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A survey of the liquidus surface and i n v a r i a n t reactions i n v o l v i n g l i q u i d has been made
for solidification in the t e r n a r y Sn-Ag-Sb system. Differential t h e r m a l analysis and
electron-beam microprobe analysis were used to measure l i q u i d u s temperatures and de-
t e r m i n e the composition of s o l i d phases r e s u l t i n g from solidification. A l i q u i d u s projec-
tion and the composition of the phases coexisting a t the two observed i n v a r i a n t reac-
t i o n s were determined. T e r n a r y alloys b a s e d on the Sn-Ag-Sb s y s t e m have been used
as t h e r m a l fatigue-resistant solders w h e r e high heat loads must be dissipated. An a n a l -
ysis of the properties encountered from such solders is presented, b a s e d on the p h a s e
constitution r e s u l t i n g from the solidification behavior reported here .
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I N T R O D U C T I O N

The use of high-strength solders b a s e d on t e r n a r y
alloys f o u n d in the tin-rich corner of the Sn-Ag-Sb
system has attracted attention in cases w h e r e t h e r -
mal fatigue is a problem. In these applications sil-
icon chips are bonded to metallic substrates in which
high heat loads may be dissipated. Such solders have
the high tensile s t r e n g t h and low ductility that c a n
be associated with resistance to t h e r m a l fatigue and
to the r e s u l t a n t degradation of heat t r a n s f e rd u r i n g
power cycles.

One alloy of this type w h i c h has been awarded a
p a t e n tI because of its u n i q u e w e t t i n g and t h e r m a l
fatigue resistance is alloy J, which contains 65% (by
weight) tin, 25% silver and 10% antimony. The de-
velopment of alloy J has been conducted w i t h o u t
knowledge of equilibrium solidification tempera-
t u r e s or the p h a s e distribution expected in this ter-
nary system. While it has been recognized that large
temperature differences c a n be expected in t h e s e al-
loys between the o n s e t of solidification and f i n a l
freezing, no information on the t e r n a r y l i q u i d u s
surface appears in the literature. A s t u d y of the dis-
t r i b u t i o n of phases a t low temperature has been
made by C h e n g ,2 a l t h o u g h he did not investigate
equilibria involving liquid. Since the o n s e t of solid-
ification and the p h a s e distribution expected from
freezing of l i q u i d are central to b e h a v i o r of solders,
a n investigation of the n a t u r e of the l i q u i d u s sur-
face in the t e r n a r y Sn-Ag-Sb alloys seems appro-
priate.

We wish to acknowledge the contribution of pure metals used
in this research, as well as support and advice, by Cominco Elec-
tronic Materials of Spokane, Washington.
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We r e p o r t here a preliminary survey of the main
features of the l i q u i d u s surface. We have g i v e n spe-
cial a t t e n t i o n to identification of the four-phase in-
v a r i a n t reactions involving l i q u i d and to a deter-
mination of the composition of the solid phases
partaking in these reactions. The results c a n be used
to generate a n o u t l i n e of the liquidus surface and
the composition of the phases coexisting in the two
i n v a r i a n t equilibria. A l t h o u g h a detailed determi-
n a t i o n of isothermal contours on the l i q u i d u s sur-
face was not made , sufficient information a b o u t the
initiation and completion of freezing was obtained
to be of considerable use in the analysis of Sn-Ag-
Sb solders.

EXPERIMENTAL TECHNIQUE
The data collected d u r i n g solidification were

thermal arrests t h a t could be used to determine the
onset of primary, secondary and t e r t i a r y solidifi-
cation, and chemical analyses of the solid phases with
a n electron-beam microprobe. Metallographic ex-
amination of the microstructures was used to iden-
tify the solid phases, and, especially, to identify the
phase produced by p r i m a r y freezing. Composition of
the l i q u i d a t the i n v a r i a n t p o i n t s as determined by
altering the composition of the l i q u i d of the speci-
mens in a systematic fashion u n t i l only a single
t h e r m a l a r r e s t a t the temperature of the i n v a r i a n t
reaction was observed.

The specimens were made from pure m e t a l s of
9 9 . 9 9 % n o m i n a l p u r i t y o b t a i n e d from C o m i n c o
Electronic Materials of Spokane, Washington. Pre-
determined quantities of each m e t a l were weighed
to a n accuracy of 0.05 gram to o b t a i n approxi-
m a t e l y 100 g r a m s of a specimen of k n o w n compo-
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sition. T o minimize oxidation and loss of the more
volatile antimony, the tin and silver were m e l t e d
first. M e l t i n g was carr ied out u n d e r a r g o n in a
graphite crucible made from g r a d e 780GL g r a p h i t e
obtained from A I R C O , Inc. The interior of the cru-
cible was a cylindrical cavity 75 mm long and 25
mm i.d. The a r g o n atmosphere was maintained dur-
ing m e l t i n g by directing a s t r e a m of a r g o n into the
cavity, which was approximately half-filled with the
specimen and half with argon. The a n t i m o n y was
added when the tin and silver had m e l t e d and the
temperature was estimated to be 50 to 100 degrees
above the liquidus temperature. The l i q u i d was
stirred vigorously with a graphite rod; it was then
allowed to solidify a r o u n d a graphite sleeve into
which the thermocouple for t h e r m a l analysis could
be inserted. No loss of a n t i m o n y v a p o r was detected
visually d u r i n g melting, and the oxide-free surface
obtained a f t e r solidification was used as a n i n d i -
cation that m e t a l loss d u r i n g m e l t i n g had been
minimal. No bulk chemical analyses were made af-
ter melting.

Thermal arrests were made by differential t h e r -
mal analysis of t h e s e specimens. They were con-
t a i n e d in the graphite m e l t i n g crucibles, w h i c h in
t u r n , were held w i t h i n a closed silica tube in a fur-
nace . The silica tube was evacuated and backfilled
with a r g o n before the specimens were m e l t e d a t the
start' of the t h e r m a l analysis. The reference for the
differential analysis was a cylindrical rod of nickel
which had r o u g h l y the same heat capacity as the
specimen. Chromel-alumel thermocouples were used;
they were calibrated with pure metals a t the m e l t -
ing p o i n t of tin (231.97° C), cadmium (321.11° C),
zinc (419.58° C) and a l u m i n u m (660.37° C).

D u r i n g t h e r m a l analysis a cooling rate of ap-
proximately 1 1 / 2 ° C / m i n was maintained. The dc
millivolt signal from the differential thermocouple
was stored a t 30 second intervals in a HP3497A Data
Acquisition/Control U n i t , w h i c h i t s e l f was con-
trolled by a H P 8 7 X M computer. The millivolt data
were converted to temperature, T, and differential
temperature, 0, and g r a p h e d in a H P 9 8 7 2 C Plotter,
most importantly as curves of derived inverse dif-
ferential, d 0 / d T , vs. temperature. Thermal arrests
were prominent on t h e s e g r a p h s and could easily be
resolved from the background, since in many in-
stances d 0 / d T t e n d s to i n f i n i t y as a l a t e n t heat is
evolved.

Initial identification of solid phases resulting from
freezing of each specimen was made from chemical
analysis with a Cameca MBX electron-beam micro-
probe. All phases p r e s e n t were f o u n d to be t h o s e
which appear in one of the t h r e e b i n a r y s y s t e m s - -
t h e r e appear to be no true t e r n a r y intermediate
phases. A f t e r the i n i t i a l identification, the phases
could be recognized by t h e i r microstructural ap-
pearance in specimens etched with a n e t c h a n t con-
t a i n i n g 100 ml glycerol, 9 ml n i t r i c acid and 9 ml
glacial acetic acid.

Once a r o u g h idea of the n a t u r e of the l i q u i d u s
surface was obtained from the p r i m a r y t h e r m a l ar-
rests, consideration was g i v e n to determination of
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the composition of the l i q u i d participating in the
four-phase i n v a r i a n t reactions. The temperature of
i n v a r i a n t reactions is easily identified because a
t h e r m a l a r r e s t a t this temperature appears in the
cooling curves of several different specimens. We
made a n initial estimate of the composition of the
liquid that freezes a t each i n v a r i a n t point, and ob-
t a i n e d a t h e r m a l a r r e s t curve of a l i q u i d made to
have this estimated composition. Thermal a r r e s t
curves from the f i r s t estimates showed secondary
p e a k s because we did not correctly guess the in-
v a r i a n t composition. We then adjusted the compo-
sition u n t i l the t h e r m a l a r r e s t curve revealed only
a p r i m a r y peak a t the (previously-determined) tem-
perature of the i n v a r i a n t reaction. This is believed
to indicate that the l i q u i d had been correctly made
up to the i n v a r i a n t composition.

Composition of the solid phases r e s u l t i n g from in-
v a r i a n t freezing is also difficult to measure because
f a i l u r e to a t t a i n e q u i l i b r i u m d u r i n g freezing is
characteristic of this system. Since each solid p h a s e
c a n appear to have several analyses, depending
where the microprobe beam strikes, it is difficult to
know w h i c h location was in equilibrium with the
invariant liquid. In a n a t t e m p t to a t t a i n equilib-
r i u m , specimens were held for 32 days in evacuated
silica capsules a t a temperature just below the in-
v a r i a n t temperature (a 2 2 4 ° C a n n e a l for the in-
v a r i a n t a t 235° C, a 364° C a n n e a l for the i n v a r i a n t
a t 378° C). Composition of the phases p r e s e n t was
determined with the microprobe a f t e r t h e s e an-
neals. This was only p a r t i a l l y successful in reveal-
ing the equilibrium composition because solidifi-
cation over a r a n g e of temperature had produced a
corresponding r a n g e of composition for the solid
phases. This r a n g e was not completely eliminated
by long holding. In addition, p a r t i a l m e l t i n g of one
specimen was encountered due to the unexpected
presence of nonequilibrium liquid. Nevertheless, the
compositions given in Table II are our best esti-
mates. These compositions are also consistent with
corresponding b i n a r y i n v a r i a n t p o i n t s r e a d i l y
available from phase diagrams published in the ASM
Handbook. 3

D A T A A N D R E S U L T S

The composition of the twenty-one m i x t u r e s s t u d -
ied and the temperature of the t h e r m a l arrests are
s h o w n in Table I. The first-listed t h e r m a l a r r e s t
temperature is the liquidus temperature observed;
a t h r e e dimensional p l o t t i n g of t h e s e s h o u l d com-
prise the liquidus surface. Our estimate from t h e s e
data of the appearance of the l i q u i d u s projection is
shown in Fig. 1. The second l i s t e dt h e r m a l arrest is
that of secondary solidification, showing the o n s e t
of simultaneous freezing of two solid phases. These
points s h o u l d fall on the l i q u i d u s valleys of Fig. 1,
which are lines a t w h i c h surfaces of p r i m a r y solid-
ification intersect. The composition of the l i q u i d a t
the onset of secondary freezing is not k n o w n , how-
ever, so the intersection of the liquidus surfaces
cannot be determined from secondary t h e r m a l ar-
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Fig. 1 -- Liquidus projection of the Sn-Ag-Sb system. Points
marked 14-17 show specimen compositions forwhichthe liquid
does not continue to follow a liquidus valley during secondary
solidification.

rests. The poin t s m a r k i n g t h e composition of t h e
primary p h a s e , t h e bulk composition o f t h e speci-
men a n d t h e composition o f this secondary liquid
should b e colinear; this is sometimes o f assistance
in loca t ing t h e l iquidus valleys.

The method of ascertaining t h e composition o f t h e
liquid a t t h e invar iant reac t ions- -seeking a liquid
with a single thermal a r r e s t a t t h e correc t temper-
a ture--has been ment ioned previously. The speci-
mens showing this behav io r are numbered 19 a n d
21. The average va lue o f t h e invar iant tempera-
tures are 378.5° C a n d 234.8° C.

Table II. Composition of Phases at Invariant
Temperature

Compo-
Invariant sition
Reaction Phase Sn Ag Sb

L + (Sb) ~ Ag3[Sn,Sb] + SbSn Liquid 34 14 52
378.5° C (Sb) 11 0* 89

Ag3[Sn, Sb] 18 72 10
SbSn 36 0* 64

L + SbSn ~ Ag3[Sn, Sb] + (Sn) Liquid 89 5 6
234.8°C SbSn 57 0* 43

Ag3[Sn, Sb] 27 72 1
(Sn) 92 0* 8

*Solubility ofsilver is less than 1% in alloys on the Sn-Sb side.
Percentages of silver above background in the microprobe anal-
yses are as follows: (Sn) 0.1% SbSn 0.0% with Sn (Sb) 0.0%

SbSn 0.2% with Sb

The l iquidus sur face suggested here is consistent
with o u r ident i f icat ion o f primary microconstitu-
ents with both t h e microprobe a n d metallographic
examination, a n d with t h e t h e r m a l a r r e s t s . The
composition o f t h e solid p h a s e s which are in equi-
librium a t t h e invar iant temperature was deduced
from microprobe ana lyses o f t h e specimens held for
32 days a t a temperature j u s t be low t h e invar iant
tempera ture . T h e s e compositions are l i s ted in Table
II. It is c lear t h a t t h e terminal (Sn) a n d (Sb) solu-
tions, a n d t h e intermetallic compound SbSn have
very limited solubi l i ty fo r si lver. The solubi l i ty o f
ant imony in t h e (Sn) a n d SbSn , a n d t h a t o f tin in
(Sb), are close to t h e values shown in t h e binary Sb-
Sn system.

Table I. Specimen Composition and Temperature of Thermal Arrests

Sample Composition, wt. % Thermal Arrest Temperature, °C
No. Sn Ag Sb Primary Secondary Othe r Invariant

1 40 20 40 380.8 235.5
2 80 10 10 247.0 235.0
3 45 45 10 488.1 302.1 236.4
4 80 5 15 287.9 235.3
5 30 10 60 480.1 376.9
6 10 30 60 517.1 455.4 378.4
7 10 55 35 486.3 443.0 378.2
8 25 31 44 423.5 378.5
9 44 8 48 398.7 362.9 234.4

10 44 8 48 399.0 362.9 234.3
11 42 8 50 423.8 396.8 369.2 234.3

364.7
12 10 85 5 810.6 715.7
13 15 70 15 598.5 523.3 379.5
14 40 8 52 430.5 394.8 370.0 234.6
15 25 70 5 614.7 493.9 233.5
16 38 8 54 447.8 393.0 370.9 234.4
17 36 8 56 462.9 390.6 372.1 234.1
18 15 40 45 463.3 447.7 379.0
19 34 14 52 379.1

234.3
20 83 8 9 251.0 235.2
21 89 5 6 235.1
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D I S C U S S I O N

The location of the p o i n t representing composi-
tion of the invariant liquid appears as expected from
a t e r n a r y reaction of the type cal led C l a s s II by
Rhines.4 In such a class the complete peritectic p l a n e
is a four-sided trapezium with composition of each
of the coexisting phases appearing a t one corner. The
nominal equations for the i n v a r i a n t reactions are

Eqn. 1
Eqn. 2

(Sb) + L ~ SbSn + Ag3[Sb,Sn]
SbSn + L ~ (Sn) + Ag3[Sb,Sn]

3 7 8 . 5° C
234.8 ° C

On a liquidus surface it is common for a Class II
reaction to occur if two liquidus valleys descend from
h i g h e r temperatures, intersect, and a s i n g l e valley
decends (in temperature) from the intersection. The
results of C h e n g2 and the microprobe analyses sug-
gest that the p h a s e field and l i q u i d u s surface of the

phase, Ag3[Sn, Sb], is continuous across the dia-
gram from the Ag-Sn side to the Ag-Sb side. Cheng's
m e a s u r e m e n t s also i n d i c a t e t h a t the p h a s e fl,
Ag(Sn, Sb), is continuous, as we have s h o w n here .

The tendency for non-equilibrium freezing in this
system is great. It is a p p a r e n t from Table I t h a t a
n u m b e r of specimens show a t h e r m a l a r r e s t a t both
234.8° and 378.5°, or that some show a n a r r e s t a t
234.8 ° even t h o u g h the p o i n t representing the com-
position does not fall on the peritectic plane. If equi-
l i b r i u m were followed, n e i t h e r occurrence s h o u l d be
observed. A l l o y 19, for example, s h o u l d solidify
completely a t a temperature not fa r b e l o w 378° and
should not have liquid remaining a t 235° (as it does).
This n o n - e q u i l i b r i u m a s p e c t of solidification is
probably a r e s u l t of the Class II reactions producing
a peritectic-type of envelopment.

A n o t h e r feature of this t e r n a r y system is the ten-
dency of the l i q u i d d u r i n g solidification to ~qeave"
the liquidus valley and move across a new l i q u i d u s
surface. A l t h o u g h this is not a common phenome-
non in solidification of metals, it c a n be illustrated
here by specimen 15. This specimen begins p r i m a r y
freezing of fi a t 615° C, and secondary freezing of fi
and Ag3[Sn, Sb] a t 493° C. At a temperature below
the o n s e t of secondary freezing, the l i q u i d becomes
too poor in silver to continue solidifying to both fl
and Aga[Sn,Sb]. The l i q u i d then 'qeaves" the liq-
u i d u s valley, now freezing only Ag3[Sn, Sb], and
travels across the Aga[Sn, Sb] surface. At equilib-
rium t h e r e is l i q u i d r e m a i n i n g a t a temperature as
low as 235° C, w h i c h is the temperature of f i n a l
freezing. This is a n equilibrium characteristic, but
it causes such a m i x t u r e to show a l a r g e r a n g e in
temperature between the o n s e t and completion of
freezing. Such a departure of l i q u i d from the liq-
u i d u s valley also occurs in specimens 14, 16 and 17.
Here the effect on the freezing r a n g e is less dra-
matic, but the effect causes more t h e r m a l arrests
than m i g h t n o r m a l l y be expected.
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In the s t u d y of Sn-Ag-Sb solders, O l s e n and
Spanjer1'5 s o u g h t a solder of high tensile s t r e n g t h
and low ductility, a combination w h i c h appears to
ensure freedom from t h e r m a l fatigue. They have
published l's results of mechanical t e s t i n g of twelve
alloys studied in t h e i r development program. The
interpretation of t h e i r r e s u l t s is made somewhat
eas ier by a n analysis b a s e d on Fig. 2. It seems ap-
parent, for example, that the s t r e n g t h of the a l l o y
is strongly influenced by the s t r e n g t h of the tin-
rich terminal solid solution, (Sn). Tin dissolves very
little silver, b u t c a n dissolve up to 9% or 10% an-
timony. A t t a i n i n g m a x i m u m s t r e n g t h appears to
depend on s a t u r a t i n g the (Sn) p h a s e with a n t i -
m o n y - t h i s will occur if the composition falls w i t h i n
the 3-phase Sn + SnSb + Aga[Sn, Sb] triangle. The
effect of saturation c a n be seen in the tensile strength
of alloys, E, G and L studied by O l s e n and Span-
jer. 1'5 All t h r e e of these alloys have 20% silver, so
have equal a m o u n t s of the silver-rich Ag3[Sn, Sb]
phase, but the a n t i m o n y has been increased from
1.5% to 5% to 10% from E to L. Only t h e i r a l l o y L
has e n o u g h a n t i m o n y to s a t u r a t e the ( S n ) - - t h i s is
consistent with the progression of tensile s t r e n g t h
in these t h r e e from 56.1 to 78.1 to 91.1 MPa. On
the o t h e r h a n d , alloys J , K, and L all fall w i t h i n
the 3-phase triangle, all consequently have (Sn) sat-
u r a t e d with antimony, and all have s t r e n g t h s in ex-
cess of 90 MPa.

A second effect on tensile s t r e n g t h is apparently
caused by the a m o u n t of silver-rich Ag3[Sn, Sb]
present in those alloys in w h i c h (Sn) is saturated.
By u s i n g the lever rule it c a n be seen t h a t the h i g h -
es t s t r e n g t h occurs when the (Sn) p h a s e is s a t u -
r a t e d with a n t i m o n y and the a m o u n t of Ag3[Sn,Sb]
is a t a maximum.

Low ductility is associated with presence of~bSn,
undoubtedly a b r i t t l e intermetallic compoun~t. Al-
loys J , K and L e x h i b i t t h i s ; the lowest ductility

Ag

S

Fig. 2 -- Composition of co-existing phases for the two invariant
reactions in Sn-Ag-Sb. Points marked E - L denote alloys studied
by Olsen and Spanjer~'sfor use as thermal fati~e-resistant sol-
ders.
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appears in alloy K, which has the greatest amount
of SbSn. The bad wetting characteristics of alloy K
can also probably be ascribed to that alloy having
the largest percentage ofSbSn, approximately 25%.
It is not surprising that alloy J was selected as being
superior--in alloy J the (Sn) phase is saturated with
~ntimony, the microstructure has 33% Ag~[Sn,Sb],
which also ensures high strength, and has approx-
imately 10% SbSn, which appears to be sufficient to
ensure low ductility without having so much of this
phase that wetting is adversely affected.
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