Systems," *Thermochim. Acta, 30,* 201-215 (1979) in German. (Thermo; Experimental)

- *80Day: A. Dayer and P. Feschotte, "Binary Systems Co-Ge and Ni-Ge Comparison Study," J. Less-Common Met., 72, 51-70 (1980) in French. (Equi Diagram, Crys Structure; Experimental; #)
- 82Lar: V.I. Larchev and S.V. Popova, "The Polymorphism of Transition Metal Monogermanides at High Pressures and Temperatures," J. Less-Common Met., 87, 53-57 (1982). (Crys Structure; Experimental)
- 82Tom: J. Tomiska, L. Erdelyi, H. Nowotny, and A. Neckel, "Determination of the Thermodynamic Excess Properties of Liquid Co-Ge Alloys by Mass Spectrometry," *High Temp. Sci.*, 15, 41-54 (1982). (Thermo; Experimental)
- 83Nis: T. Nishizawa and K. Ishida, "The Co (Cobalt) System," Bull. Alloy Phase Diagrams, 4(4), 387-390 (1983). (Crys Structure, Magnetism; Review)
- 85Fro: M.G. Frohberg and S. Anik, "Thermodynamic Relations Between Component Activities and Gas Solubilities in Binary Metallic Systems," *Ber. Bunsenges. Phys. Chem.*, 89, 130-134 (1985). (Thermo; Experimental)
- *90Eno: H. Enoki, K. Ishida, and T. Nishizawa, "Phase Equilibria in Corich Portions of the Co-Si and Co-Ge Systems," J. Less-Common Met., 160, 153-160 (1990). (Equi Diagram, Crys Structure; Experimental;#)

#Indicates presence of a phase diagram.

Co-Ge evaluation contributed by K. Ishida and T. Nishizawa, Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan. This work was supported by the Japanese Committee for Alloy Phase Diagrams. Part of the literature search was provided by ASM International. Literature searched through 1987. Professor Nishizawa is the Alloy Phase Diagram Program Category Editor for binary cobalt alloys.

The Co-Pd (Cobalt-Palladium) System

By K. Ishida and T. Nishizawa Tohoku University

Equilibrium Diagram

The equilibrium phases of the Co-Pd system are: (1) the liquid, L; (2) the fcc solid solution with complete solubility at all compositions, (α Co,Pd); and (3) the Co-rich cph solid solution, (ϵ Co). The assessed Co-Pd phase diagram (Fig. 1) is based on the experimental liquidus and solidus data listed in Table 1 [36Gru]. The magnetic transformation temperature changes continuously from 1121 °C for pure Co to -266 °C for a 99.9 at.% Pd alloy [35Gru, 36Gru, 61Boz, 67Bag, 68Bag] (see "Magnetism"). The equilibrium between (α Co) and (ϵ Co) is unknown, but it is estimated from the data on the (α Co) \leftrightarrow (ϵ Co) transformation temperatures that the allotropic phase boundary is lowered by the addition of Pd (see "Metastable Phases").

Metastable Phases

The martensitic transformation temperatures of (α Co) \leftrightarrow (ϵ Co) on heating and cooling were measured by [35Gru] and [70Kra] and are listed in Table 2. The M_s point is lowered, but the reverse temperature A_s is raised by the addition of Pd. The allotropic

Table 1Co-Pd Liquidus and Solidus Data from ThermalAnalysis

Composition,	Temperature,*C			
at.% Pd	Liquidus	Solidus		
5	1432	1408		
10	1372	1331		
15	1318	1270		
20	1279	1244		
25	1255	1238		
30	1239	1218		
35	1229	1220		
40	1224	1216		
45	1220	1216		
50	1217	1214		
55	1231	1225		
60	1258	1245		
65	1285	1272		
70	1311	1300		
75	1340	1329		
80	1371	1357		
85	1407	1390		
90	1452	1437		
95	1505	1499		

Table 2 $(\alpha Co) \leftrightarrow (\epsilon Co)$ Transformation Temperatures

Reference	Method	Composition, at.% Pd	Heating, As	Temperature, *C Cooling, M ₄	$T_0 = (\mathbf{A_s} + \mathbf{M_s})/2$
[35Gru]	Magnetic	0	442	408	425
		5	456	277	367
		5	480	275	378
		10	<473	180	<327
[70Kra]	Dilatometric	0.29	451	390	421
		1.62	464	338	401

^{*}Indicates key paper.

Section II: Phase Diagram Evaluations

phase boundary, $T_0 = (M_s + A_s)/2$, is lowered. This fact suggests that Pd stabilizes (α Co), rather than (ϵ Co).

Electron diffraction studies on vapor deposited thin films of Co-Pd alloys revealed two types of ordered phases; one is an $L1_2$, AuCu₃-type structure (α') found in the composition range between 60 and 90 at.% Pd, with an order-disorder transition temperature estimated to be about 830 °C for the 80 at.% Pd alloy; the other has the $L1_0$, AuCu-type structure (α''), with a narrow region of composition around 50 at.% Pd [72Mat]. These phases are indicated to be metastable, because bulk samples with the compositions Co₃Pd, CoPd, and CoPd₃ did not show any trace of the corresponding superlattice reflections. The metastable phase diagram for thin films proposed by [72Mat] is shown in Fig. 2.

Table 3 Co-Pd Crystal Structure Data

Phase	Composition, at.% Pd	Pearson symbol	Space group	Struktur- bericht designation	Prototype	Reference
(αCo,Pd)	0 to 100 0 to20	cF4 hP2	Fm3m P63/mmc	A1 A3	Cu Mg	[83Nis] [83Nis]
Metastable phases(a)						
α"	~48 to ~52	tP2	P4/mmm	L10	AuCu	[72Mat]
α'	60 to 90	cP4	Pm3m	<i>L</i> 1 ₂	AuCu3	[72Mat]
(a) Evaporated films.						

Table 4 Co-Pd Lattice Parameter Data

	Composition,	Lattice parameters, nm			
Phase	at.% Pd	a	ć	Comment	Reference
(αCo,Pd)	0	0.35446		***	[83Nis]
	20	0.3633		Read from figure	[61Boz]
	40	0.3708		Read from figure	61Boz
	60	0.3778	•••	Read from figure	[61Boz]
	80	0.3839	•••	Read from figure	[61Boz]
	87	0.3854		Read from figure	[61Boz]
	92	0.3864		Read from figure	[61Boz]
	95	0.3871	•••	Read from figure	[61Boz]
	99	0.3877	•••	Read from figure	[61Boz]
	100	0.389	•••	Read from figure	[61Boz]
	25	0.366		Read from figure	[72Mat]
	50	0.375		Read from figure	[72Mat]
	75	0.383	•••	Read from figure	[72Mat]
	100	0.38901	•••		[King1]
(ɛCo)	0	0.25071	0.40695	•••	[83Nis]
Metastable phases					
α"	<50	0.4106	0.3888	Quenched from 700 °C	[72Mat]
		0.4118	0.3912	Quenched from 800 °C	72Mat
	>50	0.4048	0.3928	Quenched from 700 °C	[72Mat]
		0.4071	0.3952	Quenched from 800 °C	72Mat
α'	~62	0.3800		Quenched from 700 °C	72Mat
	69	0.3820	•••	Quenched from 800 °C	[72Mat]

Crystal Structures and Lattice Parameters

Crystal structure and lattice parameter data on the stable and metastable phases in the Co-Pd system are summarized in Tables 3 and 4, respectively. The lattice parameters of the (α Co,Pd) fcc solid solution are shown in Fig. 3 [61Boz, 72Mat, 83Nis, King1]. The form of the lattice parameter vs composition curve is convex upwards.

Thermodynamics

Low-temperature specific heats were studied in Co-rich alloys [67Tak, 69Boe], as well as over the whole range of composition [69Whe].

The enthalpy of mixing in the liquid phase at 1600 °C was determined by calorimetry; results show a small positive deviation from ideal solution behavior [77Vat]. [77Vat] also calculated the activities and compared them with the experimental values by Sryvalin quoted in [77Vat]. A model calculation of the surface energy of the Co-Pd melt was presented by [70Bog]. The activities in the fcc solid solution were determined from solid electrolyte emf measurements by [65Sch] and [70Bid]. These data show that the activity of Co in Pd exhibits a positive departure from ideal solution behavior in Co-rich alloys and a negative departure in Pd-rich alloys, whereas the activities of Pd indicate a negative departure from ideality at all compositions. These complexities were discussed in connection with the magnetic contribution by [70Bid].

Magnetism

The magnetic properties of the Co-Pd system were studied extensively [35Gru, 36Gru, 61Boz, 67Bag, 67Tak, 68Bag, 69Boe, 69Whe] and are summarized in Table 5. Ferromagnetism exists in solution up to 99.9 at.% Pd, where the Curie temperature is -266 °C [61Boz].

Reference	Method	Composition, at.% Pd	Curie temperature, °C	Magnetic moment, µB	Saturation magnetization, G
[35Gru]	Magnetic	0	1119		
		5	1094		
		5	1097		
		10	1068		
		15	1030		
		20	990		•••
		25	948		•••
		30	900		
		40	808		
		50	686		
		60	546		
		66.7	448	•••	•••
		70	400		
		85	145		
		90	43	•••	
[36Gru]	Electrical	40	830		
	resistivity	50	700		
	,	60	557		
		66.7	458		
		70	405		
		75	325		
		85	147		
		90	48		
[61Boz]	Magnetic	20		1.55(a)	
		40		1.30	
		60		1.05	
		80		0.74	
		87		0.60	
		92	-3	0.38	
		95		0.30	
		99.5	-247	0.10	
		99.9	-266	0.05	
[67Bag]	Magnetic	25.3	927		1130
		52.7	647		850
		77.0	287		510
		91.1	22		310
		93.1	-23		280
		96.5	-103		190
		98.2	-153	•••	130
		99.5	-748	•••	20
[68Bag]		98.5	-188	••••	69
(a) Data read from the figure.					

Table 5 Magnetic Properties of the Co-Pd System

Cited References

- 35Gru: G. Grube and O. Winkler, "Magnetic Investigation in the Cobalt-Palladium System," Z. Elektrochem., 41, 52-60 (1935) in German. (Equi Diagram, Meta Phases, Magnetism; Experimental; #)
- *36Gru: G. Grube and H. Kastner, "Electric Conductivity and Phase Diagram in Binary Alloys, Report 18, Palladium-Cobalt System," Z. Elektrochem., 42, 156-160 (1936) in German. (Equi Diagram, Magnetism; Experimental; #)
- 61Boz: R.M. Bozorth, P.A. Wolff, D.D. Davis, V.B. Compton, and J.H. Wernick, "Ferromagnetism in Dilute Solutions of Cobalt in Palladium," *Phys. Rev.*, 122, 1157-1160 (1961). (Equi Diagram, Crys Structure, Magnetism; Experimental;#)
- 65Sch: K. Schwerdtfeger and A. Muan, "Activity Measurements in Pt-Ni, Pd-Ni and Pd-Co Alloys at 1000 and 1200 °C," Acta Metall., 13, 509-515 (1965). (Thermo; Experimental)
- 67Bag: D.M.S. Bagguley, W.A. Crossley, and J. Liesegang, "Ferromagnetic Resonance in a Series of Alloys II. Binary Alloys of Cobalt with Platinum and Palladium, and One Iron-Palladium Alloy," Proc. Phys.

Soc., *90*, 1047-1058 (1967). (Equi Diagram, Magnetism; Experimental)

- 67Tak: T. Takahashi and M. Shimizu, "Magnetic Specific Heats of Dilute Pd-Fe and Pd-Co Alloys," J. Phys. Soc. Jpn., 23, 945-948 (1967). (Thermo, Magnetism; Experimental)
- 68Bag: D.M.S. Bagguley and J.A. Robertson, "Ferromagnetic Resonance in Dilute Binary Alloys of Pd and Pt with Fe and Co," *Phys. Lett. A*, 27, 516-517 (1968). (Equi Diagram, Magnetism; Experimental)
- 69Boe: B.M. Boerstoel, G.J. Nieuwenhuys, and G.J. van Den Berg, "The Magnetic Field Dependence of the Specific Heat of Dilute Pd-Co Alloys," *Phys. Lett. A, 29, 526-527* (1969). (Thermo, Magnetism; Experimental)
- 69Whe: J.C.G. Wheeler, "The Low-Temperature Specific Heats of a Number of Ferromagnetic Pd-Co and Pt-Co Alloys," J. Phys. C, 2, 135-146 (1969). (Thermo, Magnetism; Experimental)

72Mat: Y. Matsuo, "Ordered Alloys in the Cobalt-Palladium System," J. Phys. Soc. Jpn., 32, 972-978 (1972). (Meta Phases, Crys Structure; Experimental)

77Vat: N.A. Vatolin and Yu.S. Kozlov, "Enthalpy of Formation of Liquid Alloys of Palladium with Nickel, Cobalt or Chromium," Izv. Akad. Nauk SSSR, Met., (1), 76-79 (1977) in Russian; TR: Russ. Metall., (1), 67-71 (1977). (Thermo; Experimental)

83Nis: T. Nishizawa and K. Ishida, "The Co (Cobalt) System," Bull. Alloy Phase Diagrams, 4(4), 387-390 (1983). (Crys Structure; Compilation)

*Indicates key paper.

#Indicates presence of a phase diagram.

Co-Pd evaluation contributed by K. Ishida and T. Nishizawa, Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan. This work was supported by the Japanese Committee for Alloy Phase Diagrams. Part of the literature search was provided by ASM International. Literature searched through 1987. Professor Nishizawa is the Alloy Phase Diagram Program Category Editor for binary cobalt alloys.

70Bid: L.R. Bidwell, F.E. Rizzo, and J.V. Smith, "The Thermodynamic Properties of Cobalt-Palladium Solid Solutions," Acta Metall., 18,

70Bog: M.P. Bogdanovich, Y.P. Vorobyev, A.N. Men, and G.I.

Phys. Met. Metallogr., 29(2), 237-240 (1970). (Thermo; Theory)

70Kra: W. Krajewski, J. Kruger, and H. Winterhager, "Allotropic Trans-

formation and Thermal Expansion of Cobalt Binary Alloys Between

100 and 800 °C," Cobalt, 48, 120-128 (1970) in German. (Meta

Chufarov, "Complex Structure and Surface Energy of Binary Metal

Melts," Fiz. Met. Metalloved., 29(2), 445-448 (1970) in Russian; TR:

1013-1019 (1970). (Thermo; Experimental)

Phases; Experimental)

