The Co-Sn (Cobalt-Tin) System

By K. Ishida and T. Nishizawa Tohoku University

Equilibrium Diagram

The equilibrium phases of the Co-Sn system are: (1) the liquid, L; (2) the Co-rich, fcc terminal solid solution, (α Co); (3) the Co-rich, cph terminal solid solution, with a small solid solubility of Sn, (ϵ Co); (4) Co₃Sn₂, with two modifications—high-temperature, hexagonal β Co₃Sn₂, stable up to its congruent melting at 1170 °C, and low-temperature, orthorhombic α Co₃Sn₂, stable below ~500 °C; (5) the hexagonal phase CoSn, stable up to the peritectic temperature of 936 °C; (6) the tetragonal intermediate phase CoSn₂, stable up to the peritectic temperature of 525 °C; and (7) the tetragonal solid solution, (β Sn), with negligible solid solubility of Co. The assessed Co-Sn phase diagram is shown in Fig. 1, and the invariant reactions are listed in Table 1.

Terminal Solid Solubilities

[38Has] estimated that the solid solubility of Sn in (α Co) is about 2 at.% Sn at 1033 °C from Curie temperature measurements. However, [85Com] showed with Sn activity measurements that the solubility is less than 1.25, 0.91, and 0.42 at.% Sn at 1000, 800, and 500 °C, respectively. The solid solubility of Sn in (ϵ Co) was reported as 1.67 at.% Sn at 536 °C by [38Has], but this seems too high in comparison with the data of [85Com]. No data on the terminal solid solubility of Co in (β Sn) are available, but this solubili

Table 1 Special Points of the Assessed Co-Sn Phase Diagram

Reaction	_	Composition of the respe phases, at. % Sn	Temperature, °C	Reaction type	
$L \leftrightarrow \beta Co_3 Sn_2$		~36.5		1170	Congruent
$L \leftrightarrow (\alpha Co) + \beta Co_3 Sn_2$	20.5	-1.0	35	1112	Eutectic
$\beta Co_3 Sn_2 + L \leftrightarrow CoSn$	~78	41.5	50	936	Peritectic
$CoSn + L \leftrightarrow CoSn_2$	50	97	66.7	525	Peritectic
$\alpha \text{Co}_3 \text{Sn}_2 \leftrightarrow \beta \text{Co}_3 \tilde{\text{Sn}}_2$		-41.5		~500	Allotropic
$(\alpha Co) \leftrightarrow (\epsilon Co) + \alpha Co_3 Sn_2$	<99.5	<99.5	41	-420	Eutectoid
$L \leftrightarrow CoSn_2 + (\beta Sn)$	~99.5	66.7	<99.5	229	Eutectic

Table 2 Co-Sn Liquidus Data

		Composition.	Temperature. 'C			
Reference	Comment	at.% Sn	l Liquidus	F	Invariant	I
[08Lew]	Thermal analysis	0	1440	•••		
		1.04	1434	•••		
		2.32	1397	1096		•••
		4.90	1374	1096	•••	•••
		7.74	1333	1095		
		10.78	1292	1098		
		17.73	1160	1098		
		18.99	1102	1093		•••
		20.78	1099	1091		
		22.63	1104	1095	•••	
		24.54	1111	1096		
		26.50	1130	1095		•••
		32.46	1151	•••		
		35.04	1146		523	•••
		42.25	1137	944	532	
		47.50	1133	940	535	•••
		53.50	1101	945	536	231
		56.16	1097	950	536	228
		59.28	1079	946	536	225
		65.92	1036	932	525	230
		73.13	974	945	536	229
		80.54	906		515	231
		89.64	790	•••	506	228
		94.27	567	•••	505	229
		100	232			
						(continued)

ity is estimated to be less than 0.5 at.% Co, because the solubilities of transition metals in (β Sn) are very small [Massalski].

Liquidus and Solidus

The Co-Sn liquidus temperatures were determined by thermal analysis in the Co-rich region by [38Has] and over the whole range of composition by [08Lew] and [08Zem]. [69Dar] deter-

mined the solubility of Co in liquid Sn by analyzing the composition of the liquid in equilibrium with Co after heating at each temperature. These data are summarized in Table 2, together with the invariant temperatures. The invariant reactions are: (1) L \leftrightarrow (α Co) + β Co₃Sn₂ at 1112 °C, with the eutectic composition of 20.5 at.% Sn; (2) β Co₃Sn₂ + L \leftrightarrow CoSn at 936 °C; (3) CoSn + L \leftrightarrow CoSn₂ at 525 °C; and (4) L \leftrightarrow CoSn₂ + (β Sn) at 229 °C.

Section II: Phase Diagram Evaluations

Table 2 Co-Sn Liquidus Data (continued)

		Composition.	·····	Temper	sture. "C	
Reference	Comment	at.% Sn	Liquidus	P	— Invariant —	I
[08Zem]	Thermal analysis	0	1502		•••	
	•	5.00	1415	1110	•••	
		12.00	1280	1112		
		15.40	1223	1112		
		18.00	1165	1112		
		20.50	1112	1112		
		21.95	1122	1112		
		25.00	1140	1112		
		29.79	1164	1110		
		32.00	1166	1109		
		33.30	1171			
		37.77	1167	923	510	
		40.00	1163	974	512	
		42.65	1160	926	515	
		48 10	1147	927	515	•••
		50.25	1138	927	515	•••
		52 50	1132	927	515	221
		55.80	1115	927	515	225
		50.68	1007	027	515	223
		53.00 63.10	1097	927	515	220
		60.40	1070	927	515	229
		73.80	1020	927	515	229
		75.00	960	927	515	229
		70.39	940	927	515	229
		77.30	927	921	515	229
		/8.48	922	•••	515	229
		85.00	800	•••	515	229
		90.49	/98	•••	513	229
		94.00	681	•••	513	229
		97.50	430	•••		229
		100	231.5	•••	•••	•••
[38Has]	Thermal analysis	0	1492			•••
		0.50			•••	•••
		1.00	1479	•••	•••	•••
		1.67	1467			•••
		2.18	1460	1109		•••
		5.23	1412	1108		
[68Mat](a)	Thermal analysis	66.7	•••		525	•••
[69Dar]	Equilibration,	90.39	848	•••		
	chemical analysis	92.24	800	•••		
		94.01	766			
		95.47	705	•••	•••	
		96.40	656			
		96.42	603			
		96.62	554			
(a) Data read from the figure.						

Intermediate Phases

 β Co₃Sn₂ is formed congruently at 1170 °C and has a range of homogeneity. From the activity data of [85Com], the homogeneous compositions are estimated to be 39.2 to 41.2, 40.2 to 41.6, and 40.7 to 41.3 at.% Sn at 1000, 800, and 500 °C, respectively. The stoichiometric compounds CoSn and CoSn₂ are formed by peritectic reaction with liquid compositions of ~78 and 97 at.% Sn, respectively.

Metastable Phases

Martensitic transformations of (α Co) \leftrightarrow (ϵ Co) were studied by thermal dilatation [38Has, 70Kra], magnetic analysis [38Has] and X-ray diffraction [84Nik]. The transformation temperature on heating is raised, and the M_s temperature is lowered at the rate of about 50 to 60 °C/at.% Sn [38Has, 70Kra]. The crystal structure of the martensite is cph below 1.5 at.% Sn, whereas a seven-layer structure that contains a large number of random stacking faults is found from 1.5 to 8.1 at.% Sn [84Nik]. However, the data for alloys with high Sn content are questionable, because the solubility of Sn is rather limited.

[63Luo] reported that (α Co) solid solutions were obtained up to 5 at.% Sn by rapid quenching from the melt.

A metastable stoichiometric Co₃Sn compound prepared by splat quenching from the melt, decomposed into (α Co) and β Co₃Sn₂ at about 577 °C [80Sch]. [82Sin] also confirmed the metastable Co₃Sn phase by rapid cooling from the melt.

Amorphous films were obtained by co-evaporation of Sn and Co on liquid nitrogen-cooled substrates, with compositions over the range 25 to 77 at.% Sn, and the crystallization temperatures were

Table 3 Co-Sn Crystal Structure Data

Phase	Composition, at.% Sn	Pearson symbol	Space group	Strukturbericht designation	Prototype	Reference
(αCo)(a)	.0 to -2	cF4	Fm3m	A 1	Cu	[83Nis]
(£Co)(b)	0 to ~0.2	hP2	P63/mmc	A3	Mg	[83Nis]
$\beta Co_3 Sn_2(c)$	~35 to -42	hP4	P63/mmc	B 81	NiAs	[76Ell]
$\alpha Co_3 Sn_2(d)$	41 to42	oP20	Pnma		Ni ₃ Sn ₂	[72Jai]
CoSn	50	hP6	P6/mmm	B35	CoSn	[Pearson1]
CoSn ₂	66.7	<i>tI</i> 12	I4/mcm	C16	Al ₂ Cu	[Pearson1]
(βSn)	~100	<i>t</i> I 4	I41/amd	A5	βSn	[King1]
Metastable phases						
(εCo)(e)	0 to 1.5	hP2	P6s/mmc	A3	Mg	[84Nik]
(ɛ'Co)(e)	1.5 to 8.1		R3m		8	[84Nik]
Co ₃ Sn(f)	25	c/2	Im3m	A2	W	[80Sch]
5 ()		cP2	Pm3m	B2	CsC1	[82Sin]

(a) From 1495 to 422 °C at 0 at.% Sn. (b) Below 422 °C at 0 at.% Sn. (c) Stable above 500 °C. (d) Stable below 500 °C. (e) Martensite structure. (f) Splat cooled from the melt.

Co-Sn Lattice Parameter Data Table 4

	Composition,		Lattice parameters, n	m		
Phase	at.% Sn	а	Ъ	C	Comment	Reference
αCo	0	0.35446	•••		Pure αCo at >422 °C	[83Nis]
εCo	0	0.25071		0.40695	Pure eCo	[83Nis]
βC0 ₃ Sn ₂	41.7	0.4104	•••	0.5171		[62Asa]
	38	0.4118		0.5187	•••	[76E11]
	39	0.4117		0.5186		[76E11]
	40	0.4113	•••	0.5185		[76E11]
	41	0.4105		0.5176		[76E11]
	42	0.4101		0.5173		[76E11]
αCo ₃ Sn ₂	39.5	0.820	0.709	0.522	(c)	72Jai
• -	40.0	0.8198	0.7089	0.5221	(c)	[72Jai]
CoSn	50	0.5279		0.4258		[Pearson1]
CoSn ₂	66.7	0.6361		0.5452		[Pearson1]
-		0.6363		0.5456		[72Hav]
3Sn	100	0.58316	•••	0.31815	•••	[King1]
Metastable phases						
(αCo)	0.8	0.3551			(a,b)	[63Luo]
	1.54	0.3556		•••	(a,b)	[63Luo]
	3.0	0.3566			(a,b)	[63Luo]
	5.0	0.3577			(a,b)	[63Luo]
Co ₃ Sn	25	0.29228		•••	(b)	[80Sch]
-		0.2939			ÌbÍ	[82Sin]

determined by electrical resistivity measurements and electron microscopy [82Gen]. The structural relaxation of these amorphous films was investigated by [86Aud]. [86Gaf] reported that an amorphous phase was obtained by solid state diffusion using an ultrafine powder of Co covered with a deposit of Sn.

Crystal Structures and Lattice Parameters

Crystal structure and lattice parameter data on the stable and metastable phases of the Co-Sn system are summarized in Tables 3 and 4, respectively. The $\alpha Co_3 Sn_2 \leftrightarrow \beta Co_3 Sn_2$ transformation temperature was estimated by magnetic susceptibility measurements to be 547 [60Sch] or ~500 °C [62Asa].

Thermodynamics

The thermodynamic properties of liquid Co-Sn alloys were studied by [37Kor], [71Bow], and [71Ere]. The calorimetric data measured by [37Kor] at 1500 °C show exothermic enthalpies of formation in liquid alloys containing up to 60 at.% Sn, but endothermic values beyond this composition. [71Ere] also reported that the activity of Sn exhibits negative departures from ideal behavior in Co-rich liquids and positive deviations in Sn-rich liq-

Table 5 Thermodynamic Properties of Liquid Co-Sn Alloys at 1573 K

Composition.	∆Gcon	$\Delta G_{C_{\alpha}}^{\mathbf{ex}}$	∆G _{S∎} ,	$\Delta G \overset{\text{ex}}{s},$	ΔrG,	Δ # Η,	Δ s S,
at.% Sn	J/mol	J/mol	J/mol	J/mol	J/mol	J/mol	J/mol·K
10	-1 390	0	-42 080	-11 980	-5 460	-1590	2.46
20	-3 590	670	-29 830	-8 520		-2260	4.18
30	-7 100	-2450	-18 660	-2 920	-10 580	-2300	5.26
40	-11 940	-5300	-9 600	+1 830	-11 000	-1800	5.85
50	-14 900	-5420	-6 250	+2 810	-10 580	-1050	6.06
60	-17 610	-5630	-3 940	+2 710	-9 410	210	5.85
70	-19 790	-4060	-2 750	+1 940	-7 270	+540	4.96
80	-22 420	-1380	-1 670	+1 250	-5 820	+920	4.29
90	-26 670	+3430	810	+510	-3 400	+840	2.69
From [71Ere].							

Table 6 Partial and Integral Quantities of Formation for Solid Co-Sn Alloys

atomic fraction X _{Sn}	Phase	∆H _{Co} , J/mol	∆H _{Sn} , J/mol	∆¢H, J/mol	∆S _{Co} , J/mol·K	∆S _{S∎} , J/mol∙K	∆¢S, J/mol∙K
0.0091	(a)	20	-36 150	-310	0.09	-14.38	-0.04
0.405	BC03Sn2	9 440	-49 060	-14 250	10.65	-30.01	-5.82
0.410	BC03Sn2	8 790	-48 160	-14 560	11.73	-31.74	-6.08
0.415	BC03Sn2	12 920	54 040	-14 870	17.46	-39.84	-6.32
0.50	CoSn			-22 100			-12.80
0.667	CoSn ₂	•••		-14 730			-7.23
From [85Com].							
Note: Reference states, Co(fcc) a (a) $(\alpha C_0)/(\alpha C_0) + \beta C_{00} S_{00} S_{00}$	and Sn(L).						

Table 7 Co-Sn Magnetic Properties

Phase	Composition, at.% Sn	Curie temperature, C	Comment	Reference
(αCo)	0	1121	•••	[83Nis]
	1.00	1092		[38Has]
	1.67	1041	•••	[38Has]
	2.18	1033	Two phase	[38Has]
	5.23	1034	Two phase	[38Has]
Co ₃ Sn	25	~227	Metastable phase	[80Sch]
βCo ₃ Sn ₂	41.2	•••	Paramagnetic	[60Sch]
	41.7	•••	Paramagnetic	[62Asa]
αCo ₃ Sn ₂	41.2	•••	Paramagnetic	[60Sch]
	41.7	•••	Asymptotic Curie	[62Asa]
			temperature (~ 407 °C)	
CoSn ₂	66.7		Weak paramagnetic	[60Kan]

uids at 1300 °C, which is in good agreement with the data of [37Kor]. [71Bow] calculated the partial molar enthalpies and entropies of the liquid phase from the solubility data by [69Dar]. The thermodynamic properties of liquid Co-Sn alloys given by [71Ere] are shown in Table 5.

The enthalpies of formation of solid alloys were determined by a calorimetric method [37Kor, 79Pre] and by a solid-electrolyte galvanic-cell technique [85Com]. These data show large exothermic enthalpies of formation. [85Com] also measured the activity of Sn between 600 and 1050 °C. The partial and integral enthalpies and entropies obtained by [85Com] are shown in Table 6.

Magnetism

The effect of Sn on the Curie temperature of (α Co) was studied by [38Has]. The metastable compound Co₃Sn formed by splat quenching from the melt is ferromagnetic, and the Curie temperature was estimated to be about 227 °C [80Sch]. Other intermetallic compounds are paramagnetic [60Kan, 60Sch, 62Asa]. The hyperfine field at ¹¹⁹Sn in (α Co) and (ϵ Co) was studied as a function of temperature, and an anomalous temperature dependence was observed [67Jai, 69Cra]. The saturation magnetization of Co alloys with 0 to 50 at.% Sn was measured by [78Mal]. The magnetic properties of the Co-Sn system are summarized in Table 7.

Cited References

- 08Lew: K. Lewkonja, "The Co-Sn System," Z. Anorg. Allg. Chem., 59, 294-304 (1908) in German. (Equi Diagram; Experimental; #)
- *08Zem: S.F. Zemczuzny and S.W. Belynsky, "The Co-Sn System," Z. Anorg. Allg. Chem., 59, 364-370 (1908) in German. (Equi Diagram; Experimental; #)
- 37Kor: F. Korber and W. Oelsen, "Thermochemistry of Alloys III, Heat of Formation of the Fe-Sb, Co-Sb, Ni-Sb, Co-Sn, Ni-Sn, Cu-Sn and Cu-Zn Binary Alloys in the Liquid State," *Mitt. Kaiser-Wilhelm-Inst. Eisenforsch. Dusseldorf, 19,* 209-219 (1937) in German. (Thermo; Experimental)
- 38Has: U. Hashimoto, "The Effect of Various Elements on the α ↔ β Allotropic Transformation Point of Cobalt," J. Jpn. Inst. Met., 2, 67-77 (1938) in Japanese. (Equi Diagram, Meta Phases, Magnetism; Experimental; #)
- 60Kan: K. Kanematsu, K. Yasukoshi, and T. Ohyama, "Antiferromagnetism of FeSn₂," J. Phys. Soc. Jpn., 15, 2358 (1960). (Magnetism; Experimental)
- 60Sch: H. Schmid, "Contribution to the Magnetic Properties of Some B8-Type Phases," Cobalt, 7, 26-32 (1960). (Crys Structure, Magnetism; Experimental)
- 62Asa: M. Asanuma, "The Magnetic Properties of B8 Type Structure Compounds in Transition Elements-Tin Systems," J. Phys. Soc. Jpn., 17, 300-306 (1962). (Crys Structure, Magnetism; Experimental;#)
- 63Luo: H. Luo and P. Duwez, "Face-Centered Cubic Cobalt-Rich Solid Solutions in Binary Alloys with Aluminum, Gallium, Silicon, Germanium and Tin," Can. J. Phys., 41, 758-761 (1963). (Meta Phases, Crys Structure; Experimental)
- 67Jai: A.P. Jain and T.E. Cranshaw, "Anomalous Temperature Dependence of the Hyperfine Fields at Sn in Cobalt," *Phys. Lett. A*, 25, 421-422 (1967). (Magnetism; Experimental)
- 68Mat: N.M. Matveyeva, S.V. Nikitina, and S.B. Zezin, "Investigation of the Quasi Binary Systems MnSn₂-FeSn₂, MnSn₂-CoSn₂ and FeSn₂-CoSn₂," *Izv. Akad. Nauk SSSR, Met.*, (5), 194-197 (1968) in Russian; TR: *Russ. Metall.*, 5, 132-134 (1968). (Equi Diagram; Experimental; #)
- 69Cra: T.E. Cranshaw, "Anomalous Temperature Dependence of the Hyperfine Field at ¹¹⁹Sn in Co," J. Appl. Phys., 40, 1481-1483 (1969). (Magnetism; Experimental)
- *69Dar: J.B. Darby, Jr. and D.B. Jugle, "Solubility of Several First-Long-Period Transition Elements in Liquid Tin," *Trans. Metall. Soc. AIME*, 245, 2515-2518 (1969). (Equi Diagram, Thermo; Experimental; #)
- 70Kra: W. Krajewski, J. Kruger, and H. Winterhager, "Allotropic Transformation and Thermal Expansion of Cobalt Binary Alloys Between 100 and 800 °C," Cobalt, 48, 120-128 (1970) in German. (Meta Phases; Experimental)
- 71Bow: D.F. Bowersox, "The Thermodynamics of Solution of Ti, V, Cr, Fe and Co in Liquid Tin," *Metall. Trans.*, 2, 916-917 (1971). (Thermo; Theory)

- 71Ere: V.N. Eremenko, G.M. Lukashenko, and V.L. Pritula, "Thermodynamic Properties of Co-Sn Melts," *Izv. Akad. Nauk SSSR, Met.*, (3), 82-85 (1971) in Russian. (Thermo; Experimental)
- 72Hav: E.E. Havinga, H. Damsma, and P. Hokkeling, "Compounds and Pseudo-Binary Alloys with the CuAl₂ (C16)-Type Structure," J. Less-Common Met., 27, 169-186 (1972). (Crys Structure; Experimental)
- 72Jai: K.C. Jain, M. Ellner, and K. Schubert, "On the Superlattice Structure Co₃Sn₂ (γ)," Z. Metallkd., 63, 258-260 (1972) in German. (Crys Structure; Experimental)
- 76Ell: M. Ellner, "On the Crystal Chemical Parameters of NiAs-Type Phase Containing Ni, Co and Fe," J. Less-Common Met., 48, 21-52 (1976) in German. (Crys Structure; Experimental)
- 78Mal: N.A. Malatidis and E. Wachtel, "Constitution and Magnetic Properties of Co-Mn-Sn Alloys in the β-Phase Region (Heusler Alloy)," Z. Metallkd., 69, 677-684 (1978) in German. (Magnetism; Experimental)
- 79Pre: B. Predel and W. Vogelbein, "The Formation Enthalpies of Solid Alloys in the Fe-Ge, Co-Ge, Ni-Ge, Fe-Sn, Co-Sn and Ni-Sn Binary Systems," *Thermochim. Acta, 30,* 201-215 (1979) in German. (Thermo; Experimental)
- 80Sch: G. Schluckebier, E. Wachtel, and B. Predel, "ANew Intermetallic Phase in the Co-Sn System," Z. Metallkd., 71, 456-460 (1980) in German. (Meta Phases, Crys Structure, Magnetism; Experimental)
- 82Gen: J.F. Geny, G. Marchal, P. Mangin, C. Janot, and M. Piecuch, "Structure, Forming Ability and Electrical-Transport Properties of Isotypical Amorphous Alloys M_xSn_{1-x} (M = Fe, Co, Ni)," Phys. Rev. B, 25, 7449-7466 (1982). (Meta Phases; Experimental)
- 82Sin: V.K. Singh, M. Singh, and S. Bhan, "Metastable Phases in Fe75Sn25-Co75Sn25 Alloys," *Phys. Status Solidi (a), 74,* K115-K117 (1982). (Meta Phases, Crys Structure; Experimental)
- 83Nis: T. Nishizawa and K. Ishida, "The Co (Cobalt) System," Bull. Alloy Phase Diagrams, 4(4), 387-390 (1983). (Crys Structure, Magnetism; Review)
- 84Nik: B.I. Nikolin and N.N. Shevchenko, "Arrangement of Multilayer Martensitic Structures on the Phase Diagram of Alloys Co-Sn," *Fiz. Met. Metalloved.*, 58(6), 1183-1187 (1984) in Russian; TR: *Phys. Met. Metallogr.*, 58(6), 129-133 (1984). (Meta Phases, Crys Structure; Experimental)
- *85Com: H. Comert and J.N. Pratt, "The Thermodynamic Properties of Solid Cobalt-Tin Alloys," *Thermochim. Acta, 84*, 273-286 (1985). (Equi Diagram, Thermo; Experimental; #)
- 86Aud: A. Audouard, J.F. Geny, G. Marchal, and M. Gerl, "Low-Temperature Structural Relaxation of Amorphous Co_xSn_{1-x} Alloys," *Philos. Mag.*, 13, 1-13 (1986). (Meta Phases; Experimental)
- 86Gaf: E. Gaffet, "Amorphism by Solid State Diffusion. Application to Powder Metallurgy," Mém. Etud. Sci. Rev. Métall., 83, 453 (1986) in French. (Meta Phases; Experimental)

#Indicates presence of a phase diagram.

Co-Sn evaluation contributed by K. Ishida and T. Nishizawa, Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan. This work was supported by the Japanese Committee for Alloy Phase Diagrams. Part of the literature search was provided by ASM International. Literature searched through 1987. Professor Nishizawa is the Alloy Phase Diagram Program Category Editor for binary cobalt alloys.

^{*}Indicates key paper.