
Calculations of  / /Phase Boundaries 
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The e~/y phase boundaries in Fe-C-X~-X2 quaternary alloys (where X~ = Mn and X2 = Si, Ni, 
and Co, successively) are calculated from the Central Atoms model, as generalized to multi- 
component systems by Foo and Lupis. The interaction parameters are evaluated from the 
Wagner interaction parameters in ternary iron alloys reported in the literature or estimated from 
the interaction parameters in binary alloys. Two equilibrium conditions, para- and ortho- 
equilibrium, are utilized. In the Fe-C-Mn-Si system, a mixed state of equilibrium, in which 
orthoequilibrium is achieved with respect to C and Si while the other two substitutional elements 
(Fe and Mn) are assumed to be immobile (paraequilibrium), is also considered. The calculated 
phase boundaries are employed to evaluate the free energy change for the nucleation and the 
growth kinetics of proeutectoid ferrite in these alloys in companion articles. 

I. INTRODUCTION 

I N  order to analyze ferrite nucleation and growth ki- 
netics, the volume free energy change attending nucle- 
ation and the equilibrium compositions of ferrite and 
austenite first must be calculated. Such thermodynamic 
analyses can be made using an appropriate thermo- 
dynamic model of the solid solutions involved. The 
Hillert-Staffansson (HS) regular solution model IjJ is 
most widely used in the thermodynamic analysis of iron- 
base alloys. Izj In order to take into account deviations 
from random mixing, the quasi-chemical model 131 also 
has been used to analyze ferrite-austenite equilibria and 
the activity of carbon in iron-base alloys. 14j In this 
model, only atom pairs are considered in the evaluation 
of the positional entropy. The central atoms (CA) 
model, 15,6,71 on the other hand, considers the most prob- 
able atom configuration among all atoms in the nearest- 
neighbor shell of  each atom. Because this is a larger 
atom cluster than the one used in the quasi-chemical 
model, the accuracy of evaluating the positional entropy 
and the cohesive energy of the whole system is much 
improved. I< The free energy formulas of the CA model 
for two-sublattice (substitutional and interstitial solutes) 
multicomponent systems were given by Foo and 
Lupis. [Sr Enomoto and Aaronson 19t used these formulas 
to calculate the ferrite(c0-austenite(y) equilibrium phase 
boundaries and the free energy changes attending the 
proeutectoid ferrite reaction in Fe-C-X alloys. 

In the first part of this article, activity expressions for 
quaternary Fe-C-X~-X2 systems are derived from the 
equations given by Foo and Lupis. I~ Second, using these 
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expressions, the para- and orthoequilibrium phase 
boundaries in the three quaternary systems of interest in 
this set of articles are calculated. The three quaternary 
systems are Fe-C-X~ (= Mn)-X2 (= Si, Ni, or Co). Man- 
ganese was chosen as X~ because it has long been known 
as a powerful increaser of  hardenability and also a rel- 
atively tame alloying element that neither readily gives 
rise to a bay in the time-temperature-transformation 
(TTT) diagram nor produces dense arrays of carbides at 
austenite:ferrite boundaries. The three X2 elements were 
chosen for similar reasons. Mn and Ni are well-known 
y stabilizers, Si is an o~ stabilizer, and Co is supposed 
to be neutral. These systems thus yield the combination 
effects of y + a,  y + y and y + neutral stabilizers in 
quaternary systems. It is interesting to see how these 
combinations affect y/(a + y) phase boundaries on the 
basis of the counterpart Fe-C-Mn ternary system. Para- 
equilibrium is a thermodynamic state in which the ratio 
of the number of  substitutional alloying element atoms 
to Fe atoms is the same in ferrite as in austenite. ~m; On 
the other hand, equilibrium with respect to all compo- 
nent species is achieved in the orthoequilibrium state. In 
a quaternary system, we can also conceive of an inter- 
mediate state in which equilibrium with respect to 
carbon and one substitutional element with a higher dif- 
fusivity in austenite than the second substitutional ele- 
ment is achieved. We denote this state as partial 
paraequilibrium. 

In the generalization of the CA model to multi- 
component systems, pairwise interaction between atoms 
is assumed, ts~ Hence, all of  the parameters necessary for 
the calculation can be determined from thermodynamic 
data in ternary systems. The same parameter values used 
in the calculation of Fe-C-X ternary systems fgl can be 
applied to the quaternary systems. Thus, the number of 
parameters used in the calculation of quaternary systems 
is considerably less in the CA than in the HS model. 
The only parameters that do not appear in the ternary 
CA calculations are the interaction parameters between 
X~ and X2 in iron. In this study, they are evaluated ap- 
proximately from an expression derived by Lupis and 
Elliott iS1 and Lupis tIll in the framework of the CA model. 
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I I .  D E R I V A T I O N  O F  A C T I V I T Y  
E Q U A T I O N S  I N  Q U A T E R N A R Y  S Y S T E M S  

A. Coordination Numbers and 
Composition Coordinates 

In the C A  model ,  the part i t ion function is descr ibed  
in terms of  probabi l i t ies  associated with different  con- 
f igurations of  the neares t -ne ighbor  shell and the influ- 
ence of  these various configurat ions  on the f ield acting 
on the substi tutional  or intersti t ial  central a toms under  
considerat ion.  [5.6,7] 

Fol lowing  the nomencla ture  used by Foo and Lupis ,  [Sj 
an m-component  solut ion is assumed to be composed  of  
t substi tutional solutes and m-t intersti t ial  solutes.  The 
configurat ion around a central a tom J must  now be char- 
acterized by the numbers  ik of  neares t -neighbor ing sub- 
stitutional solutes k (k = 2 to t) and the numbers  j~ of  
the neares t -neighboring intersti t ial  solutes / (! = t + 1 
to m). The solvent  is des ignated  by k = l .  The vacancies  
on the intersti t ial  sites are des ignated as solute m + 1. 
On the other hand,  the vacancies on the substi tut ional  
sites are ignored because  of  their  minute concentrat ions.  
Two types of  coordinat ion numbers  are introduced for 
each substi tutional  or intersti t ial  sublatt ice.  The terms Z 
and z designate ,  respect ively ,  the numbers  of  substi tu- 
tional and intersti t ial  nearest  neighbors  to a substi tut ional  
site, while Z '  and z' des ignate  the counterparts  to an 
interstit ial site. The lattice ratio r is defined as the ratio 
of  the total number  of  intersti t ial  sites, N~, to the total 
number  of  substi tutional  sites, Ns. If  Nk is the number  
of  atoms of  the kth component ,  then 

• m 2 
Ns = Nk, NI = NI [1] 

k-- 1 I=t+ 1 

and r is also equal to the ratio o f  z to Z '  

N/  z 
r - - [2] 

Ns Z' 

The coordinat ion numbers and the value  r for the 
body-centered  cubic (bcc) and the face-centered cubic 
(fcc) lattices are summar ized  in Table  I. Foo and Lupis  t81 
used two composi t ion  coordinates  rather than the com- 
monly  used mole  fractions.  One is the ratio of  the atoms 
present to the total number  of  sites on each sublat t ice for 
substi tutional or interstitial.  They are denoted  as Y~ 
where i = 1, 2, 3 and C for Fe,  X~, X2, and carbon,  
respect ively.  The other  is the ratio of  the number  of  
solute atoms to the number  of  the solvent  a toms or the 
vacant interstit ial sites in the case of  intersti t ial  solutes.  
They are denoted as yi. The two composi t ion  var iables ,  
Y, and y~, are writ ten as 

Table  I. Coordinat ion N u m b e r s  and r Values  

Z z Z' z' r (= z/Z') 

Bcc 8 6 2 4 3 
Fcc 12 6 6 12 1 

N~ 
Yk = - -  [3a] 

Us 

when i = k -< t 

N, 
y~ = - -  [ 3 b ]  

N, 

when i = l > t 

N~ 
Yk = - -  [4a] 

NI 

when i = k -< t 

N l  
y~ - [4b] 

Nm+t 

when i = 1 > t. The terms Yi and Yi are related as fol lows 
to the mole  fract ion xi: 

X k Xk 
Yk - m , Yk = m [5a] 

1 -  E x , 1 -  E xi 
l - t + l  i=2 

for i = k <_ t 

1 X! 
Y I  = - "  m , 

r l _  E x  l 
l=t+ 1 

1 X l 
Yt --- - "  [5b] 

1 - x~ 1 + 
I=t+ 1 

for i = l > t. 
In the case of  a quaternary solution of  three substi-  

tutional and one intersti t ial  species,  t = 3, m = 4 ---- C, 
and m + 1 = 5 --- V, where V represents  vacant  inter- 
stitial sites. Using Eqs. [5a] and [5b], Yi and yi in the 
quaternary F e - C - X r X 2  sys tem are descr ibed as 

X!  
Yj - - -  [6a] 

1 - xc 

X2 
Y2 - [6b] 

1 - Xc 

X3 
Y3 - [6cl 

1 - xc 

1 X C 
Yc = [6d] 

r l - x c  

1 X C 
Yv = 1 . . . .  [6el 

r 1 - X c  

Yl = 1 [7a] 

X2 
Y2 = - -  [7b] 

Xl 
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X3 
Y3 = - -  [7c] 

X1 

1 X C 

Yc = [7d] 

r 1 - x c ( l + ! )  

Yv = 1 [7e] 

B. Activity Equations 

In the CA model ,  the Gibbs free energy of  mixing of  
the system containing t substitutional and m-t interstitial 
atoms is expressed as [81 

t t 

GM/RT= 2 nklnYk + r 2 nk In Y,,+, 
k = l  k = l  

+ 
m m 

Z n, In Y~ + 2 nj(ZjAj 
l = t + l  J = 2  

m 

+ zjAj) - 2 nj In Pj  
J = l  

- -  r /7 k - -  n t l n P , n + i  

k ~ 1 l = t +  I 

m 

- ~'~ nktx~/RT [81 
k = l  

where nk and n~ are the number  of  moles of  solutes k 
and l, and/z~ is the chemical  potential o f  pure compo-  
nent i. The terms Aj and Aj are the Lagrangian multi- 
pliers associated with the mass  balance of solute on the 
substitutional and institutional lattices. The term PJ is the 
normalization factor for the distribution probabil i ty of  
atoms. [81 It is expressed as the sum of  the probabili t ies 
of  the most  probable configurations in the nearest- 
neighbor shell with respect  to the central a tom J. The 
activity of  component  i is obtained f rom the standard 
thermodynamic  relationship as follows: 

O(GM /RT)  ,,~.P.r In ai -- [91 
Oni 

From Eqs. [8] and [9], the activities o f  solvent 1, sub- 
stitutional components  2 and 3, and interstitial compo-  
nent C are now written as 

lna~ = l n Y ~  + r l n Y v - l n P i  

- r In P v  - # ~ / R T  [ 1 0 ]  

In a 2 = In Y2 + r In Yv + ZA2 + zA; 

- In P2 - r In Pv - tx~/RT [11] 

In a3 = In Y3 + r in Yv + ZA3 + zA~ 

- In P3 - r In Pv - tx~/RT [12] 

In ac = In Yc + Z'Ac + z'Ab 

- In Pc + In Pv - t x ~ / R T  [ 1 3 ]  

The Lagrangian multipliers Ai and A~ are evaluated 
f rom the fol lowing equations: tSl 

Ai = In w~ + 8g~tl, [14a] 

A; = In w~ [14b] 

where wi and ~o[ are variables,  introduced t*l for mathe- 
matical convenience and related to the Lagrangian multi- 
pliers. The term 6q~li is the difference in the energy state 
of  the central a tom Fe when one a tom of the component  
i is present in the nearest-neighbor shell and when all 
the sites in the same shell are occupied by solvent Fe 
atoms in the substitutional lattice. The normalization 
factor Pj  for each component  is obtained through appli- 
cation of  the general expression derived by Foo and 
Lupis as follows: [81 

PI = YZY=v exp [-q~,o](1 + y2o92 + y3r Z 

�9 (1 + YcWc) z [15] 

P2 = YZI~v exp [-~p02 o] {1 + y2w2(1 - A2 2) 

+ Y3W3(1 - A2 3)} z{1 + YcWc(1 - A2-c)} z [16] 

P3 = YZIXv exp [-qr {1 + y~w2(l - A2-3) 

+ Y3W3(1 - A3 3)}z{1 + YcWc(l - A3-c)}: 117] 

Pc yZ'y~ exp c = [--~Po,o] {1 + y2o9~(1 - A2_c) 

+ y3w~(1 - Z3_c)} z' {1 + ycw~(1 - Ac_c)} z' [18] 

P v  z '  . '  v r = Yl lfv exp [ -  ( + + , ) z ,  ~P0,0] 1 Y2W2 Y3 3 

�9 (1 + yc~o~)  ~' [ 1 9 ]  

where A j_, is a parameter  181 of  the interaction between 
atoms J and i .  A positive value of  Aj-i indicates a net 
repulsion between these atoms,  whereas a negative value 
demonstrates  a net attraction. 

Substituting Eqs. [14a], [14b], and [15] through [19] 
into Eqs. [ 1 0 ] ,  [1 1 ] ,  [ 1 2 ] ,  a n d  [ 1 3 ] ,  the activity equa- 
tions become 

In a~ = ( Z  + r Z '  - 1) In (1 + Y2 + Y3) 

+ {z - r(1 - z')} In (1 + Yc) 

- Z In (1 + y2~o2 + y3r 

- z In (1 + YcWc) - r{Z' In (1 + y2~o; + y3~o;) 

+ z' In (1 + yc~Ob)} [20] 

lna2 = lny2 + ( Z +  rZ'  - 1) In (1 +Y2 +Y3) 

+ {z - r(1 - z')} In (1 + Yc) 

- Z l n  {1 + y2w2(1 - A2_2) q- Y3w3(l - A2-3)} 

- z In {1 + YcWc(1 - A2-c)} 

- r{Z In (1 + y20a" + y3w~) + z In (1 + ycw~:)} 

+ Z '  In o)2 + z' In o); + Z6~I, + ~,o - tz~./RT 

[211 
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lna3 = lny3 + ( Z +  rZ' - 1) In (1 +Ye +Y3) 

+ {z - r(1 - z')} In (1 + Yc) 

- Z l n { 1  + y2wz(1 - A2-3) + Y3~3(1 --  A3-3)}  

- z In {1 + ycO)c(1 - A3-c)} 

- r{Z In (1 + y2w~ + y3o)~) + z '  In (1 + ycWb)} 

+ Z '  In ~03 + z' In w~ + z~gl~, + ~30 - tz~/RT 

I221 

In ac  = In Yc + Z '  [ln (1 + y2w~ + y3w~) 

- In {1 + yzw~(1 - A2_c) 

+ y3w~(1 - A3-c)}] + Z '  In oJ c + 2z' In w~ 

, 1 c _ tx~/RT + Z &PLc + ~Po,o 

[23] 

There are additional constraints provided by the mass 
balance on the substitutional and interstitial lattices, i .e. ,  
the conservation of  the number  of  atoms counted for 
each central atom. Taylor  series expansion of  the mass 
balance equations Isl yields explicit equations for the vari- 
ables w/and o~[ as the polynomial  form. In the quaternary 
1-2-3-C systems (m = 4, t = 3), w, and w[ are given 
a s  

o.12 1 + A2-2Y 2 -}- a2_3Y 3 "q'- a2_2(2A2_2 - l)y 2 

+ a 2 - 3 ( a 2 - 3  q" A3-3 -- 1)y3 

+ {A2-2(2A2 3 -  l )  

~'- A2 -3 (A3  3 -l- A2_ 3 - l ) } y 2 y  3 + . . .  

~o3 = 1 + A2_3Y 2 + a 3 3Y3 + A2 3(A2 2 + A2 3 - 

+ A~3(2A3 3 -  1)y~ 

+ {A3 3(2A2 3 - 1) + A2 3(A3-3 + A2- 3 -- 

1)y~ 

[241 

1)}y2y 3 + ' ' .  

[25] 

~o c = 1 + t~2_cY 2 Jr- /~3-cY3 q- /~2-c(/~2-c -- 1)y~ 

+ A3 c(A3 c -  1)y_~ 

+ {A2 c(A3 c -  1 )+  A3 c(A2-c-  1)}yzy~ 

+ a~ cY~'c + a~-cY3Yc + " "  [26] 

co; = 1 + A2 cYc + A z - c ( A 2 - c -  1)yc 

+ A~ cYzYc + A2-cA3-cY3Yc + " "  [27] 

w~ = 1 + A3 cYc + a 3 - c ( h 3 - c  - 1)y~- 

+ A2 cA3-cyaYc + A~-cY3Yc + " "  [28] 

oo~ = l + Ac-cYc + Ac-c(2Ac-c - 1)y 2 + " ' "  [29] 

where terms are retained up to second order,  assuming 
that Yk and yj are small. 

Substituting Eqs. [24] through [29] into Eqs. [201 
through [23], the activity equations are finally obtained 
as functions of  y/ and the interaction parameter  A j_/. 
From the definition of  the activity coefficient at infinite 
dilution tlu 3', 

[ ~ lim In = In 3'i [30] 
x,~o k Xi-]sl---+O 

and activity Eqs. [21], [22], and [23], the activity co- 
efficients at infinite dilution are expressed as 

In 3'~ = Z a , d ,  + ~o(o - ~ / a r  [311 

In 3'~: = Z691, + ~.o - >~/RT [32] 

In Yc , ~ c _ p,~/RT [33] = Z 691C -]- {~0,0 

Eqs. [31], [32], and [33] express the last three terms 
in the activity Eqs. [21], [22], and [23]. Consequent ly,  
activity Eqs. [20] through [23] are described by the com- 
position coordinate Yi, the interaction parameter  A/_j, and 
the activity coefficient at infinite dilution y~. 

The Wagner  interaction parameter  t~zl is defined by the 
equationt~ 1] 

�9 O in (ai/xi) . . . .  i [34] 
e~ - Oxj  

Similarly substituting activity Eqs. [21] through [23] 
into Eq. [34], the relationships between the Wagner  
interaction coefficient d~ and Foo and Lupis '  interaction 
parameter  a/_j are obtained as 

1 
<_ j  = 1351 

I i 
& - c  - 2Z'  ec  

r{( 
a c - c = - -  ec c -  1 

2Z' 

[36] 

Thus,  the interaction parameter  A/-J is obtained from the 
Wagner  interaction coefficient ~. 

C. Thermodynamic Data Needed for  Calculations 
in Fe-C-Mn-X2 Systems 

Certain thermodynamic  data are required to calculate 
the c~ + 3' phase boundaries in Fe-C-Mn-X2 systems. The 
values of  activity coefficients and interaction parameters  
between solutes are needed for both the ferrite and the 
austenite phases. Interaction parameters  are calculated 
from the Wagner  interaction coefficients using Eqs. [35] 
through [37]. The value of  AG of  pure iron from aus- 
tenite to ferrite is obtained from the tabulation by Orr  
and C h i p m a n )  TM The other values of  AG/are  taken from 
Kaufman,  t~41 and Kaufman  and Nesor.  t~sj However ,  
AGMn and AGs~ were modified to get a reasonable fit to 
the published phase diagrams.  12,~6~ The standard free 
energy difference of  carbon,  AGc, is assumed to be zero 
because the standard state of  carbon used in both ferrite 
and austenite is graphite in the calculation. I6I All of  the 
standard free energy changes used in these computat ions 
are listed in Table II. 

The activity coefficients at infinite dilution and the 
Wagner  interaction coefficients of  the alloying elements 
are calculated tgl f rom thermodynamic  relationships with 
the equations of  the excess free energy of  mixing G~;~ 
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Table II. Standard Free Energy Changes 

m/z._ bcc~ fcc * 
'JMn 

AGgCC~fcc** 

AGNt~ c~rcc 

AGc~o ~ f c c  

interpolation in a data set compiled by 
Orr and Chipman 1131 

3 4 7 7 . 0 -  0 . 5 1 4 T -  2.742 • 10 3 T 2 + 
1.6543 x 10 6T 3 

3314.0 - 2.25 T 
- 3 9 3 2 . 9 6 -  4.1087 x 10 - 3 T  2 + 

0.4853 x 10-ST 3 - 1.41 x 10 9 T 4 

-6953.0  + 0.63137 x 10 2 T 2 _ 

2.8037 • 10 6T 3 

*AG~,  ~ f ~  was  m o d i f i e d  to fit the F e - M n  p h a s e  d i a g r a m  I]61 b y  
add ing  2 0 0 0  J / m o l e  to the equa t ion  d e v e l o p e d  b y  K a u f m a n .  1'41 

w a s  d e v e l o p e d  f r o m  U h r e n i u s '  c a l cu l a t ed  p h a s e  dia-  
g r a m s )  el 

compi led  by Kaufman [14] and Kaufman  and Nesor .  tjSl On 
carbon,  the values repor ted by Foo and Lupis  [171 are used 
for In Yc and hc c in austenite.  As for ferrite,  In ~ is 
taken from Dunn and McLel lan .  [18] The ec c value in fer- 
rite is not avai lable ,  ec c in ferrite is assumed to be zero 
because the carbon concentrat ion in ferrite is so small  
that its influence on the act ivi ty equation is negl igible .  

Mn The values of  A M n  C and Ax~-c are ca lcula ted  from ec 
and e x~ using Eq. [36]. Ki rka ldy  et al. 1~9I have sum- 
mar ized the Wagner  interaction coeff icients  between al- 
loying e lements  and carbon in austenite.  Data  o n  g X2 are 
reported for some a l loying e lements  by Foo and Lupis .  Isl 
The interaction coeff icients ,  Ax2-c in ferrite that are not 
avai lable in the l i terature are assumed to be zero. 

Very little data  on act ivi ty coeff icients  and interaction 
parameters  between the same or  different  species  dis- 
solved in iron have been reported.  The interact ion co- 
efficients between a l loying e lements  o f  different  species,  

X~ �9 Si Ni Co eM-,, that IS, eM,, eMn, or  eMn, may  be es t imated from the 
activi ty coefficients  in three binary systems with the 
equation TM 

e{ = In Y[liw - In "g?], ~ - In T~I,~ [381 

where 1 is the solvent  iron. 
Act iv i ty  coefficients  at infinite di lut ion and interact ion 

parameters  used in this calculat ion are summar ized  in 
Tables  III and IV, respect ively .  

Ternary Fe-Mn-X2 phase d iagrams were calcula ted 
with the CA model  to conf i rm the values o f  interaction 
parameter ,  ~ ,  on Mn and X> Figures  1, 2, and 3 are 
calculated or thoequi l ibr ium a + y phase boundar ies  in 

Fe-Mn-X2 systems,  where X2 is Si, Ni,  or  Co, respec-  
t ively.  The difference between the calculated and 
exper imenta l  y/(a + 7) phase boundar ies  12~ is ap- 
p rox imate ly  0.5 at. pct  Mn at 3 at. pct  Si at 700 ~ in 
the Fe -Mn-S i  al loys and is s imilar  in the Fe -Mn-Co  
al loys.  It is noted that Eq. [38], used to evaluate the 
Mn-X2 interaction parameters ,  is very approximate .  
Cons ider ing  that only a very l imited amount  o f  experi-  
mental  data on the a/T phase boundar ies  were reported 
in these sys tems,  12~ a further modif ica t ion  of  param- 
eters was not made  to force agreement  with the reported 
phase diagrams.  

III. PHASE B O U N D A R Y  C A L C U L A T I O N S  
IN Ee-C-Xl-X2 SYSTEMS 

As was previously  noted,  two types of  a + y phase 
boundar ies  are recognized  in connect ion with the pro- 
eutectoid ferrite react ion in Fe-C-Mn-X2 alloys:  ortho- 
equi l ibr ium and paraequi l ibr ium.  4=,23,24] The former 
represents  the situation in which the partial  molar  free 
energy o f  each component  is equal in both phases.  
Hence ,  the or thoequi l ibr ium phase boundar ies  in qua- 
ternary al loys can be obtained by solving four simulta-  
neous equat ions  as fol lows:  

G7 = G~ [391 

where i is success ively  1, 2, 3 and C. 
In the case of  paraequi l ibr ium,  t25] the ratio of  the con- 

centrat ion of  a l loying e lement  to that of  solvent  Fe is 
constant  in both phases.  If this ratio is des ignated  as 0i 

x7 xy 
0 i -  - - const [40] 

x7 x~ 

where i = 2 and 3 for Mn and X2, respect ively.  
Carbon atoms redistr ibute in a paraequi l ibr ium situa- 

tion so as to permit  their part ial  molar  free energy to 
become uniquely the same in austenite and ferrite: 

G~ = G~ [41 ] 

In the case of  a quaternary system ~26] where t = 3, 

(G7 - G~) + 02(G~ - G~') + 03(G~ - -  G~) = 0 [42] 

and 

x~' x~ x~ 4' 
0 2 - -  - -  03 -- -- [43] 

a T' ot XlY Xl X 1 XI 

Table III. Activity Coefficients at Infinite Dilution 

Ferrite Austenite 

In y~. 
In ~/s~ 
In 3'~i 
In Y~o 
In 7c 
In YSilMn-Si 

In '~NilMn-Ni 
In YColM.-Si 

(4100 + 4.686T)/RT ( -18 ,870 + 16.987T)/RT 
( -129,704 + 7.95T)/RT (-136,817 + 7.95T)/RT 
(1339 + 1.3275 x 10 -3 T 2 -1 .587  x 10 -6 x T3)/RT (2092 - 3.8314 x 10 3 T 2 + 1.6338 x 10 -6 X T3)/RT 
( -36,949 + 5.00 x 10 -e T 2 - 2.170 x 10 -5 X T3)/RT ( -2322  + 2.084 x 10 3 T 2 _ 4.299 x 10 -7 x T3)/RT 
-5.191 + 12,431/T -2 .1  + 5300/T 
(-92,885 - 23.012 T)/RT ( -104,184 - 23.012 T)/RT 
(45,606 + 3.64 T)/RT (51,882 + 10.878 T)/RT 
-26 ,150 /RT  -23 ,849 /RT  
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Table IV. Interaction Parameters 

Ferrite Austenite 

/~Mn-C 
/~Si-C 
/~Ni C 
ACo-C 

"~C-C 
/~'Mn Mn 
/~Si Si 
~Ni Ni 
ACo-Co 
/~Mn Si 
/~Mn-Ni 
~Mn Co 

m 

3.7 - 3750/T 

(-376.5 - 0.983 T)/RT 
(-4707 + 15.12 T)/RT 
( -2369 + 4.095 x 10 3 T 2 _ 1.252 x 10 -6 T3)/RT 
(4251 - 7.044 • 10 3 T + 3.357 x 10 6 T/2)/RT 
(2045 - 2.228 T)/RT 
( 2 5 1 0 -  6.538 x 10 2 T 2 + 9.919 x 10 -s T3)/RT 
(419 - 2.929 x 10 -~ T - 8.297 x 10 -5 T 2 + 

9.919 x 10 -s T3)/RT 

0.155 - 650/T 
0.403 + 614/T 
-0.183 + 633/T 
233/T 
1 - exp [ -0 .1  - 290/T] 
(1572.5 - 1.416 T)/RT 
(-2545.25 + 10.08 T)/RT 
( -3255 + 2.672 • 10 -3 T 2 - 1.139 x 10 6 T3)/RT 
(305 + 1.304 x 10 4 T -  2.685 x 10 8 TF)/RT 
(2146 - 1.999 T)/RT 
(2861 - 2.545 x 10 -1 T + 1.596 x 10- T2)/RT 
(-111 - 7.078 x 10 -~ T -  8.683 x 10 -5 T 2 + 

1.179 x 10 -sT~) /RT 

@ 

< 

4-  

3 L 

, 'oJ 
Fe ~ 2 

i // I 700"c / /  
t I 

] Calculated / !  RivlintZO] 

i W (  / //> 
,, / ,  

/ / I  
I / i  

4 J ,  , , y/o,! , , 
3 4 5 6 7 8 9 10 11 12 

M n ,  A T %  

Fig. 1 - -Ca lcu la t ed  phase boundaries of  Fe-rich region in Fe-Mn-Si 
system at 700 ~ 

In Fe-C-Mn-Si  system, the diffusivity of Si is consid- 
erably higher than that of Mn. 1271 Accordingly,  we can 
postulate that equil ibrium is achieved with respect to 
both Si and C, but no partition of Mn takes place during 
formation of ferrite. In this case, only XMn/XF~ is main- 
tained constant and is the same in ferrite and in austen- 
ite. Such a state, here termed partial paraequil ibrium, 
can be described as 

G~ = G~ [44] 

G~i = Gs~, [45] 

(G~' - G~) + 02(G~ - G~) = 0 [46] 

where 1 is Fe and 2 is Mn. 

IV. RESULTS AND DISCUSSION 

Figures 4, 5, and 6 show calculated orthoequil ibrium 
phase boundaries for the a + 3' region at 700 ~ in three- 
dimensional  perspective for the Fe-rich corner of the 
Fe-C-Mn-Si ,  Fe-C-Mn-Ni ,  and Fe-C-Mn-Co systems, 

114 F e - M n - N i  

l-- 
< 

"7 

I 

23 ~ + T  1 

700~ 

7 

i i ! i i I I I 1 
Fe 1 2 3 4 5 6 7 8 9 10 

Mn, AT% 
Fig. 2 - - C a l c u l a t e d  phase boundaries of Fe-rich region in Fe-Mn-Ni 
system at 700 ~ 

respectively. Figures 7, 8, and 9 show isoconcentration 
sections of X2 through orthoequil ibrium phase bound- 
aries illustrated in Figures 4, 5, and 6. As the Si or Co 
concentrat ion increases, the a + 3' region expands. On 
the other hand,  as the Ni concentrat ion increases, the 
a + 3' region shrinks. Figure 10 shows the effects of X2 
on the orthoequil ibrium 3"/(a + 3") boundary in the 
Fe-C-Mn-X2 system. Isoconcentration sections through 
paraequil ibrium phase boundaries are shown in 
Figures I I ,  12, and 13. Figure 14 shows the effects of 
X2 alloying element  on the 3"/(a + 3') paraequil ibrium 
phase boundary in the Fe-C-Mn-X2 system. Figure 15 
shows calculated paraequil ibrium 3"/(a + 3') boundaries 
a t  XMn]/XFe = Xx2//XFe = 0.03. Figure 16 shows sections 
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Fig. 3 - -Ca lcu la t ed  phase boundaries of  Fe-rich region in Fe Mn-Co 
system at 700 ~ 
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Fig. 4 - -Ca l cu l a t ed  orthoequilibrium phase boundaries of  Fe-rich 
region in Fe-C-Mn-Si system at 700 ~ 

of paraequilibrium, partial paraequilibrium, and ortho- 
equilibrium y/(a + y) phase boundaries in the 
Fe-C-Mn-Si systems when XM~/XF~ = 0.03. The Si 
component is supposed to reach equilibrium at a : y  
boundaries in the partial paraequilibrium state of the Fe- 
C-Mn-Si system. As expected, the phase boundaries of 
partial paraequilibrium lie outside of the paraequilibrium 
phase boundaries and inside of the orthoequilibrium 
boundaries. Generally, the two-phase region of para- 
equilibrium is smaller than the orthoequilibrium phase 
boundaries. 123j This rule holds true with respect to partial 
paraequilibrium phase boundaries, as well. 

12 

11 

F e - C - M n - N i  
Orthoequi l ibr ium at 700~ 

10 

8 

~" 7 < 

�9 -- 6 

Z 

5 
7 

1(I 
9 / 

Mn,  A T %  

F e  

2 ~ '  
3 

4 >-.... 

Fig. 5 - -Ca l cu l a t ed  orthoequilibrium phase boundaries of  Fe-rich 
region in Fe-C-Mn-Ni system at 700 ~ 

Experimental data on phase boundaries are rarely re- 
ported in quaternary Fe-base alloys. For the counterpart 
ternary alloys, Enomoto and Aaronson 19I found that the 
CA model gives generally good agreement with avail- 
able experimental phase boundaries. Hence, the error as- 
sociated with quaternary alloys may come from the 
values of the X~ and X2 interaction term. In Figures 1 
and 3, calculated Mn compositions on y/(o~ + T) phase 
boundaries are seen to be about 0.5 at. pct smaller at 
3 at. pct Si and at 3 at. pct Co at 700 ~ than the ex- 
perimental phase boundaries in Fe-Mn-Si and Fe-Mn-Co 
alloys, respectively, and thus similar displacements 
might be anticipated in Fe-C-Mn-Si and Fe-C-Mn-Co 
alloys. This error will have some effect on the volume 
free energy change for nucleation and the interface com- 
positions in orthoequilibrium. In paraequilibrium, such 
disagreements may exert negligible effects because the 
Mn-X2 interaction does not affect carbon activity 
significantly. 

V. SUMMARY 

Calculations of ferrite/austenite orthoequilibrium, 
partial paraequilibrium, and full paraequilibrium phase 
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Fig. 6--Calculated orthoequilibrium phase boundaries of Fe-rich 
region in Fe-C-Mn-Co system at 700 ~ 
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boundaries by means of the CA model,  15"6'71 previously 
conducted on ternary alloys, tg~ have been extended to 
Fe-C-Xt-X2 systems, in which X~ is Mn and X2 is suc- 
cessively Si, Ni, or Co. Activity equations in quaternary 
systems were first derived from general activity equa- 
tions proposed by Foo and Lupis) 8] The only additional 
thermodynamic parameters needed to extend the calcu- 
lations from ternary to quaternary systems are the inter- 
action parameter between X~ and X2 elements dissolved 
in iron. 

The combination effects of Mn + X2(Si, Ni, or Co) 
have been demonstrated on y / (a  + 3') phase boundaries 
to the one of the counterpart Fe-C-Mn ternary alloy. Sil- 
icon raised the T/(a + T) phase boundary, whereas Ni 
depressed it, as expected. Cobalt is revealed to raise the 
phase boundary more than Si according to the calcula- 
tions, although Co has seemed neutral. 

The present calculation can be readily extended to 
higher order systems. As long as pairwise interaction is 
assumed, the number of thermodynamic parameters 
needed for the calculations is only moderately increased. 
All are evaluated from the data on activities or phase 
boundaries in Fe-C-X and Fe-XFX2 ternary systems. 
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