister formalism [48Red]. It is based on the regular solu- 
tion model, which itself can be represented using only one coeffi- 
cient. In the Redlich-Kister formalism this coefficient is replaced 
by a polynomial expression in the mole fractions. This can be con- 
sidered as a curve fitting technique, which describes all the devia- 
tions from the regular solution model without modelling their 
physical basis. Because the regular solution is often a good first 
approximation for metallic systems, the Redlich-Kister formal- 
ism is particularly useful and leads to the following expression for 
the Gibbs energy: 

§ 

n 

+ XAX XBx ~ Kv (XA_ xB)V (Eql6) 

v - 0  

where the K v are functions of temperature analogous to Eq 15: 

K v= a v +b  vx T + c  v x T x l n T +  .... (Eq17) 

a v, by, and c v are the adjustable coefficients that form the matrix 
[77Luk] as it is shown in Table 1. 

Other models implemented in BINGSS are the associated solu- 
tion model [82Som] and several special cases of the Wagner- 
Schottky [30Wag, 52Wag] model, generalized as the "sublattice 
model" [76Hil]. The Gibbs energy descriptions derived from 
these models cannot be approximated well by a polynomial with 
only a few coefficients. They should therefore be used when ade- 
quate information is available. Since other models were not used 
in the optimization of the Mg-Zn system, they will not be dis- 
cussed in more detail here. 

4 . 3  S e l e c t i o n  o f  t h e  Adjus tab le  P a r a m e t e r s  

When the appropriate model for each phase has been chosen, the 
next important step is to select the coefficients to be adjusted. The 
main criterion for this selection is that only those coefficients that 
are determined by the experimental values should be adjusted. If 
insufficient experimental data are available, estimates must be 
used to obtain a complete description. For example, the c v coeffi- 
cients implicit in Eq 16 describe the excess heat capacity and 
should only be used if experimental heat capacity data obtained, 
e.g. by scanning or drop calorimetry or by measuring enthalpies 
of mixing at different temperatures, are available. If the c v terms 
are not used, the Kopp-Neumann rule is implied. This is fre- 
quently the most appropriate estimate. 

If the only available measurements for a particular phase are 
Gibbs energies measured in a narrow range of temperature, only 
one coefficient in each line of the matrix presented in Table 1 can 

538 Journal of Phase Equilibria Vol. 13 No. 5 1992 



Basic and Applied Research: Section I 

Table 2 Summary of Mg-Zn Experimental Data 

Number Phase Phase equilibrium p H H(T) --H(298) 

1 ............................................................................... Liquid Two phases 1 O, Mg(T), I O, Zn(~ ) MH(x) MH(T) 
-2,--6,-7,-8,-3 ll, tMg(X), lp_zn(X ) 

Three phases 

2 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-2--4,--4-5, 
-5--6,--6-7, 
-7-8,--8-3 

Mg -1,--4,-5 
Zn -1,-8 
MgTZn3 -2-5,-1-2,1-5 4"5tXMg (To) 
MgZn -1-6 5"61XMg (To) (F/_/) 
MgzZn3 -1-7 6"71aMg (To) 
MgZ~ Maximum 7"8tXMg (To) ~H 

-1 
-1-6,-1-8 

8 ............................................................................... Mg2Znll -1-7,-1-3 8"3~Mg (To) 

Note: As reported in the literature. The hyphen between numbers indicates that the phases represented by them are in equilibrium. 

be independently adjusted. Figure 5 illustrates the possible conse- 
quences of using two coefficients, a and b. Expressing the Gibbs 
energy as G = a + b • T, which is equivalent to G = H -  T x S, re- 
quires that straight line to be found which shows the best fit to the 
experimental points in a G vs Tplot. Due to the scatter in the meas- 
urements, for the points (x) measured at a single temperature, this 
is a vertical line. Even if G has been measured in a narrow range 
of temperature (points +), values of H and S that are too large may 
result, although close to the temperature of the measurements, G 
will have reliable values. 

Agood method of estimation for this situation, first formulated by 
Kabaschewski [79Kub] and recently refined by Tanaka et aL 
[90Tan], makes use of a fixed ratio between excess entropy and 
enthalpy. 

It is often much less clear than in the two examples given whether 
two or more coefficients are independently related to experimen- 
tal values. A comparison of two calculations, with and without 
one of the coefficients may help, but a thermodynamic discussion 
of this problem is preferable. A better fit to the scatter of the ex- 
perimental data may give the impression that a coefficient is well 
defined. In Fig. 5, for example, the line fitting the points "+" gives 
the impression that H and S are both well defined. 

After a first run of BINGSS, the results are usually not satisfac- 
tory. The output of the programs BINFKT and BILDER may help 
to provide reasons. Most often, there are contradictions between 
different series of measurements, while bad selection of models 
or of the adjustable coefficients is also an important factor. 

Acontradiction between different measurements is easy to detect 
if the measured quantities are identical. Significantly different 
values for the same quantity imply that at least one experimental 
study suffers from systematic errors. Because the least squares 
method is unreliable in such cases, one of the contradicting series 
must be omitted from the calculation. A critical survey of the 
original studies must once more be carried out in order to decide, 
if possible, which series of measurements is more reliable. V'trtual 
contradictions may occur due to typing errors during the prepara- 
tion of file 03 (sys.dat). Data plots using"BILDER" help to detect 
such errors. 

Contradictions between different types of data may be either in- 
trinsicaUy thermodynamic in origin or caused by incorrect selec- 
tion of models and adjustable parameters. The outputs of 
BINFKT and BILDER may help in a thermodynamic discussion 
of this problem. General rules on how to proceed are rare, but ex- 
amples are given below for the Mg-Zn system. If two different 
sets of data violate a law of thermodynamics, such as the relation 
between integral and partial quantities, the relation d(G/T)/d(1/T) 
= H, or the Gibbs-Konovalov rule [81Goo], the contradiction is 
intrinsically thermodynamic in nature. Other rules such as 
Raoult's law of freezing point depression, are model dependent. 
In such a case, a change of the model should be considered. For 
example, the freezing point depression changes with the number 
of atoms per associate in the associated solution model. 

Sometimes the scatter of one series of experiments with many 
points overrides another series with only a few points. Here the 
weighting factor (p in Eq 1) may be changed for the two series. 
Each series of measured values in file 03 (sys.dat) is distinguished 
from the others by a label, a string with two characters. The 
weighting of all values with the same label can be changed with- 
out changing file 03 (sys.dat). This change of weighting uses 
a dimensionless number input either in file 04 (sys.bgl) or at the 
terminal. The number gives the ratio to the weighting, which is 
calculated as given by [77Luk]. 

Avalue ofp = 0 for the weighting omits the corresponding series 
of measured data from the calculation, without removing it from 
file 03 (sys.dat). In the output of BINFKT and BILDER it can still 
be treated and compared with the calculations. 

5.  A p p l i c a t i o n  t o  t h e  Mg-Zn 
B i n a r y  S y s t e m  

The recently optimized Mg-Zn binary system [92Aga] has been 
selected to illustrate the above-described calculation procedure 
because it presents very clearly some of the problems that occur in 
phase diagram optimization. 

The data found in the literature for this system are summarized in 
Table 2. Data from all three of the main experiment categories dis- 
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Fig. 7 The Mg-rich region of the Mg-Zn phase diagram calculated 
using the first (dashed) and final (full lines) least squares treatment as 
compared with the experimental values. 

cussed in section 3 are available. The phases are referenced by 
numbers according to the sequence in file 01 (sys.coe). 

There are five intermetallic compounds, each of which has a re- 
ported solubility range of ~1 mole%, but no quantitative results 
are available either for the width or for the nature of the departure 
from stoichiometry. They have therefore been treated as 
stoichiometric phases using Eq 15 to describe their temperature 
dependence. 

As Mg-Zn is a metallic system, the Redlich-Kister formalism was 
used to model the concentration and temperature dependence of 
the excess term of the liquid phase. The solid solutions of Mg and 
Zn were also modelled using this formalism. As the latter two 
phases are both hexagonal close packed, they are treated as the 
same phase with a miscibility gap and are represented by a single 
description. 

The next step is the selection of the adjustable coefficients for 
each phase. For the intermetallic compounds, no heat capacity 
measurements are reported in the literature. This automatically 
implies that c and higher coefficients in Eq 15 cannot be adjusted. 
Except for the phase MgZn2,it is also impossible to adjust the co- 
efficients a and b independently because the enthalpies of forma- 
tion are not well known and the Gibbs energy of each phase is 
known only at the temperature of the three-phase equilibrium of 
its formation. For MgZn, Mg2Zn3, and Mg2Znn, the relationship 

F i F A S ~ / T  Owith T O = 3000 K [79Kub] wasused. Although this 
relationship was established with respect to liquid solutions only, 
we are not aware of a better estimation method for solid phases. It 
was therefore used to derive data for the solid phases in the present 
work 

For the liquid phase, a decision must be made as to which of the 
coefficients of Table 1 should be selected. AHvalues are available 
as a function of concentration as illustrated in Fig. 6, and these 
clearly show an asymmetry. The enthalpy of mixing was meas- 
ured at three different temperatures, but no temperature depend- 
ence of AH was reported. AS given in Table 2, IX values of liquid 

alloys are also known as a function of temperature and concentra- 
tion. The analytical expression used for the liquid phase must be 
able to describe all these properties. Because AH and Ix have both 
been measured, a and b coefficients are independently adjustable, 
and the asymmetric nature of the AH curve requires that at least 
two a coefficients, a 0 and al, be used. No justification for use of a 
c coefficient seemed to be available. 

A plot of the experimental data showed discrepancies between 
different measurements of the solidus and solvus of the Mg solid 
solution (see Fig. 7). In the calculation, the data denoted by "+" 
were not used. 

The file mgzn.coe is now defined, and together with the file 
mgzn.dat the program BINGSS can start the optimization. In or- 
der to obtain rapid convergence, the linear equations of error are 
selected (Eq 11 and 12, IVERS=3) as discussed in section 3.1. Af- 
ter convergence, the more precise equations of error (Eq 6 and 7) 
can be used (IVERS=2). 

With the selected models, the optimization was not yet satisfac- 
tory. The Mg-rich eutectic temperature was too high (Fig. 7), and 
the Htiq(x) curve showed systematic deviation from the measured 
values (Fig. 6). It must now be decided whether there are contra- 
dictions between different data sets or an insufficient number of 
coefficients used to describe the phases well. The answer is given 
by the Gibbs-Konovalov rule [81Goo], which correlates the 
liquidus slope with the enthalpy. In order to obtain a steeper 
liquidus, it was necessary to have a more negative enthalpy of 
mixing for the liquid at the eutectic temperature. This is compat- 
ible with the measured AI-liiq(x) of [84Pyk] if the enthalpy of 
mixing is temperature dependent. A c coefficient must therefore 
be introduced into the matrix of Table 1 for the liquid phase. To 
support this assumption, new experiments were required. Partial 
enthalpies of fusion were measured, and these provided evidence 
for the suggested temperature dependence. The result of the opti- 
mization is shown in Fig. 7. 
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