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The effect of capillary forces on the pressure differentialrequired for infiltration of square and 
hexagonal arrays of  parallel fibers has been evaluated by deriving equations which include the 
contact angle, fiber diameter, and volume fraction. Three models have been considered as fol- 
lows: (a) unidirectional liquid flow normal to the fibers, (b) bidirectional flow normal to the 
fibers, and (c) three-dimensional flow. The three-dimensional model predicts the lowest pressure 
for infiltration. A comparison is made between the required pressure differential for infiltration 
based on the work of immersion I~l and capillary forces. The required pressure differentials based 
on capillary forces for contact angles greater than 90 deg are always greater than pressure dif- 
ferentials calculated from the work of immersion. 

I .  I N T R O D U C T I O N  

C O N S I D E R A B L E  interest has been developed during 
the past two decades in producing metal matrix com- 
posites. Among the various techniques for fabricating 
metal matrix composites, liquid metal infiltration offers 
a promise of considerable economy. Molten metals usually 
do not wet ceramic fibers, and, consequently, an exter- 
nal pressure must be applied to cause infiltration. We 
focus our attention on the minimum pressures required 
for infiltration. 

Recently, Mortensen and Cornie i'~ calculated the pres- 
sure differential for infiltration by using the work of im- 
mersion. The expression for the minimum pressure 
differential required to produce infiltration of a fiber pre- 
form was given by 

4 f ( y f l -  7f~) 
Ap - [11 

(1 - f ) d  

where f is the fiber volume fraction, d is the fiber di- 
ameter, and Yil and y~, are energies of  fiber/liquid and 
fiber/atmosphere interfaces, respectively. 

In deriving this equation, the authors considered only 
the initial and final energy states. In the following, it 
will be shown that for the system to reach the final state, 
i .e. ,  complete infiltration, the system must overcome an 
energy barrier. Consequently, the work required to over- 
come the energy barrier determines the minimum pres- 
sure, which is higher than that calculated from the work 
of immersion alone (Eq. [1]). 

The energy barrier arises from the need to overcome 
capillary forces as the liquid front moves around the fi- 
bers in the preform. A calculation considering capillary 
forces has already been made for a perfectly nonwetting 
system, i .e. ,  contact angle 180deg.  ~zl In the current 
analysis, the effect of the contact angle, 0, on the re- 
quired pressure is considered. Calculations are carried 
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out for both square and hexagonal arrays of  parallel fi- 
bers. In these calculations, viscous drag and gravita- 
tional forces are ignored, and for this reason, the calculated 
pressures are the minimum required pressures. 

II. THE M O D E L S  

Three different models are considered, i .e. ,  uni- 
directional, bidirectional, and three-dimensional flow. In 
the first two flow models, the flow of the liquid metal 
is normal to the fibers, while in the three-dimensional 
case, it is parallel and normal to the fibers. 

A.  The Unidirectional F low Mode l  

Figure l(a) reveals the fiber and liquid front config- 
uration for the unidirectional flow case. As the liquid 
front moves through the array, the contact angle 0 is 
maintained. Figure l(b) illustrates the various quantities 
involved in the calculations. The variable R is the cur- 
vature of  the liquid metal front, a is the angle between 
the line connecting the centers of  two adjacent fibers and 
a radial line drawn to the point of  contact between the 
liquid and the fiber, and d is the fiber diameter. 

It can be shown that the radius of liquid metal cur- 
vature at any instant during infiltration of a square or a 
hexagonal array of fibers is given by 

d cos a - A 
R - [2] 

2 cos (0 + a)  

where A = X T ~ / 4 f  for the square array and where A = 

~ / r r / 2  k/-3f  for the hexagonal array. 
The minimum value of R for a given fiber volume 

fraction f and contact angle 0 is obtained by differen- 
tiating R with respect to c~. When the minimum value of 
R is substituted into the Gibbs-Thomson equation, 

2 yt,, 
Ap - [3] 

R 

the required pressure differential for infiltration is ob- 
tained. The surface tension of liquid metal in atmosphere 
is represented by 7t,. 

METALLURGICAL TRANSACTIONS A VOLUME 20A, SEPTEMBER 1989 1861 



C C 4 

2 
1 

(a) (b) 

(c) (d) 

Fig. 1 - - ( a )  Positions of liquid front at various stages leading to infiltration. (b) Definition of quantities used in deriving equations of pressure 
differentials required for infiltration: d is the fiber diameter; 0 is the contact angle; a is the angle between the line joining the centers of two 
adjacent fibers and a radial line drawn to the point of contact between liquid metal and fiber; Rs,h is the radius of liquid metal curvature for 
square or hexagonal array; and rh is the radius of liquid metal when the front contacts a fiber. (c) Illustration of liquid metal contact between 
two adjacent liquid fronts during unidirectional flow. (d)  Illustration of liquid metal contact between two adjacent fronts during bidirectional 
flow. 

When the minimum value of R is inserted in Eq. [3], 
the expression for Ap becomes 

4yla i 1 - ( ~ - ~ )  
Ap = [41 

A + c o s  0 +  sin -1 

The values of Ap for a square or a hexagonal array 
are obtained by substituting the appropriate values of A 
for these two arrays. During their passage through the 
gaps between fibers, it is possible for two adjacent liquid 

fronts to meet at c~ = 90 deg (Figure l(c)) before the 
minimum radius of  liquid curvature is reached. The pres- 
sure at this point must be taken to be the infiltration pres- 
sure. Meeting of the two liquid fronts does not occur 
before the minimum liquid radius is reached when 0 -- 
tan-l  A; Eq. [4] is used for these values of  0. 

For the case when two adjacent liquid fronts meet be- 
fore the minimum radius of  curvature of  the liquid is 
reached, the infiltration pressures are given by 

4 Yl, sin 0 
Ap - - -  [5] 

d A 

For this situation, 0 --< tan 1 A. 
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During its passage through the gaps between the fi- 
bers, the liquid metal front may meet another fiber be- 
fore reaching the minimum radius of curvature or meeting 
an adjacent liquid front. For this case, the radius of cur- 
vature of the liquid metal at the point of contact is taken 
to be the minimum radius, i . e . ,  R = r,  where r is given 
for the square array by 

tively. All the constraints which affect Ap  are taken into 
account in Figures 2 and 3. 

Figures 2 and 3 both show that at constant volume 
fraction, the pressure required for infiltration increases 
as the contact angle increases. Above a volume fraction 
of  0.5, there is a tendency for infiltration pressure to 
increase drastically, as the contact angle increases above 

d 
r s  ~ 4 

+ 4---f(1 + 
77" 

cos 0) 2 - 5 - 6 cos 0 -  cos 2 0 

f (1 + cos 0) 2 -  1 
77" 

[61 

and for the hexagonal array 

d ~v/3f 

~ 2f  

by 

1 - cos 0 

[7] 

Plots of the required pressure for the unidirectional in- 
filtration of  a square and a hexagonal array of fibers vs 
contact angle for fiber volume fractions of 0.1, 0.3, 0.5, 
and 0.7 are given in Figures 2 and 3, respectively�9 In 
these plots, the liquid metal surface tension and the fiber 
diameter are assumed to be 2 J / m  2 and 20/xm, respec- 
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Fig. 2 - -Pressure  differential required tbr liquid metal infiltration as 
a function of contact angle at various fiber volume fractions for uni- 
directional flow and square array calculated from Eqs. [4] through 
[6]. The cross symbols define the pressure differential governed by 
the contact between two adjacent liquid metal fronts. The asterisks 
denote the pressure differential determined by contact of the liquid 
metal front with a fiber. The hexagons indicate the pressure differ- 
ential determined by the minimum radius of the liquid metal curvature. 

90 deg. For all volume fractions, the square array re- 
quires a higher pressure for infiltration than the hexago- 
nal array. 

It is of interest to note that even when the contact angle 
is below 90 deg, the condition for wetting to occur, a 
positive pressure is still required for infiltration. It is fur- 
ther of interest to note that for the hexagonal array at 
low contact angles, crossovers occur in the pressure- 
contact angle curves in Figure 3. These crossovers occur 
because the liquid metal front touches another fiber be- 
fore reaching its minimum radius of curvature. In the 
case of a volume fraction of  0.7, at a contact angle of 
10 deg or less, infiltration is spontaneous, requiring no 
external pressure�9 

B.  T h e  B i d i r e c t i o n a l  F l o w  M o d e l  

In the preceding discussion, we have considered only 
unidirectional flow normal to the fibers. It is possible 
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Fig. 3 - -P re s su re  differential required for infiltration of a hexagonal 
fiber array as a function of contact angle at various fiber volume frac- 
tions for unidirectional flow. For the definition of symbols, see Fig. 2. 

METALLURGICAL TRANSACTIONS A VOLUME 20A, SEPTEMBER 1989-- 1863 



for bidirectional flow normal to the fibers to occur as 
well, as illustrated in Figure 1 (d). For bidirectional flow, 
Eq. [4] defines the infiltration pressure. As in the case 
for unidirectional flow, it is possible for two adjacent 
liquid metal fronts to meet before the minimum radius 
of  curvature is reached (Figure l(d)). This would occur 
at a = 45 deg for the square array and at a = 30 deg 
for the hexagonal array. For this situation, 

4yr. cos (0 + a )  
AP = [81 

d cos a - h 

For the square array, the two liquid metal fronts will 
not meet for 

and for the hexagonal array, when 

0-> tan- '  ( h ) 
2 - "k/3 h 

The pressure differentials required for bidirectional 
flow, depending on the volume fraction of fibers, are 
equal to or less than those for unidirectional flow. Plots 
of  bidirectional flow calculations are not shown here. 

C. The Three-Dimensional Flow Model 

In the preceding discussion, we have considered liquid 
metal infiltration normal to the fibers, essentially a two- 
dimensional process. However,  infiltration can occur 
parallel to the fibers also, and if this type of infiltration 
takes place, the required external pressures for infiltra- 
tion are lower than for uni- or bidirectional flow, as will 
be shown. The principal difference between three- and 
two-dimensional flow is that infiltration can take place 
at a larger radius of liquid metal curvature than is the 
case in unidirectional or two-dimensional flow. Three- 
dimensional flow takes place when liquid metal flowing 
parallel to the fibers meets liquid metal attempting to 
flow normal to the fibers. This is illustrated in Figures 4(a) 
and (b) for two possible cases. 

Case A: The liquid metal flows parallel to the fibers 
before the liquid metal flowing perpendicular to the fi- 
bers reaches the line joining the centers of  two adjacent 
fibers. 

Case B: The liquid metal moving perpendicular to the 
fibers extends beyond the line joining the centers of two 
adjacent fibers before the liquid metal flows parallel to 
the fibers. 

As Figure 4 indicates for Case A, the liquid metal 
flowing parallel to the fibers can meet the liquid moving 
perpendicular to the fibers only by motion perpen- 
dicular to the fibers. The two liquid fronts meet along 
the line joining the centers of  the two adjacent fibers. 
The external pressure required to push the liquid metal 
front to the line joining the centers of  the two adjacent 
fibers and, therefore, to complete infiltration is given by 

8~/t. cos 0 
APa.s = [9] 
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Fig, 4 - - T w o  possible liquid metal configurations during three- 
dimensional  flow. (a) Case A : Liquid metal flow parallel to the fibers 
takes place before flow normal to the fibers reaches the line drawn 
between the centers of  two adjacent fibers. (b) Case B: Liquid metal 
flow normal to the fibers extends beyond the line joining the centers 
of  two adjacent fibers before liquid metal flow parallel to the fibers 
takes place. Sections are taken normal to the fiber axes, 

for the square array and 

87~, cos 0 
APA, h = [ 10] 

for the hexagonal array. 
As Figure 4 implies for Case B, infiltration is com- 

pleted when the liquid metal flows parallel to the fibers. 
In this case, the required pressure to complete infiltration 
is given by 

4Y~a cos 0 
APB,s = [111 

d 1 -  
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for the square array and 

4yla cos 0 
APn,h = [ 12] 

for the hexagonal array. 
Case A applies when AP a is larger than AP B. Since 

the dependencies of  APA and APB on Yr,, 0, and d are 
the same, the relative magnitude of APA and AP B is gov- 
erned by the volume fraction, f .  Case A for a square and 
hexagonal array occurs at volume fractions above 0.135 
and 0.302, respectively. 

The results for three-dimensional calculations of  in- 
filtration are presented in Figures 5 and 6 for the square 
and hexagonal arrays. The liquid metal surface tension, 
Yta, and the fiber diameter are assumed to be 2 J / m  2 and 
20 ~m,  respectively. Both figures show that for contact 
angles of 90 deg or less, infiltration is spontaneous. The 
required pressures for infiltration at contact angles above 
90 deg increase with increasing contact angle and vol- 
ume fraction in a manner similar to that seen in Figures 2 
and 3 for unidirectional flow. Comparisons of Figures 5 
and 6 with Figures 2 and 3 indicate that pressures required 
for three-dimensional flow are less than unidirectional 
and bidirectional (not shown) flow. For three-dimensional 
flow, the required pressures for infiltration are higher for 
square arrays than for hexagonal arrays at fiber volume 
fractions above 0.201. 

I I I .  D I S C U S S I O N  

In order to compare the present three-dimensional re- 
sults with the calculation of Mortensen and Comie, tl) it 
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Fig. 5 - -Pressure  differential required for infiltration as a function of  
contact angle at various fiber volume fractions for square array and 
three-dimensional flow. 
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Fig. 6 - - P r e s s u r e  differential required for infiltration as a function of 
contact angle at various fiber volume fractions for hexagonal array 
and three-dimensional flow. 

is necessary to substitute Yta cos 0 for Y:t - Y:, ,  in E q .  [1], 
according to Young's  equation, 

" Y f l  - -  " ) / fa  : - -  ' ) / l a  COS 0 [ 13] 

The comparison is given in Figure 7. In this figure, 
the Yta COS 0 term and fiber diameter are assumed to be 
1 J / m  2 and 20/xm,  respectively. 

The hexagonal array is chosen for comparison, be- 
cause it gives the smallest pressures for most  volume 
fractions. The substitution of Y:I - Y:a is justified as long 
as cos 0 in Eq. [13] lies in the range of - 1  to +1.  Since 
the dependencies of  pressures in Eqs. [1], [10], and [12] 
on fiber diameter d, contact angle 0, and liquid metal 
surface tension ")/la are the same, the variable which de- 
termines the relative required pressures for complete in- 
fdtration is the volume fraction of fibers. As demonstrated 
in Figure 7, the required pressure for infiltration when 
capillary forces alone are considered is always higher 
than that predicted by the work of immersion for any 
given fiber volume fraction. 

It has been argued that the required pressure for in- 
filtration can be reduced by reducing y~,.[2"3] It has also 
been counterargued that a reduction in ~/la would raise 
the contact angle 0 in such a way that the y~  cos 0 would 
remain unchanged, resulting in no change in the required 
pressure, t4~ By using Young's  equation (Eq. [13]), and 
Eqs. [9] through [12] which indicate that AP is directly 
proportional to ")/la COS 0, it can be shown that for sys- 
tems in which Y:t - Y:, > Yt~, which is the most widely 
observed case, reducing Yta would have no effect on in- 
filtration pressure. In these systems, an effective way of 
reducing the infiltration pressure is to reduce the liquid 
metal/fiber interface energy and, therefore, cos 0. This 
can be achieved through the addition of suitable alloying 
elements to the melt to promote reaction with the fibers. 
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Fig. 7 - - C o m p a r i s o n  of pressure differentials for infiltration deter- 
mined by capillary forces and the work of immers ion  after Ref. 1. 
When capillary forces are considered for volume fractions up to 0.302, 
the curve labeled Pa.h defines the required pressure differential; be- 
yond the volume fraction of 0.302,  the pressure differentials are de- 
fined by the curve PA.h. For all volume fractions, the pressure 
differentials determined by capillary forces are higher  than those given 
by the work of  immersion. 

For other systems in which ~/fl - Ysa < 3'ta and which, 
therefore, would require cos 0 to be smaller than - 1 ,  a 
completely nonwetting system reducing y~, would result 
in a decrease in infiltration pressure. 

IV.  S U M M A R Y  

Equations for the effect of capillary forces on the pres- 
sure differentials required for the infiltration of square 
and hexagonal arrays of  fibers have been derived. Uni- 
directional, bidirectional, and three-dimensional liquid 
flow models have been used. It is shown that the lowest 
pressure differentials occur for three-dimensional flow. 
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