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In the finite element modeling of sheet metal formability, the strains in the sheet are calculated from 
a hardening law which is normally derived from a tensile test. These laws are known to be accurate 
only up to the maximum uniform strain in tension. However, they are extrapolated during modeling 
to strains three to five times greater than the uniform strain. In assessing the applicability of these 
hardening laws at large strains, tensile specimens of 1008 AK steel and commercial purity titanium 
and zinc were gridded with a fine mesh and slowly pulled to failure. During the test, photographs were 
taken of the deforming grid in order to develop a complete strain and strain-rate history for each 
element across the minimum cross section. These data were combined with a hardening law for each 
material to calculate the total axial load on the specimen. Good agreement between the calculated and 
measured loads suggests that hardening laws for these materials can be extrapolated to large strains. 

I. INTRODUCTION 

IN the modeling of sheet metal deformation, it is necessary 
to have an accurate description of a material's hardening law 
for several reasons. The first consideration is to predict 
accurate loads in the press and strains in the part. The other 
reasons are concerned with assessing the effect of other 
variables, which are more difficult to measure, on the defor- 
mation process. Examples of these other variables may in- 
clude friction, temperature gradients, and a changing shape 
of the yield surface with strain. 1 

An accurate, useful hardening law must relate the mate- 
rial's flow stress over a wide range of strains up to localized 
necking strains. For rate sensitive metals (e .g . ,  steel, ti- 
tanium, and zinc) the limit strains are generally well beyond 
the maximum uniform strain found in a tensile test. To 
measure flow stress at these post-uniform strains requires 
that the effect of necking be included. For cylindrically 
shaped tensile samples, Bridgman 2 has derived an expres- 
sion, based on the neck contour, to correct the average true 
stress measured at the neck to an effective value of stress 
where plastic flow actually takes place. 

A simple analysis does not exist for fiat sheet samples 
since the geometry of the neck is much more complex. An 
early stress analysis of necking in a flat specimen by 
Aronofsky 3 uses a hybrid approach where a hardening law 
from a cylindrical specimen is combined with a strain dis- 
tribution in the sheet specimen. The strain distribution 
was measured from an initially square mesh scribed in the 
specimen. Although this analysis was performed on a steel 
sample, the hardening law did not include a rate depen- 
dent term. 

A more recent attempt to evaluate strain hardening at 
large strains in sheet specimens was presented by Saka, 
Painter, and P e a r c e .  4 In this work the authors photo-printed 
a 1 mm square grid on steel and titanium specimens and 
pulled them to failure. During the test the tensile load was 
recorded and the grid was periodically photographed to pro- 
vide a complete description of the strain distribution up to 
failure. From this data the authors provided an analysis 
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based on plasticity, assuming proportional loading, to iso- 
late the tensile load acting only on the central element in the 
necked region of the specimen. From these data a log-log 
plot was made of the true stress and strain to obtain the strain 
hardening exponent, n, (from o" = Ke")  at strains well into 
the diffuse neck. This plot was corrected for an increase 
in strain rate of the central element during necking by 
assuming cr = K k  m where k is the strain rate and m is the 
strain-rate sensitivity. From this work the authors found n to 
increase from the maximum uniform strain to diffuse neck- 
ing by - 1 4  pct for steel and - 1 0 0  pct for titanium. 

The current study is similar to that of Saka, Painter, and 
Pearce 4 but with some important differences. This study 
evaluates a proposed hardening law at large strains over the 
entire cross section of the sample. This approach eliminates 
the inherently inaccurate procedure of isolating the part 
of the total load operating only on the central element of 
the sample. The proposed hardening laws evaluated here 
are derived by a best fit to the tensile data during uniform 
strain, and no restriction is placed on the form of the law 
(e .g . ,  cr = K e " k  m used by Saka et  al.  ). The plasticity analy- 
sis for the stress calculation does not assume proportional 
loading of the elements in the necked region and, instead, 
uses the incremental theory of plasticity. Three different 
sheet materials with varying amounts of post-uniform strain 
are evaluated: 1008/1010 AK steel, commercially pure tita- 
nium, and a zinc alloy. 

II. ANALYSIS 

The calculation scheme is to compare the measured load 
imposed on the specimen to the calculated load based on a 
plasticity theory and a hardening law for that specimen. The 
independent variable in this study is time, since the test is 
carried out at a constant cross head rate. Therefore, both the 
measured and calculated loads can be compared at the same 
increments of time throughout the test. 

A schematic of the gridded tensile sample is shown in 
Figure 1, where the grids reflect the necked region. It is 
assumed that the grid mesh is sufficiently fine that the 
strains el and e2 are constant through a given element i. 
Furthermore, only the loads in the elements located at the 
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Fig. 1 -  Schematic of gridded tensile sample showing a deformed grid 
pattern at the minimum cross section of the neck, 

minimum cross section will be calculated. Therefore, it is 
assumed that the principal strains el and e2 remain parallel 
and transverse to the tensile axis, respectively, up to the 
onset of the through-thickness neck. 

The plasticity analysis described below assumes planar 
isotropy, plane stress, rigid-plastic behavior, and isotropic 
hardening of the yield surface. The more general elastic- 
plastic treatment of plasticity is described by Wang and 
Wenner. S The shape of the yield surface is modified accord- 
ing to Hill 6 to include the effect of  normal anisotropy. 
The basic equations of deformation, from the incremental 
theory of plasticity, are defined in terms of strain rate as 
shown below. 

~ ,  = - (or1 - c o r = )  
or 

= (or2  - c o r , )  

[ i ]  

O" 

In these equations kt and e2 are the true strain rates of the 
principal strains in a given element shown in Figure 1. 
Similarly, or~ and or2 are the true stresses acting in the same 
directions as k~ and kz. The c term includes the normal 
anisotropy parameter, r, as shown in Eq. [2]. 

F 
c - [21 

l + r  

The terms ~ and ~ are the effective strain rate and effective 
stress as defined in Eqs. [3] and [4]. 

l + r  -.2 
= _ .r:---v---z-_ (e, + k 2 + 2ck,k2) ~/2 [3] 

V l W 2 r  

= (o{l + ~ - 2co'1o'2) 1/2 [4] 

To calculate the effective strain, Eq. [3] must be integrated 
over time, t. 

-g = dt  [5] 

The relationship between or, e, and ~ is the hardening law 
determined from a tensile test. 

= F(2,~) [6] 

By combining Eqs. [1] and [5] the true axial stress in each 
element can be calculated from Eq. [7]. 

F(2,~) 
orl(,)- (1 2- .  (kin) + ce2(i)) [7] 

- -  C )E( i )  

The only data required are the strain and strain rate history 
of the ith element. The total load carried in each element, 
Pi, is calculated from orm) and the original cross sectional 
area of the ith element as shown in Eq. [8]. 

Pi = Ao(i)orlIi) exp(-el(i)) [8] 

The total load imposed on the specimen is the summation of 
P(i) for each element at the same instant of time. 

i=n 

P,o~, = E P/i) [9] 
i=1 

Implicit in this analysis is the assumption that the de- 
formation in each element is independent of its neighbor. 
Therefore, the sample deforms as a flat bundle of fibers. 
The overall geometry of the neck is not accounted for, since 
the loads in the sample are calculated only at the minimum 
cross section. The effect of the neck on the load required 
for deformation is accounted for because the ratio of 
eE/e~ changes in each element from the edge to the center 
of the specimen. Therefore, the elements near the center 
require a higher load for deformation to continue since they 
are nearer plane strain. 

III. EXPERIMENTAL PROCEDURE 

The three sheet materials investigated in this study in- 
cluded 1008/1010 AK steel, commercial purity titanium, 
and a zinc alloy designated #101 by the Ball Corporation. 
The nominal composition of the alloy elements in zinc in 
weight percent are Cd (0.04 to 0.06), Pb (0.06 to 0.08), 
Fe (<--0.008), Cu (<-0.002). The thickness of these materials 
is 1.0 mm for steel and titanium and 0.88 mm for zinc. 
These sheet materials were selected because they presented 
a range of behavior of strain and strain-rate hardening, 
normal anisotropy, and post-uniform strain. 

The hardening laws of the sheet metals were obtained 
from standard ASTM, E-8, tensile samples with a gage 
length of 50.8 mm and a tensile axis parallel to the rolling 
direction of the sheet. To determine the hardening laws from 
measurements of stress vs strain, samples were pulled at 
initial strain rates of 2.1 • 10 -5 s -~, 2.1 • 10 -4 s -x, and 
2.1 • 10 -3 s - l ,  except for steel which was also pulled at 
2.1 • 10 -6 s - l .  These strain rates were selected to insure 
that the specimens remained at ambient temperatures of 22 
to 24 ~ throughout the test. 
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Fig. 2- -Plo t  of true stress vs true strain for the materials evaluated. The 
solid lines are the measured data up to the maximum load, whereas the dots 
are calculated from the respective hardening laws of the materials. 

The complete strain and strain rate history of each ele- 
ment of the tensile sample was accomplished by first photo- 
printing a 0.51 mm square grid on the gage section. Since 
the specimens were ~ 12.7 mm wide, the grid divided the 
gage section into 25 elements or fibers. Then the specimens 
were pulled to failure, except for zinc, at an initial cross- 
head rate of 2.9 • 10 -5 s -l while simultaneously recording 
load and taking pictures of the grid at various increments of 
time. The zinc test was stopped due to the presence of an 
edge crack. 

Analytical expressions for the strain history were ob- 
tained by a least-squares, cubic spline fit to strains beyond 
maximum load from plots of el and e2 vs time. For strains 
up to the maximum load, e~ and e2 were expressed as a 
linear function of time. This procedure was performed on an 
interactive computer terminal. These expressions were then 
differentiated with respect to time, at selected values of 
time, and fit to another least-squares cubic spline to obtain 
kiwi) and k21i) vs time. This calculational procedure was 
performed for only half of the elements, from the center 
to the specimen edge, because of symmetry. Additional 
calculations of the edge element were made to measure r 
[from r -- -e2 / (e l  + e2)] to large strains, since the edge 
element is in uniaxial tension beyond maximum load. 

IV. RESULTS 

The hardening laws for all three materials were calculated 
from the tensile data shown in Figure 2. Each solid curve 
was approximated initially by a least squares fit to ~r = ke" 
by assuming that the strain rate change within the test was 
negligible. Figure 2 shows that there is no systematic devi- 
ation between the calculated and measured values of stress 
as a function of strain within the uniform strain region at 
strains ~>2 pct. If  a deviation is measured, then another form 
of (7 = f ( e )  must be derived. The strain rate dependency of 
the hardening laws was determined by evaluating the K and 
n terms for each material as indicated below. In all cases the 
units of o" and K are MPa. 

1008/1010 AK Steel: For steel, n increased only 4.3 pct 
as the strain rate decreased from ~10 -3 to 10 -6 s -I. Since 
this change in n with strain rate is small, n was assumed 
constant at an average value of 0.239. The K term was a 
stronger function of strain rate and was determined from 
semi-log plots of K vs log k for several levels of strain. A 
linear fit of K from this semi-log plot gave a relationship of 
K = 586.6 + 8.08 In k. Therefore, the final hardening law 
for steel is shown in Eq. [10]. 

steel o- = 586.6e~ + 0.014 In k) [10] 

A comparison of this law to the actual data is shown in 
Figure 2 with the dots representing Eq. [10]. It is clear that 
the calculated results closely parallel the actual data at 
strains >0.07. However, the gap in the flow cvrves between 
the strain rates of 2.9 x 10 -5 and 2.9 • 10 -4 s -t has been 
eliminated by Eq. [10] due to the averaging procedure of the 
K and n terms. 

Titanium and Zinc: Both of these materials exhibited a 
significant dependence of K and n on strain rate. From 
semi-log plots of K and n vs log k, the best fit through 
the data was a quadratic equation of the form K, n = A 
(In k) 2 + B In k + C. Therefore, the hardening laws for 
both of these materials were of the form o- = Ke% where 
K and n are functions of strain rate as shown in Eqs. [11] 
and [12]. 

cr = K(k )e  "(~) 

where 

titanium 

K -- -2 .12( ln  k) 2 - 27.99 In k + 505.22 

n = - 8 . 4 9  • 10-4(ln k) 2 - 0.0175 I n k  + 0.0906 [ l l ]  

zinc 

K = -3.1367(ln i02 - 25.06 I n k  + 205.14 

n = - 6 . 4 9  • 10-3(ln k) 2 - 83.47 • 10 -3 I n k  

- 0.0604 [12] 

A comparison of the calculated flow stress to measured 
values in Figure 2 shows excellent agreement with the mea- 
sured flow stress overall rates. These hardening laws from 
Eqs. [10], [11], and [12] represent the expressions which 
will be used in the analysis as Eq. [6]. 
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Fig. 3 - -P lot  of the e] and e2 strains across the specimen width at various 
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Fig. 5 - - P l o t  of the e, and e~ strains across the specimen width at various 
increments of time for titanium. 

The second phase of the results were measurements of  r 
to large strains, as well as the strain and strain-rate history 
of a tensile specimen. These data were obtained from the 
measurements of  strain at the minimum cross section of  the 
sample as discussed below for each material. 

1008/1010 AK Steel 

A plot of  the el and e2 strains across the minimum cross 
section of  the specimen is shown in Figure 3. Both strains 
remain uniform across the cross section up to the maximum 
load at 12,600 seconds. Beyond 12,600 seconds the el strain 
slowly develops a gradient from center to edge, while the e2 
strain remains essentially constant across the width. From 
the el and e2 at the edge element,  the r value can be deter- 
mined up to large strains from r = - e z / ( e l  + e2), because 
the edge remains in uniaxial tension. For steel, r remained 
virtually constant at - 1 . 8  up to strains of  e~ = 0.6. 

The strain and strain-rate history of  all the elements was 
determined from the data in Figure 3 as indicated for the 
center and edge elements in Figure 4. All of  the elements 
are assumed to deform at the same strain rate up to the 
maximum load. Beyond maximum load, the data are fit 
initially to a least squares cubic curve to describe analyt- 
ically el(i) and e2(i) vs time. Differentiating the curve at 
several points and again fitting to a least squares cubic curve 
gives klan) and k2u) vs time. Figure 4 shows that the central 
element increases its strain rate by a factor of - 1 7  from the 
initial strain rate to just prior to through thickness necking. 
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Fig. 6--Plot of the el, k] and e2, k2 values vs time for elements at the 
center and edge of the tensile specimen for titanium. 

Ti tan ium 

Plots of  e~ and e2, across the specimen width, are shown 
in Figure 5 at various increments of  time. These strains are 
similar to those of steel, except at larger strains where both 
e~ and e2 develop significant gradients from center to edge. 
The r value in the rolling direction, again, remains rela- 
tively constant through the test at a value of  1.86. The strain 
and strain-rate behavior of the center and edge elements are 
fitted to a least square cubic curve in similar manner to 
steel. These data are shown in Figure 6. 

Zinc  

The zinc material displayed the most unusual behavior of  
the three materials evaluated, since no gradient developed 
across the width in either the e~ or e2 strains (Figure 7). The 
high strain rate sensitivity of  this material kept the gage 
section quite uniform well past the maximum load, 7 even 
though the sample was pulled for the longest time. The test 
was terminated for this material because of an edge crack 
and not because of  a through thickness neck. Measurements 
of r showed it to remain constant at ~ 0 . 4 4  at strains 
>e~ = 0.14. The plots of  strain and strain-rate history are 
shown in Figure 8 for only one element, which represents 
all 25 elements. Since the increase in strain and strain-rate 
with time is very gradual beyond maximum load, in contrast 
to steel and titanium, a single cubic equation satisfactorily 
fit all the data. 

C o m p u t a t i o n s  

A computer program was written that consisted of  two 
nested DO loops. The inner loop calculated P,) from Eq. [8] 
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for given intervals of time, and the outer loop calculated the 
total load on the specimen from Eq. [9]. The interval of time 
was always kept at 1/100 of the total time of the test. This 
interval was sufficiently small for the numerical integration 
of ~ from Eq. [5] so that a smaller interval would not be 
expected to affect the results. 

It is important to note that while the computations in- 
cluded the analytical expressions for e~(i) and el(i) in a 
straightforward manner, such a procedure was not possible 
for e2(o and e~(0. The ratio of e2/e] is very sensitive to the 
approximation procedure and will cause oscillations in the 
load vs time curve beyond maximum load. To eliminate 
this computational difficulty, an expression was found in 
an iterative procedure that allowed ~2/~1 to vary smoothly 
during diffuse necking and reproduce the original ~2(0 
within 5 pct when multiplied by kl(0. 

The final plots of load vs time comparing the calculated 
load to the measured load are shown in Figures 9 through 
11. The post-uniform strain region has been magnified for 
the steel and titanium for closer comparison. It is important 
to note that strain is not constant across the width of the 
sample in these materials for a given value of time. There- 
fore, the range of strain can be determined by referring to 
Figures 3, 4, 5, and 6, which plot el vs time from center to 
edge. For the steel the el range at the last increment of time 
(16,500 seconds) is from 0.57 at the edge to 0.65 at the 
center. The strain range is even greater for titanium at 
15,600 seconds with e~ varying from 0.63 to 0.92. The zinc 
alloy has no strain gradient, and its maximum value of el is 
0.54 at 29,100 seconds. The sensitivity of the load vs time 
calculations to changes in n and K is shown by the error bars 
in Figures 9 through 11. For all three materials the range 
of the error bar corresponds to changing both n and K 
by - 10 pct. 

V. DISCUSSION 

The close agreement between the calculated and mea- 
sured tensile loads in Figures 9 through 11 suggests that 
hardening laws can be extrapolated to strains four to five 
times larger than uniform strain. It is important, however, 
not to extrapolate these laws to testing regimes beyond those 
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Fig. 9--Comparison of the measured load to the calculated load v s  time 
in the 1008/1010 steel specimen. The error bars show the sensitivity of the 
calculated load to changes of --- 10 pct in the n and K values from Eq. [10]. 

from which the laws are derived. As an example, Wagoner 
has shown 8 that the strain-rate sensitivity for 1008/1010 AK 
steel becomes a strong function of strain rate at rates 
>10 -3 s -t. Therefore, a different form of a hardening law 
must be derived for these higher strain rates. In addition, the 
effect of thermal gradients on deformation may need to be 
included at higher rates. 

At strains beyond maximum load, strain gradients across 
the specimen width change the strain state from pure tension 
at the edges, where e2/e  = - r / ( 1  + r) ,  to a state ap- 
proaching but never reaching plane strain at the center, 
where e2/el = 0. To calculate the stress in each element, 
except at the edges, requires an assumption about the shape 
of the yield surface. If the actual shape differs from the 
assumed elliptical shape, from Eqs. [3] and [4], then an 
error could be introduced in the stress that is independent of 
the hardening law. While this change of strain state is great- 
est in the center element, true plane strain is never reached 
prior to the formation of a thickness neck. The plots of kt 
and k2 for the center elements in Figures 4, 6, and 8 shows 
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that ~2 is increasingly more negative for larger values of kl. 
Therefore, any error in the calculated load due to the shape 
of the yield surface, used in the analysis, should be small 
since the range of strain states is small. The strain remains 
tensile at the specimen edge and is intermediate between 
plane strain and tensile for the center element at the highest 
strains. This observation was reported in the earlier work of 
Saka, Painter, and Pearce. 4 

As stated earlier, this study is similar to the earlier study 
by Saka, Painter, and Pearce 4 in the experimental procedure, 
but differs in the details of the analysis. In this study n is 
assumed to be constant with strain, whereas Saka et al. 
measure n as a function of strain. For steel, either in- 
vestigation shows that n is at best a small function of strain. 
This is true despite slight differences in the form of the 
hardening law and differences in the initial strain rate 
( -10  -2 s -1 for Saka and - 1 0  -5 s -~ for this study). How- 
ever, this investigation disagrees with the earlier results for 
titanium where n is reported to increase - 100 pct in diffuse 
necking as a function of strain. In contrast, this study shows 
excellent agreement between the calculated and measured 
loads from Eq. [11] by allowing n~) to decrease and K~) to 
increase with strain rate. While the n~) is not the same as the 
rate independent n from Saka et al., Eq. [11] does show that 
it is not necessary for n to be a function of strain if the strain 
rate dependency is properly accounted for. A direct obser- 
vation of a similar increase with strain in the apparent n 
during diffuse necking that is actually a strain rate effect has 
been reported by Wagoner 9 for a Zn alloy. 

VI. CONCLUSIONS 

1. Tensile hardening laws, derived from the uniform strain 
region for sheet 1008/1010 AK steel, titanium, and zinc, 

. 

. 

can be extrapolated to tensile strains four to five times 
greater than the maximum uniform strain. 
The accuracy of these extrapolations would be expected 
to decrease if a hardening law is applied to a testing 
regime (strain rate, temperature) other than the regime 
from which the law was derived. 
The application of the r-value corrected, isotropically 
hardening yield surface with the incremental theory of 
plasticity successfully calculated stress over large values 
of tensile strain for materials with widely varying flow 
behavior. 
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