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It has been assumed for a number of  years that dilute solid solutions obey a Friedel limit; i . e . ,  
the concentration dependence of the yield stress varies as 1/2 power (cUR), whereas in more 
concentrated solid solutions, the Mott limit is upheld with a predicted concentration dependence 
of c 2/3. These two limits were examined both analytically and numerically. As expected, the 
Friedel limit can be reproduced without any difficulty. However,  in the Mott limit, a detailed 
analytical treatment of  the concentrated solution case resulted in a concentration dependence of  
the yield stress as c uz.  The numerical data are in agreement with this analytical result in the 
Mort limit. Earlier work which predicted a c 2/3 dependence is analyzed, and certain key as- 
sumptions are shown to be invalid. 

I .  I N T R O D U C T I O N  

T H E O R I E S  of solid solution strengthening in fcc solids 
have proceeded using analytical models it-2tl and com- 
puter simulation models. [22-271 The analytical models often 
provide useful qualitative and, in some cases, quantita- 
tive insights into solid solution effects. However, in order 
to make the analytical models tractable, often somewhat 
arbitrary assumptions are introduced into the treatments. 
Computer simulation techniques afford the opportunity 
to solve for the behavior of  a model over a wide range 
of parameters (such as concentration, obstacle strength, 
or dislocation line tension), with the only restriction 
being the numerical accuracy of the particular computer 
configuration or program. 

Two important limits may be identified in solid so- 
lution strengthening: the low concentration, high obsta- 
cle strength limit, or the Friedel limit, and the high 
concentration, low obstacle strength limit, or Mott limit.t2~ 
In this investigation, we will summarize some of the as- 
sumptions made in evaluating the yield stress behavior 
in these limits, particularly the Mott limit, and compare 
the results of  some analytical models with our computer 
simulation. Not surprisingly, we will reproduce the key 
analytical result in the Friedel limit, namely, that the yield 
stress varies as the square root of  concentration. How- 
ever, we will report that this same square root of  con- 
centration dependence is also valid in the Mott limit. This 
is at variance with the concentration to the 2 /3  power 
derived by a number of authors for the Mott l imit .  [8"9'16'17'2~ 

We will point out certain questionable assumptions made 
in these studies and further point out that our results are 
in agreement with the results of  Kuo and Arsenault t271 in 
the extreme Mott limit of  a straight dislocation line ( i . e . ,  
infinite line tension). 

This paper concerns itself with establishing the be- 
havior of  our numerical model in these important limits 
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and contrasts our results, particularly the concentration 
dependence, with those derived from analytical models. 
The succeeding paper will provide details of  the simu- 
lation method and will derive the general dependence of 
the yield stress on line tension and obstacle strength as 
well as concentration. Section II provides some back- 
ground on earlier work. Section III  contains an analyti- 
cal treatment of  the Mott limit, showing the need to take 
special care of  fluctuations in the restoring forces. 
Section IV summarizes the simulation method used to 
generate the numerical results in Section V. 

I I .  F R I E D E L  AND M O T T  S T A T I S T I C S  

We will refer to the results of  the analytical theories 
in their respective limits as Friedel and Mott statistics. 
In the Friedel model, the obstacles are assumed to be 
discrete, i . e . ,  nonoverlapping, and the dislocation en- 
counters and overcomes a single obstacle in its motion 
forward. The strength of  one obstacle is proportional to 
a parameter f .  The dislocation is assigned a line tension 
(F), and under an applied stress, the dislocation bows 
out, moves between, and overcomes certain obstacles. 
In the steady state, a dislocation released at one obstacle 
moves forward and encounters exactly one more obsta- 
cle. f2~ With these assumptions, the yield stress across 
the slip plane becomes 

"/'FRIEDEL = I3/2 ( 2F t 

where F is the line tension, b is the Burgers vector for 
the dislocation, and 1 is the average interobstacle spac- 
ing. In the low concentration limit, 1 is inversely pro- 
portional to the square root of  the concentration and the 
combined concentration (c), line tension, and obstacle 
strength dependence of  the yield stress for Friedel sta- 
tistics i2~ are 

7"FRIEDE L ~--- krf3/2c 1/2 [2] 

where k is a constant depending upon the obstacle ge- 
ometry. We confine ourselves to lowest order terms in 
the concentration (assuming, as appropriate for the Friedel 
limit, that c ~ 1). 
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Although the derivation of the Friedel statistics is 
straightforward, there are at least two issues which should 
be considered. If we are considering solid solutions, it 
is not obvious how one would obtain a specific value of 
the yield stress. This uncertainty is related to the param- 
eters k and f ,  which are ill-defined. Is every solute 
atom an obstacle? Are only pairs of solute atoms to be 
considered obstacles? How is f related to the solute atom- 
dislocation interaction? None of these questions is ad- 
dressed explicitly in the generic derivation of Friedel 
statistics. Their answer requires a detailed solution (such 
as that provided in this paper). The second issue is re- 
lated to the upper limit of concentration for the Friedel 
limit. If we consider the upper limit of Friedel statistics, 
as proposed by Nabarro: I~61 

= 1 [2a] 

where w is the width or effective range of interaction of 
the obstacle and the dislocation line, I2~ and we use Kocks 
et al.'s estimates t2~ for the width, w, and obstacle strength, 
f ,  then for a yield stress ~- = 10 -4/x, the upper limit for 
the concentration to be in the Friedel limit is c ~ 5 • 
10 -3. Labusch (see Reference 20) suggests that the right- 
hand side of Eq. [2a] is 1/36. This gives an upper limit 
in concentration of c ~ 10 -4. Therefore, there is a sig- 
nificant difference in the estimated upper limit concen- 
tration of the Friedel statistics. 

Kocks et al. I2~ also provide a succinct derivation of 
Mott statistics. In the Mott limit, the obstacle strength 
is small and the concentration is higher (c ranges from 
0.01 to 0.10). In this limit, it is commonly assumed that 
the dislocation line is almost straight, as in the derivation 
in Reference 20, where the excursion in the dislocation 
line shape over an appropriately long segment of the dis- 
location line is taken to be the width of a dislocation 
obstacle. This derivation produces the following rela- 
tion, which we will refer to as Mott statistics: 

I/3 

TMOTT = ~.s ) [ 3 ]  

Here /x is the shear modulus, c is the concentration, b 
is the Burgers vector, w is the obstacle width (presum- 
ably, the interaction of a single solute atom and the 
dislocation line), and f i s - - i n  the words of Kocks et a l . -  
"a somewhat vaguely defined average obstacle strength." 
In addition, this derivation involves a parameter n: the 
number of random bends in the dislocation line over a 
length of the dislocation line that yields a net bend of 
width w. We view the parameter n as also somewhat 
"vaguely defined." 

A problem with this derivation is that various uncer- 
tain assumptions are made, in particular involving the 
relation of the parameter n to the other model parame- 
ters. Little, if any, justification is provided. Yet, the der- 
ivation in Reference 20 shows that the parameter n ends 
up controlling the concentration dependence in Eq. [3]. 
Our numerical results in the Mott limit will demonstrate 
that a c ~/2 power law is to be preferred over a c 2/3 power 
law--demonstra t ing a concern for the above assump- 

tions. More will be said concerning this and related deri- 
vations in the next section. 

Labusch tS~ also proposed a c 2/3 dependence of the yield 
stress in the Mott limit. His analysis was based on a 
statistical theory, with a key assumption that the distri- 
bution of obstacles along the dislocation line varies slowly 
compared with the variation in the force relation between 
the dislocation line and a single obstacle. This condition 
is formalized in a later paper t281 as requiring that the 
parameter: 

be small. Here, fo is the obstacle strength (presumably, 
the interaction of a single atom and the dislocation line), 
and F is the line tension. The claim is that so long as po 
is small, the solution is correct. However, we will pre- 
sent a pseudorandom model in the next section which 
obeys this constraint, which is trivially soluble and which 
produces a c 1/2 dependence in the yield stress in the Mott 
limit. The p r o b l e m - - a s  will be emphasized in the next 
sec t ion- - i s  the equating of the average force per unit 
length on the dislocation line to the applied force per 
dislocation line length (%b) to arrive at the critical stresses 
~-c. In the extreme Mott limit (large line tensions), the 
average force vanishes, but f luctuations in the force on 
the dislocation line remain substantial. As we have em- 
phasized in an earlier paper, ~9~ it is these fluctuations, 
not some average force, which control the yield stress 
in the Mott limit. 

Schwartz and Labusch I281 have presented a numerical 
solution of the Labusch statistical treatment. The con- 
dition for the critical stress is different from the earlier 
treatment in that with the obstacles (it is not specified in 
Reference 28 whether this is a single solute atom or a 
special configuration of solute atoms) placed on the slip 
plane according to a Poisson distribution, the applied stress 
is increased incrementally in a (revised) force balance 
equation until the dislocation achieves unbounded mo- 
tion. Schwartz and Labusch obtained a best fit of c 2/3 in 
the concentration dependence of the critical stress. As 
with any numerical solution, there are uncertainties in 
interpretation. The solution was obtained on a lattice of 
30 by 30 "normalized units" ( i .e . ,  900 obstacles) over 
a grid which apparently has 750 by 30 elements, with 
periodic boundary conditions applied on the glide direc- 
tion and in the dislocation line direction. Schwartz and 
Labusch 1281 replaced the actual obstacles by infinitely 
narrow obstacles on a transformed lattice. Hence, we 
cannot establish a one-to-one comparison between our 
numerical solution (based on actual obstacles in physical 
space) and their numerical solution. However, we did 
find that our numerical solution very definitely depended 
upon the size of the lattice containing the randomly placed 
solute atoms. The large scatter in their data (Figure 5 of 
Reference 28) is to be noted in the Mott limit. This scat- 
ter might be reduced with a larger random system. 

Nabarro ~181 has provided a derivation of the concen- 
tration dependence of the yield stress in the Mott limit 
and also obtained c 2/3 behavior. As in the earlier Labusch 
paper, Nabarro focused on the average restoring force 
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due to the random obstacles acting on a unit length of 
dislocation when it moves a unit displacement from its 
equilibrium position. It has been s h o w n  [191 that even when 
the average restoring force on a unit length of disloca- 
tion is zero, the fluctuation of this restoring force is not 
zero. If the limiting case of  a rigid dislocation line is 
considered, then N abarro predicts (Eq. [22], Reference 18) 
that the average restoring force should be zero and 
concludes that the yield stress vanishes in the rigid dis- 
location (infinite F) limit. It has been shown t19'271 that 
the average value of the restoring force is zero if the 
average is taken over all positions of the dislocations on 
the slip plane, as it should be. However, for any given 
position, there can be a large restoring force on a unit 
length of dislocation line. As shown in Reference 27, 
the maximum restoring force on a straight dislocation 
scales as inversely proportional to the square root of the 
dislocation line length. The numerical results of 
Reference 27 generated a yield stress that varied be- 
tween 10 and 100 pct of the experimentally expected yield 
stress at absolute zero as the line length varied between 
10 -~ and 10 -4 c m .  These later lengths are typical dis- 
tances between pinning points (e.g., grain and subgrain 
boundaries) in most test specimens. Unfortunately, 
Nabarro does not properly account for the fluctuations 
in this restoring force that dominate the critical stress in 
the Mott limit. In the next section, we address the issue 
of fluctuations in more detail. 

I I I .  M O T T  L I M I T  ANALYSIS  

Kuo and Arsenault f271 have provided a detailed nu- 
merical analysis of the movement of a straight disloca- 
tion in a concentrated solid solution. This is the extreme 
Mott limit of infinitely large line tension. They obtained 
a critical stress as: 

Fo 
[5] 

~ -  bLl/2 

where Fo is proportional to [c(1 - c)] ~/2 over a very 
wide concentration range, and L is the length of  the 
straight dislocation line segment. Even though their scat- 
ter was very small, it may be argued that this is still a 
numerical result and subject to some variance. Hence, 
we now present two models, which obey the key as- 
sumption made in initiating the Labusch statistical treat- 
ment (po, is small, Eq. [4]) and which also generate a 
c 1/z dependence in the critical stress, which are trivially 
soluble in the Mott limit. 

The two models are (I) a regular array of obstacles, 
with spacing 1 and (II) an array of obstacles which are 
randomly placed, on average, a distance l apart, along 
straight lines with each line parallel and regularly spaced 
a distance l apart. In the Mott limit (large line tension, 
small obstacle strength), the dislocation is treated as a 
straight entity. A dislocation line of length L experiences 
a maximum restoring force of (L/l)fo (each obstacle 
consists of a potential well with slope fo) when aligned 
along the parallel lines in model II or the regular arrays 
in model I. If the obstacles are placed on a three- 
dimensional lattice, with lattice spacing b, then the con- 

centration of obstacles on the slip plane is c = b2/l 2 for 
both models. For both models then, the critical stress ~'c 
is given by the relation: 

r,b = maximum restoring force per unit length 

=(~)b=foC ~/2 [6] 

Note, for both models, that the restoring f o r c e - - w h e n  
averaged over the slip d i rec t ion-- is  zero. (When the 
dislocation approaches a repulsive obstacle, it experi- 
ences a force fo opposite to the direction of dislocation 
motion. As the dislocation passes the obstacle, it expe- 
riences a force fo in the direction of motion.) This av- 
eraged restoring force also vanishes for a straight 
dislocation line in a fully random lattice. Note further 
that the Labusch parameter in Eq. [4] is small and in- 
deed, vanishes. Here, we clearly see the failure of fo- 
cusing on an average force and ignoring fluctuations in 
the restoring forces. 

We introduced these two models since we can follow 
an analysis of these models using the statistical treatment 
of  earlier authors. This immediately exposes the weak- 
ness of their approach, namely that fluctuations can be 
ignored and the yield stress can be equated to an average 
restoring force (as demonstrated by noting that their yield 
stress becomes zero in the infinite line tension limit). 
Now, it might be argued that these models still are quite 
regular. Perhaps there is some subtle effect in going to 
a fully random model. To the contrary, as we now es- 
pouse, the consideration of fluctuations is even more 
crucial in a fully random model. 

In our two models, every obstacle is a "hard spot," 
i.e., contributes to the critical stress. In a fully random 
model, there is considerable cancellation among the force 
fields due to the individual obstacles. I29~ The "hard 
spots" - -  the regions of large restoring forces- -cons is t  
of very special obstacle geometry. They consist of one 
or more obstacles (solute atoms in the treatment given 
in the succeeding paper) lined up along the dislocation 
line and surrounded by vacant lattice sites. Such an array 
is more effective than a general arrangement of n obsta- 
cles over some small region since, in general, the in- 
dividual force fields from the obstacles cancel, leaving 
a small net contribution to the restoring force, t291 In a 
fully random model, the critical stress is related in- 
versely to the spacing between these hard spots. In con- 
trast to our models I and II, there is no clear cut definition 
in a fully random model as to precisely what constitutes 
a hard spot. However, clearly they are related to fluc- 
tuations in the obstacle distribution and not to averages 
of the obstacle distribution. 

We close this section by proposing a revised approach 
to a statistical theory. Labusch focuses on an average 
force as: 

(F) = f p(x ,y )F(x ,y)  dx dy [7] 

Here, p(x,y) is the obstacle distribution seen by the dis- 
location line, and F(x,y) is the restoring force at (x,y) 
due to an individual obstacle. As Labusch points out, 
p(x,y) becomes equal to c for a straight dislocation line 
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(or in the extreme Mott limit). This average force van- 
ishes for a straight dislocation line leading to a vanishing 
critical s t ress / f  zcb is proportional to (F) .  We argue that 
consideration should be given to the fluctuation average: 

AF ~- ( (F 2) - (F)2) '/2 [8] 

where 

(F  2) = f p ( x , y ) F Z ( x , y )  dx dy [9] 

If  AF ~ (F) ,  then the average restoring force controls 
the critical stress. However,  as is the case in the Mott 
limit, if AF >> (F) ,  then AF controls the restoring force. 
In the latter case, it is fluctuations in the obstacle dis- 
tribution which generate hard spots which, in turn, de- 
termine the critical stress. For a straight dislocation, 
p = c and (F)  = 0, so that: 

A F  = cl/Z[f  F2 (x , y )  dx dy] l/z [10] 

This again demonstrates the square root dependence of 
the critical stress on the concentration and that the crit- 
ical stress does not vanish in the extreme Mott limit. 

To sum up, the c 2/3 dependence in "rc, obtained by 
Labusch by equating (F} to zcb, actually behaves as 
C2/3F-1/3.1181 The c I/2 dependence obtained by Kuo and 
Arsenault (which accounted for fluctuations) is in the in- 
finite F limit. In the infinite F limit, the only terms which 
remain (do not diverge or go to zero) behave as F ~ (the 
line tension of a straight dislocation). Hence, the yield 
stress derived by Kuo and Arsenault actually behaves as 
cl/2F ~ The term "weak obstacle" can be viewed alter- 
natively as referring to "large line tension" (see Eq. [14] 
or the Labusch parameter in Eq. [4]). Hence, we can 
assess the relative importance of the Labusch vs Kuo- 
Arsenault contributions in the Mott limit by investigating 
their large F behavior. For any given concentration c and 
for a sufficiently large F, the Labusch C2/3F -1/3 depen- 
dence will be dominated by the Kuo-Arsenault c~/2F ~ 
term in the critical stress. 

Finally, it should be pointed out that these analytical 
theories of  the Mott statistics do not result in a specific 
value of the yield stress, since various key parameters 
(e .g. ,  obstacle strength) remain ill-defined without any 
direct relation to measurable quantities. 

We close this section by noting the work of Nixon and 
Mitchell, t3~ which has been referred to by Nabarro as 
"very careful" experiments, f~81 The data was analyzed by 
Nixon and Mitchell using statistical methods. Over the 
entire concentration range from 2 to 1 3.2 at. pct, a best 
fit of  data gave a concentration dependence of c ~ 

IV. S I M U L A T I O N  P R O C E D U R E  

The details of  the simulation procedure are provided 
in the following paper. In the procedure, a fcc lattice 
was generated, and substitutional solute atoms were ran- 
domly distributed with a concentration range from 0.1 
to 10 pct. This paper will be confined to the interaction 
between an edge dislocation strain field and the strain 
field due to a solute atom size m i s f i t - - t h e  dominant 
interaction in our model. The interaction force per unit 

length on this dislocation due to the i-th solute atom, at 
position z along the dislocation line, is: 

~ z+b/2 

f(i)size = o ' ( i ) s i z  e dz [11] 
d z -b~2  

o . ( i ) s i z  e : 6lxer3oxy[x 2 + y2 + zZ]-5/2 [12] 

Here,/x is the shear modulus, ro is the radius of  the solvent 
atom, e is the misfit strain due to the size difference 
between the solute and solvent atoms, and b is the Burgers 
vector. The dislocation line is originally oriented in a 
straight line parallel to the z axis, and the force is the 
component in the slip direction, which is taken to be 
parallel to the x axis. For the purpose of evaluating the 
force, the origin is placed at the site of  each solute atom. 

The net force on a dislocation line segment at position 
(x ,z)  in the slip plane is then: 

N 

Fs(x ,z)  = Z f ( i )  [13] 
i -1  

The interaction is cut off  at an outer radius of  4b. A 
separate study by Kuo and Arsenault c271 indicated that 
over a number of  random solute atom configurations, the 
total force on a given segment of  the dislocation line was 
written at 10 pct of  the asymptotic value (determined at 
a cutoff distance of 50b) when the interaction range was 
truncated to 4b. The reported results also exclude the 
nearest neighbor atoms, as discussed in the following 
paper. Basically, these short-range interactions were ex- 
cluded due to our lack of confidence in the use of  elastic 
limit results on such an atomic scale. However, as a check, 
simulations also were run which included nearest neigh- 
bor terms, with these results in agreement with our quali- 
tative conclusions regarding the yield stress dependence. 
The magnitude of the yield stress increased, but the con- 
centration dependence remained the same. 

The force balance equation on each 1 b long segment 
of  dislocation line is: 

d2x Fs (x , z )  
F - - + - - + ~ - b = 0  [14] 

dz 2 b 

where ~- is the externally applied shear stress. Unless ex- 
plicitly stated otherwise, F was chosen as 0 .5 /xb  2. (The 
Mort limit is obtained with a weak obstacle strength.) 
An iterative method used in solving Eq. [14] is ex- 
plained in the following paper. Equation [14] involves 
the difficult function Fs, which is random in both am- 
plitude and period, as is shown in Figures l(a) and (b). 
Certain boundary conditions must be imposed at the ends 
of  a dislocation line of  total length L. The results depend 
upon the z dimension of the sample, but approach their 
asymptotic value to less than 10 pct at z - 250b and to 
less than 1 pct at z - 500b. The length z is the minimum 
length of the dislocation line, i .e. ,  if it were perfectly 
straight. However,  the dislocation does not remain 
straight, so the length of the dislocation is greater than 
the z dimension. 

V. N U M E R I C A L  R E S U L T S  

Before beginning a discussion of the numerical results 
associated with the Mott limit, let us consider the 
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Fig.  1 - - ( a )  A force map  for a por t ion of  the s l ip  p lane  for a d i lu te  
fcc solute  solut ion.  The ver t ica l  axis  is the in terac t ion  force be tween  
the solute  a toms  and the d i s loca t ion  l ine wh ich  l ies  a long  the z axis  
and is m o v i n g  in the pos i t ive  x direct ion.  A pos i t ive  force opposes  
the mot ion  of  the d is loca t ion ,  and the nega t ive  force (the va l l eys )  a ids  
the mot ion  of  the d i s loca t ion  in the pos i t ive  x direct ion.  (b) A con tour  
force m a p  of  the same  sol id  so lu t ion  and the por t ion of  the sl ip p lane  
as shown  in (a). Aga in  the d i s loca t ion  l ies  a long  the z axis  and  is 
m o v i n g  in the pos i t ive  x di rect ion.  

numerical results obtained for the Friedel limit or low 
concentration, since there is general agreement concern- 
ing the concentration dependence in the Friedel limit. 
Also, by considering the Friedel limit, it is possible to 
compare the configuration of the dislocation line as ob- 
tained by present numerical technique with that pre- 

dicted by the solution of  Eq. [14] using the "shooting 
technique. "t]gl (The latter technique is a numerical ap- 
proach to solving differential equations with given 
boundary values. The solution is started at one boundary 
and with assumed value(s) for the lower order deriva- 
tives, the latter one used to "shoot" or bootstrap the so- 
lution numerically to the other boundary. The values of  
the initial derivative(s) (or "shot direction") are adjusted 
until the solution at the second boundary matches the 
required value.) It was found that the dislocation con- 
figuration was identical. In this simulation, a large misfit 
strain (of 0.15) and very low concentrations were used 
to obtain the concentration dependence of the yield stress. 

As mentioned in Section II, ensuring that the concen- 
tration range is within the Friedel limit requires very small 
concentrations. The lower limit of the concentration that 
can be used in a computer simulation is determined by 
a limitation on the memory of  our computer. The max- 
imum size sample that can be accommodated is 5 x 
10 6 atom sites. For a c = 10 -4, this results in 500 solute 
atoms. It should be pointed out that even this number of 
solute atoms (obstacles) is below that which is required 
(1000 obstacles) to ensure reasonable data. 127] Figure 2 
is a plot of yield stress v s  c ~/2 in the concentration range 
fi'om 10 -4 to 10 -2. For given random array, and the other 
parameters held constant, the variation in ~" at a given 
concentration is very small, i . e . ,  within the data point, 
but if different random arrays are employed in the lowest 
concentration range, 7 varies --+5 pct. I f  we consider the 
solid line which is a least squares fit of the data (without 
the requirement that at c = 0, r = 0), the intercept at 
c = 0 results in a positive r. Even at the lowest con- 
centrations (c -- 10 4), the data lie close to the solid 
line/straight line fit. Note that the yield stress must van- 
ish at c = 0. Hence, the Friedel limit r -- c relation must 
be something like the dashed line in Figure 2, which dis- 
tinctly deviates from the higher concentration (solid line) 
behavior. From this, we would conclude that the upper 
limit concentration of  the Friedel statistics is less than 
10 -4 for the conditions of this simulation. 

The above data indicate that the strengthening in the 
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Fig.  2 - - A  plot  o f  the rat io of  s tress  vs  the y ie ld  s t ress  at the maxi -  
m u m  concent ra t ion  as a funct ion of  concent ra t ion .  The  concen t ra t ion  
range  var ies  f rom c = 10 -4 to r = 10 -2. Th is  low concent ra t ion  range  
was  chosen  to approach  the Fr iedel  l imit .  
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Friedel limit is greater than in the Mott limit. This can 
be understood as follows. In the Mott limit, there is con- 
siderable overlap of obstacles (cancellation of the stress 
fields of the solute atoms). This cancellation does not 
occur in the Friedel limit for incremental changes in the 
concentration. Hence, each new solute atom is more 
"efficient" in its stress field (the slope of the ~--c curve). 
The question arises as to whether this change in slope in 
the r-c plot is detectable. We have not been able to 
find any experimental investigations of the yield stress 
at 4.2 K at concentrations below c = 10 -2, and in gen- 
eral, the scatter in the experimental results at low con- 
centrations would not allow a determination as to whether 
the plot of "r v s  c 1/2 should give a zero intercept at c = 0 
or a positive value. If we consider that computer sim- 
ulation data over a wider range (Figures 5 and 6), then 
again the change in slope at very low concentration is 
not detectable. 

In the Mott limit, the obstacle strength ( i . e . ,  misfit 
strain) is sufficiently weak and the concentration suffi- 
ciently high that the dislocation assumes an almost straight 
geometry. Various authors have disagreed over what pa- 
rameter range corresponds to the Mott limit. We will 
adopt an empirical approach and allow the equilibrium 
dislocation geometry to determine when our model is in 
the Mott limit. Figures 3 and 4 display a typical dislo- 
cation equilibrium configuration at a concentration of 0.05 
and a misfit strain of - 0 . 0 1  and - 0 . 0 6 ,  respectively. At 
a misfit strain of - 0 . 0 6 ,  the maximum amplitude of the 
excursions of the dislocation in the slip direction (Ax) is 
less than 2b over a dislocation length of 100b. At a mis- 
fit strain of - 0 . 0 1 ,  this becomes less than lb ,  suggest- 
ing that this is well within the Mott limit. There is an 
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Fig. 3 . - -A  portion of the dislocation line at static equilibrium as it 
traverses the slip plane. 
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Fig. 4 - - A  portion of a dislocation line at static equilibrium as it tra- 
verses the slip plane. This is to be compared with Fig. 3 which has 
a solute of a higher misfit strain. 

increase in Ax,,~ ( i . e . ,  maximum amplitude) with an in- 
creasing concentration. For example, at e of 0.06, Axmax 
increases from 0.5 to 2.6b as the concentration increases 
from 0.001 to 0.1. 

In Figures 5 through 8, we present plots of yield stresses 
as a function of c 2/3 or as a function of c ~/2 at two dif- 
ferent misfit strains obtained from our model. The solid 
circles in the figures correspond to a dislocation line length 
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Fig. 5 - - A  plot of the ratio of the yield stress vs  the yield stress at 
the maximum concentration of 10 pct as a function of concentration. 
The data were obtained for different lattice sizes, i . e . ,  a different number 
of atoms in the lattice, different random arrays of solute atoms, and 
different increments of stress for the forward motion of the dislocation. 
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Fig. 6 - - A  plot of  the ratio of  the yield stress v s  the yield stress at 
the maximum concentration of  10 pct as a function of  concentration. 
The data were obtained for different lattice sizes, i.e., a different number 
of  atoms in the lattice, different random arrays of  solute atoms, and 
different increments of  stress for the forward motion of the dislocation. 

12 
1.0 zx 

0,8 

r 0.6 
TO 

0.4 

0 . 2  " / ~DIFFERENT RANDOM NUMBER 

 ,Ugo g 
0,01 I I I I 

0 0.05 0.1 0.15 0 . 2  
C 2 / 3  

Fig. 8 - - A  plot o f  the ratio of  the yield stress v s  the yield stress at 
the maximum concentration of  10 pct as a function of  concentration. 
The data were obtained for different lattice sizes, i.e., a different number 
of  atoms in the lattice, different random arrays of  solute atoms, and 
different increments of  stress for the forward motion of  the dislocation. 

of  about 50010. The data points (A) are also provided for 
a dislocation line length of  about 500b but were obtained 
with a different random configuration of  solute atoms. 
An increase in dislocation line length to about 1000b 
(IS]) resulted in no significant change in yield stress. 
A stress iteration step size that is a factor of  10 larger 
than that used in the generating of  the other data points 
( �9 did result in a higher stress value. As explained in 
the succeeding paper, the use of  a coarser stress step size 
in the iterative solution o f  the equilibrium Eq. [14] leads 
to a less accurate solution. Inclusion of  these additional 
data points provides some measure of  the variance in our 
numerical results. In particular, the negligible change in 
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Fig. 7 - - A  plot of  the ratio of  the yield stress v s  the yield stress at 
the maximum concentration of  10 pct as a function of  concentration. 
The data were obtained for different lattice sizes, i.e., a different number 
of  atoms in the lattice, different random arrays of  solute atoms, and 
different increments of  stress for the forward motion of the dislocation. 

the yield stress for our stress iteration step size (the solid 
circle v s  open circle points) and a dislocation line length 
of  about 500b v s  about 1000b (the solid circle v s  ( [ ] )  

points) suggest the numerical accuracy is quite 
satisfactory. 

Included in Figures 5 through 8 are straight lines con- 
necting the origin (zero concentration, zero yield stress) 
with the closed circle data point at a concentration of 
0.10. All o f  the data plots in these figures are within the 
Mott limit, if the Mott is defined as the condition such 
that amplitude of  the dislocation fluctuation is < 2 b .  It 
is clear from Figures 5 and 6 that the simple straight line 
fit to a c ~/2 power law works remarkably well  over the 
ENTIRE concentration r a n g e - - w i t h  one constant of 
proportionality. In contrast, Figures 7 and 8 indicate that 
a c 2/3 power law provides a substantially worse fit over 
the entire concentration range. A least squares fit of  the 
data in Figures 7 and 8 results in a reasonable straight 
line fit, but at zero concentration, a positive value of 
stress is predicted. A nonzero value of  stress is not pos- 
sible at zero concentration. 

Of course, the analytical models predict a c 2/3 behav- 
ior only in the Mott limit. Kocks e t  a l .  t2~ suggest the 
Mott limit begins at a concentration of  about 0.002 at 
a misfit strain of  0.01 and at a concentration of  about 
0.005 at a misfit strain of  0.06.  Labusch places these 
limits at even lower concentrations: about 0.0001 and 
0.001,  respectively. If we  accept the Labusch estimates, 
all of  our data points are in the Mott limit. 

It may be argued that the computer simulation data 
do result in a reasonable fit o f  c 2/3 dependence 
(Figure 9), and at low concentrations, the Friedel statis- 
tics apply, as indicated by the dashed line in Figure 9. 
However, here the change in slope going from the Friedel 
limit (dashed line) to the Mott limit (c 2/3 solid line) in 
Figure 9 is quite drastic. While he argued earlier that the 
incremental strengthening in the Friedel limit is greater 
than the incremental strengthening in the Mott limit, the 
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Fig. 9 - - A  combined plot of the yield stress vs the combined plot of 
the ratio of the yield stress vs the yield stress at the maximum con- 
centration as a function of concentration. Two different concentration 
dependencies are shown, and these are c 2/3 and c 1/2. 

change in the slopes required of the two curves is, in our 
opinion, unreasonably large. 

VI. C O N C L U S I O N  

A detailed consideration of  the Friedel and Mott limits 
was undertaken to determine whether the previously as- 
sumed concentration dependencies for these limits were 
valid. 

As is to be expected, the data obtained both analytically 
and numerically in the Friedel limit agree with the pre- 
viously assumed concentration dependence o f  c i/2. How- 
ever, in the case of  the Mott limit, numerous assumptions 
had to be made by previous investigators in order to ob- 
tain an analytical solution. One of  these assumptions was 
that the yield stress should be equated to the a v e r a g e  of  
interaction force between the solute atom and the dis- 
location. The average force over a very long dislocation 
line is equal to zero. If the yield stress is equated to the 
root mean square of  the interaction force, then a con- 
centration dependence of  c ~/2 is obtained for the Mott 
limit. Further extensive numerical analysis results in a 
confirmation of a c u2  concentration dependence for the 
Mott limit. 
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