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Defect equilibria for binary semiconducting compound phases which exhibit ionized native donor and 
acceptor defects were considered, and equations describing the pressure-temperature-composition 
relationships for these compound phases were derived. These equations were used to analyze experi- 
mental data from the literature for tin telluride. Excellent agreement was obtained between calculated 
thermodynamic and phase boundary values and experimental data. The approach presented is readily 
extended to obtain equations for the thermodynamic properties of ternary and higher order semi- 
conducting compound phases. 

I. INTRODUCTION 

THE IV-VI semiconducting compounds have narrow band 
gaps and may be used for infrared detectors and tunable 
lasers. These compounds have appreciable ranges of ho- 
mogeneity and their semiconducting properties depend 
strongly on the extent of deviation from ,the stoichiometric 
composition. In order to optimize the conditions for growing 
crystals, it is essential to have a knowledge of the pressure- 
temperature-composition relationship within the homoge- 
neous range. Using a statistical thermodynamic approach, 
Brebrick ~ has derived equations for the chemical potentials 
of the component elements as a function of deviation from 
the stoichiometric ratio. Because of his definition of the 
partial Gibbs energy of the component elements in terms of 
the defect concentrations, however, extension of his ap- 
proach to ternary phases is difficult. Brebrick 2 subsequently 
applied these equations to analyze the pressure-temperature- 
composition data of SnTe and PbTe. One of the parameters 
of the model is the intrinsic carrier concentration at the 
stoichiometric composition. To treat the temperature depen- 
dence of the intrinsic carrier concentration, Brebrick 2 as- 
sumed that In ni = A + B/T, with ni being the intrinsic 
carrier concentration. This cannot be correct, because we 
know from theoretical considerations that In n~ must have a 
3/2 In T term.3 This point is treated later. 

By considering the chemical equilibrium of defects, 
Harman and Strauss 4 derived equations to represent the 
pressure-temperature-composition dependence of semicon- 
ducting compounds which exhibit singly ionized native 
donor and acceptor defects. Extension of their approach to 
semiconducting compounds which exhibit doubly ionized 
native donor and acceptor defects yields equations which 
are mathematically complex. Application of these equa- 
tions to describe the thermodynamic properties of semi- 
conducting compound phases is cumbersome. The data 
for PhS were analyzed by Harman and Strauss 4 using the 
equations derived by them for singly ionized native donor 
and acceptor defects. 

The objectives of the present study are (1) to derive ther- 
modynamic equations for binary, ternary, and higher order 
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semiconducting compounds which have native donor and 
acceptor defects and (2) to analyze the pertinent data for 
SnTe in terms of the derived equations. 

II. DERIVATION OF THE 
THERMODYNAMIC EQUATIONS 

A. Binary Semiconducting Compound Phases 

Let us consider a semiconducting compound phase MX 
exhibiting predominant Schottky defects. These defects are 
completely ionized vacancies on the metal and metalloid 
sublattices, respectively. For native donor defects, we have 
the following defect equilibrium: 

M(g) = MM + r]~ z + z,_ [1] 

where M(g) represents pure metal in the gas phase, MM 
represents the metal atoms on the metal sublattice, [[]~z is 
the vacancy on the metalloid sublattice with a Z degree of 
ionization, and e- is an electron. Similarly, for native ac- 
ceptor defects, we have the following equilibrium: 

1 
~X,(g) = Xx + [-q,~z + Zh ~ [21 

where X2 is pure gaseous X2, Xx is the metalloid atom on the 
metalloid sublattice, [---]~z is the vacancy on the metal sub- 
lattice with a Z degree of ionization, and h + is a hole. The 
equilibrium between the component elements and the com- 
pound phase is 

1 
M(g) + ~X2(g) --= MX (c) [3] 

When the defect concentrations are small, we may obtain 
the following relations: 

= [K, PM] ''z 
n L--~7 j [4] 

P = L [-l~; z J [51 

and 

LpxzJ 
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where n is the concentration of the electrons and p that of 
the holes. Eliminating pn from Eqs. [4] and [6] yields 

[ K~K3 I ''z 
n = /1~1~1/2/  [7] 

LI Ix px2a 

At the stoichiometric composition, Eqs. [7] and [5] become 

. KIK3 ],,z 
ni = . ~ z . o  o ,i2, [8] 

kl lx Px2 J 

and 

[K2 (p ~)"21 ,,z 
P, = [ [-]~z.o j [91 

From Fxis. 171, [81 and 151 and [9], we obtain 

n = n,{PD;"~ ''z 
L'-~TJ tpx2J J [10] 

P = P'{L--~J I_P~2_l J [111 

Since n~ = p~, Eq. [111 becomes 

rr  ,..ol [ l,q ,,, 
P -- Lp~/ J 1121 

Subtracting Eq. [101 from Eq. [12] yields 

p - n -  { r D ~ , . o l  r ~ l , , : } , , :  
n, L [-lff z J LP~2J 

f r  m ; z  1 - ' "  
- t L ~ l  LpLJ 

[13] 

The above equation may be simplified for a nondegenerate 
semiconductor as given below. For a nondegenerate semi- 
conductor, 

np= n~ = p~ [14] 

([-]~z) ([-]uz) = Ks = ([-l~ z'~ (i'-]D z~ 

= (["l~Z'~ 2 = ([ZDz'~ 2 [151 

In order to maintain electrical neutrality, we have 

(n  - p )  + Z ( [ - - ] ~  z - [ - - ] } z )  = 0 

From Eqs. [13] and [15], we obtain 

p - n  = {r.:'21 [ ~ l " ~ l " z  
ni L[-1DzJ Lp~,~J J 

_ ' '  

tL[--lDZJ Lp~:J J 

[16] 

[17] 

Using a hyperbolic sine function to represent the RHS of 
Eq. [17], we have 

p - n  _ 2s inh In 
ni LI-]DzJ LP}2I J J [18] 

Alternatively, the above equation may be represented as 

( p - n )  ~ LI IDLJ [ KJ'2 ] - 2 - 1  ln[--~~ ] kPx2J [18A] Z sinh-' = l n , ~ ,  + 

We will next use the electrical neutrality equation to express 
[---]~z in terms of K,. Dividing, Eq. [16] and rearranging of 
terms yields 

[ m ; Z l  
i,2 v2 k ,i2 [191 zK, LK, / K, I 

Eliminating ~z from Eqs. [15] and [19] yields 

, rm 'l-' ZKJ n L KJ '2 / - L KJ '2 J [20] 

Again using a hyperbolic sine function to represent the RHS 
term of Eq. [201, we obtain 

sinh_,[p - ,,] = ,-~:~---.  _ , [ [ ' - l M  z ]  
L 2ZKJ'2J lnL KJ'-' / [211 

Eliminating the term In [[-"]~Z/K~/2] from Eqs. [18A] and 
[21] and rearranging of terms yields 

In px2 = In p]~2+2Z s inh- l ] -~-~_ n] 
L / . I l l  j ,  

+2  s i n h - ' [ ~ l  122] 
L2ZK, I 

From Eqs. [6] and [22], we obtain the corresponding equa- 
tion for the chemical potential of the metal component as 

lnpM = I n p U t -  2Z sinh -~ p - n 

- 2 sinh_ ~ [ ~ ] p  - n [231 

If values of p~ and P}2 are known at the stoichiometric 
composition, these equations contain two parameters, ni and 
K,. Values of n, and K, may be obtained by optimization 
from experimental data as a function of composition and 
temperature. In addition, the value of P,~2 may be obtained 
by optimization from experimental data since the phase may 
not be stable at the stoichiometric composition. In fact, even 
when the phase exists at the stoichiometric composition, 
the experimental value of P}2 may not be available and the 
second approach may be the preferred way for obtaining the 
best values of P~2, ni, and K,. 

Equations [22] and [23] are the same as those obtained 
by Brebrick ~'2 from statistical thermodynamics. Since 
Brebrick defined the chemical potential of the component 
elements in terms of the number of moles of the vacancies 
formed, it is difficult to extend the treatment to ternary 
phases. As will be shown in the next section, the present 
approach may be extended readily to ternary and even 
quaternary phases. If Z is set equal to 1, Eqs. [22] and 
[23] reduce to the same equations obtained by Harman and 
Strauss. 4 As mentioned earlier, application of their equa- 
tions for compound phases with doubly ionized donor and 
accepter defects is cumbersome. 

B. Ternary Semiconducting Compound Phases 

For a ternary compound phase, (Mr, M2) X, we may have 
the following equilibria: 

M~(g) = (M,)M + [--]~z + Z,- [24] 
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M2(g) = (M2)M + [--]~z + Z<- 

1X2(g) Xx [-]D z Zh" + + 

[251 

[261 

1 X M,(g) + ~- 2(g) = M,X(sol'n) 127] 

1 
M2(g) + ~-Xz(g) = M2X(sol'n) [281 

where (sol'n) stands for the solid solutions between M~ X 
and M2X. These may be represented as (Mi)t_y (M2)y X, with 
y being the mole fraction of M2X in (M~,M2)X. From 
Eqs. [24] through [28], we have the following relations: 

l"Z [29] 
n = L l__]~z j 

= [ ~ ]  ,,z [30] 
n L 1 - I / J  

,,z 

P = L I-1D ~ J [31]  

it";-,' = p.,.,, pJ<] I321 

Kf8 ~ = pM2pl'~ [33] 

Following the procedure used for binary compound phase 
MX from Eq. [71 to Eqs. 122, 23], we obtain the following 
three equations for the partial pressures of X2, M~, and M2 as 

In Px2(Y)= In P}2(Y) + 2Z s inh- ' /p  - n/  
L 2ni J 

+ 2 sinh - I [ ~ ]  p - n 1341 

r 1 
In Pu, (Y)= In p~ 2Z s inh- ' /p  - n/  

k 2n, J 

p - - n  

In PM2(Y) = In p~ 2Z sinh- ' [  p - n] 
L 2ni J 

[351 

- 2  sinh-t [ ~ ]  [36] 
L 2ZK, 1 

where y specifies the mole fraction of M2 X in the solid 
solution (M0t-y(M2)y. These three equations describe the 
composition dependence of the chemical potentials of .If.,, 
MI, and M2 as a function of the metalloid composition at a 
specified value of y. Values of In P~2, In p ~ ,  and In p~: 
may be obtained directly from experimental data. Alterna- 
tively, we may have a thermodynamic solution model to 
describe (MI, M2)X as a quasibinary using a quasi-regular or 
quasi-subregular model. The model parameters may be ob- 
tained from direct thermochemicai data or estimated from 
other pertinent data. With this approach, Eqs. [24] through 
[26] may be rewritten in terms of the chemical potentials of 
M~,X2 and M2,X2 for M~X and M2X. 

For a quaternary phase, we may follow the same approach 
by writing the appropriate defect equilibria and then derive 

the pertinent equations for the partial Gibbs energy of the 
component elements. 

III. THE TIN TELLURIDE 

The thermodynamic behavior and phase relationships of 
the Sn-Te binary system, including the semiconducting 
compound phase, SnTe, have been investigated more thor- 
oughly than those of the other IV-VI binaries. The thermo- 
dynamic properties of the liquid phase were measured by 
Nakamura, Himuro, and Shimoji, 5 Rakotomavo, Baron, 
and Petot, 6 and Blachnik and Gather; 7 those of solid SnTe 
were measured by McAteer and Seltz, 8 Ravindar, Mehrotra, 
and Tare, 9 Pool, ~~ Robinson and Bever, U Pool, Spencer, 
and Guadagno, '2 Shamsuddin and Misra, t3 Nesterova, 
Pashinkin, and Novoselova, ~4 Hirayam, Ichikawa, and 
DeRou, ~5 Brebrick and Strauss, t6 Colin and Drowart, n 
Lyubimov and Bespal'teseva, ~8 and Sokolov, Pashchinkin, 
Novoselova, Ryazantsev, Dolgikh, and Klinchikova. ~9 
The liquidus of the binary was determined by Biltz and 
Mecklenburg, 2~ Kobayashi, 2~ LeBouteiller, Martre, Farhi, 
and Petot, 22 Rakotomavo et al., 6 Pool et al., 10 Harris, 
Longo, Gertner, and Clarke, 23 and Rakotomavo et al. 6 The 
range of stability of SnTe is appreciable and was determined 
by Krebs, Grun, Kallen, and Lippert, 24 Umeda, Jeong, and 
Okada, 25 Brebrick, 26 Brebrick and Strauss, ~6 and Shelimova 
and Abrikosov.28 The thermodynamic and phase equilibrium 
data were assessed by Hsieh, Wei, and Chang 29 using an 
associated solution model for the liquid phase. The SnTe 
compound phase was taken by Hsieh et al.29 to be a line 
compound. They obtained excellent correlation between the 
calculated thermodynamic properties, the phase diagram of 
the system, and the experimental data available in the liter- 
ature. More recently, Sharma and Chang 3~ made a review 
of the system which included all pertinent data and the 
model of Hsieh et al. 29 In the present study, the pressure- 
temperature-composition relationships of SnTe were ob- 
tained using the model of Hsieh et al. 29 along the phase 
boundary of SnTe and the measured values within the solid 
phase field. 

Before carrying out the evaluation, let us first discuss the 
temperature dependence of the intrinsic carrier concen- 
tration ni. As mentioned in the introduction, Brebrick 2 ex- 
pressed In ni as a linear function of reciprocal temperature. 
According to the theory of nondegenerate semiconductors, 3 

F27rkT]3'z e x p ( - 2 k T ) [ 3 7 ]  n, = 2L- j (memh) 3/4 

where k is the Boltzmann constant, T the absolute tem- 
perature, and h Planck's constant; m, and ms are the effec- 
tive masses of an electron and a hole; and Eg is the energy 
band gap. If we assume m< and mh to be temperature- 
independent and Eg to be a linear fraction of temperature, 
Eq. [37] may be reduced to 

B' 
lnni  = A' + - -  + 1.5 l n T  [38] 

T 

where A' = ln[2(2"n'k/h2)S'2(m,ms) 3/4] - (OEJOT)I /2k  
and B'  = (-E~o/2k) with E~o being the energy band gap 
at absolute zero. In the present study, the value of B'  is 
calculated from Eso and only A' is treated as an adjustable 
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parameter. The temperature dependence of In ni expressed 
in Eq. [38] differs from that used by Brebrick. 

Let us next examine Eqs. [22, 23]. In addition to n~, the 
other model parameter is Ks. We must also treat P~2 as a 
parameter, since SnTe does not exist at the stoichiometric 
composition. Values of In p~ may be obtained from those of 
In P~2 and the integral Gibbs energy of formation of SnTe. 
In the present study both In Ks and In p~: are assumed to 
vary linearly with the reciprocal temperature as given below: 

D 
In K s =  C + - -  [39] 

T 

F 
lnp~2 = E + T [40] 

We now have a total of 5 parameters, A ', C, D, E, and F, 
whose values must be obtained from pressure-temperature- 
composition data for SnTe. 

Solid SnTe exists only with an excess of Te atoms; ac- 
cordingly, it is a p-type semiconductor. The relationship 
between (p - n) and the deviation from stoichiometry is 

(XTc - 0.5) - (p - n)Ms,rc [41] 
4ZpN 

where Ms.Tc is the molecular weight of SnTe, p is the den- 
sity, and N is Avogadro's number. The density of SnTe, 
obtained from Brebrick, 3~ is given in Table I; since SnTe is 
known to exhibit doubly ionized vacancies, 3~'32 Z = 2. The 
band gap at 0 K, Eeo, is 0.36 eV, according to Burke and 
Riedl. 33 Knowing the values of Z, p, and Ego, values of A ', 
C, D, E, and F were obtained by optimization from the 
pressure-temperature-composition data available in the 
literature.16'3~ These parameter values are given in Table I. 
Figure 1 shows a comparison between the calculated and 
experimental values of log PTc2 within the field of SnTe. 
Agreement is within the uncertainty of the data. Figures 2(a) 
and (b) show comparisons between the calculated phase 
boundary of SnTe and the experimental boundary reported 
in the literature. ~6'26'28'3L32'34"35 Again, excellent agreement 
is obtained between the calculated and experimental data. 
It is noteworthy to point out that we have used the same 
approach to analyze several other IV-VI semiconducting 
phases with equal success. 

APPENDIX 

In the present study, we have derived equations for the 
thermodynamic properties of components of binary semi- 

~r- 
I--- 
QE 

g ,  

PTe 2 IN EQUILIBRIUM WITH SnTe 
10-2 

I~ _ _  ~ i s  STUOY 
5 . .  (T[-R|CH SIDE) HSIEH ET RL, 

I , . . . .  BREBR ICK 

"4-~. x" 
< x ~  ~ +  ~ - ~ , e ~  o 

x b . ,  " "  ~ ~ '~'~ " 

S . .  1079 K /.o~L~.,, ~ 

2. i  I ,$N-eICH 

1 0 - 7 ~  
�9 90 .95 1.00 1.05 1.10 1.15 1 .20 1.25 1 .30  

I O 0 0 / T ( K )  

Fig. 1 --Pressure-temperature-composition diagram for SnTe: comparison 
between calculated and experimental values. 

conducting phases which exhibit native defects. We have 
used the same approach to obtain equations for the proper- 
ties of other types of defects, such as metal and metalloid 
interstitials. For instance, for the case of interstitial defects 
we may have the following equilibria: 

M(g) = M +z + Z e- [A1] 

1 X -~- 2(g) = X ;  z + Zh + [A2]  

Following the procedure presented in Section II, we can 
obtain the desired thermodynamic equations. In fact, for the 
defect equilibria given by Eqs. [A1, A2], we obtain equa- 
tions identical to Eqs. [22, 23]. 

Table I, Thermodynamic and Other Properties of SnTe 

References 

log n,, (co) -~ 
log K]/2 
log P~'e2, atm 
~ - 1 2  ~ ~ ~ s,v, / (Gs, + Gx,) 
kJ/gatom 
19, g/cc 
Z 
Eso, eV 

-906.19/T + 1.5 log T + t6.18 
-2922.9/T + 22.98 
-16,294.79/T + 7.54 
-85098 + 37.99 T 

6.461 
2 
0.36 

673to1079 K 
673 to 1079 K 
673 to 1079 K 
533 to 1030 K 

OK 

this study 
this study 
this study 
29, 30 

31 
31, 32 
33 
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Fig. 2 - - ( a )  The phase boundary of SnTe in equilibrium with the liquid phase: comparison between the calculated and experimental values. (b) The phase 
boundary of SnTe in equilibrium with the liquid phase in terms of hole concentrations: comparison between the calculated and experimental values. 
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