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ABSTRACT

This paper makes a review on the predictability of the atmosphere. Theessential problems of predictability theo-
ry, i.e.,howa deterministic system changes to an undeterministic system (chaos) and howis the opposite (order within
chaos), are discussed. Some applications of predictability theory are given.

I. INTRODUCTION

If the influence o f human activity on weather and o t h e r similar effects are not considered,
the atmospheric system can be regarded as a deterministic system. Its future state is complete-
ly determined by physical laws (differential equations) governing the system evolution,
environmental conditions (boundary conditions) and init ial situation (initial conditions).
Numerical weather prediction is based on this viewpoint. It seems that if once there were a ful-
ly accurate model and a n observational system, one could do sufficiently accurate weather
forecast over an arbitrarily long period. In the circumstances, however, small errors, which
are unavoidable, at initial moment may still produce ivery large deviations a t a certain mo-
ment with increasing time.

During early 1940s, in a series o f reports, Kolmogoroff demonstrated that the small er-
rors o f init ial atmosphere state may lead to different atmosphere state in a long time. Howev-
er, it was Thompson(1957) who first raised the problem o f predictability. Lorenz(1969a)
showed that there are three approaches to the study o f atmospheric predictability. Up to date,
most predictability studies have been based upon numerical models. Solutions originating
from a "correct" initial state are determined, and the rate a t which these solutions diverge is
observed. It has become customary to summarize the results in terms o f a doubling time for
small-amplitude errors. In fact, whenever there is a model, this can be done. Some famous
examples o f numerical experiments have been done by Lorenz (1965, 1969a, 1982), Charney
et al. (1966) and Smagorinsky (1969). The main achievement is the finding that weather fore-
cast has a limit o f predictability. The doubling time o f small init ial errors is 2-5 days. Esti-
mates o f the limit to the predictability o f the t o t a l flow range from 8 to 16 days. Predictability
decreases with decreasing horizontal scale. It is lower in the tropics than in the middle and the
high latitudes, and higher in winter than in summer for the Northern Hemisphere.
Predictability also relies on synoptic systems, i.e., some atmospheric states are more predicta-
ble than others. Ageostrophic, r andom initial perturbations develop more slowly than
geostrophic, systematic perturbations do. This method suffers from the fact that the growth
o f errors is model-dependent, therefore different models yield different estimates o f er ror
growth for predictability. Another method is to calculate the growth o f errors in homoge-
neous turbulence models (Leith, 1972). This method suffers from the limitation that the real
atmosphere does not always behave as the idealized models, especially in the presence o f
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forcing at the lower boundary and diabatic heating. The method suggested by Lorenz (1969c)
is to examine the rate o f divergence o f pairs o f close analogs in the real atmosphere. This
method, which is the most attractive one from the conceptual po in t o f view because it makes
use o f real atmospheric behaviors, suffers from the absence o f close analogs.

After exceeding the limit o f predictability, individual synoptic-scale perturbation goes
from determinant to undeterminant. In this case, it is more helpful to study the forecasting o f
spatial and temporal mean values. Monin (1972) considered that it is not a constructive prob-
lem to determine the limit o f predictability in itself (it i tself must not be the goal). T o solve the
problem o f long- term predictability constructively, it is required to point out the characteris-
tic o f meteorological fields predicted in this period. However, M a r c h u k (1974) believed that it
is more suitable to do every t en -day averaged forecasts for near a monthly weather forecast,
i.e., the means o f the first, the second and the last ten days o f a month . If we are interested in
the weather forecasts o f the next season, then we do the time-mean forecasts o f the first~ sec-
ond, and third month o f the season. The characteristic scale o f forecast area (i.e., the range o f
the average o f area) increases with the increase o f forecast time limitation. Fo r instance, the
scale is 1000 x 1000 km for t en -day average, and 3000 x 3000 km for monthly mean. In the
recent years, most researches were made fo r the predictability and the limit o f predictability o f
spatial and temporal mean fields. A series o f work o f Shukla (1981, 1982, 1983, 1986) pro-
posed the concepts o f dynamic and forcing predictability fo r monthly mean fields and showed
that the predictability o f atmospheric dynamics exceeds a month , but the anomaly o f underly-
ing surface plays greater roles in two months o r seasonal long- term forecasts. In this respect,
the seasonal variation also becomes an important element. Based on experiments by using
G F D L model, Miyakoda (1980) found that t en -day mean is better than daily forecast, and
twenty-day mean is better than ten -day mean forecast. Mansfield(1986) and Miyakoda et
a1.(1987) studied prediction o f monthly mean circulation by using numerical model, and
showed that the predictive accuracy is.seemingly dependent on flow pattern. Madden (1982)
first proposed the concept o f climate noise, and discussed the potential predictability o f
long- term forecast. These works hre equivalent to the works which treats from an
undeterministic system to a deterministic system. The essential problem o f predictability theo-
ry is how a deterministic system changes to an undeterministic system (chaos) and how is the
opposite (order within chaos). The following section will discuss this essential problem.
Finally, some applications o f predictability theory are given.

II. MATHEMATICAL T H E O R Y

1. A n Intuitive Example

The future evolution o f a deterministic system is uniquely determined by initial values.
However, u n d e r certain conditions, small init ial differences can lead to large ones at a certain
time. Since initial values may not be known accurately, its evolution then can not be
predicted. Chou (1986) gave a n intuitive example, which vividly demonstrates the production
o f this situation, using the following famous maximum simplified model proposed by Lorenz
(1960) and expressed in the form o f the dynamic equations, thus their most essential proper-
ties are maintained:

dt ~ - - 1 / (k2 + l 2 ) k l Y Z (1)
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(3)

It maintains the characteristics o f conservation o f mean kinetic energy E and o f mean
vorticity squared V o f primary barotropic vorticity equation. When ~ = k / l > 1, these
conservative properties can be written as

where X0,

X 2 y 2 Z 2 ~ ~+ + ~ = X 0 + Y0 + Z 0, (4)
2 2

2 I , z 2 - t o 0 , (5)
2 2 ( 1 + ~ - ) 2 X~ 2(1+ 2 )

Y0, Z0 are the initial values. The X, Y, Z are regarded as a point o f the
space. This point (X(t), Y(t), Z ( t ) ) draws a curve in the space. It equals to determine a di-
rection fields in the space for solving the ordinary differential equations o f (1)-(3). There ex-
ists a unique solution a t given init ial values. It means that any po in t in space is always passed
by one and only one curve. H o w are these curves? We can easily see that in ~ > 1 case, they
satisfy Eqs. (4) and (5). Eq.(4) represents a sphere, and its center is located at the origin o f the
coordinates. When X0 =Z0 =0, Eq.(5) represents two planes which intersect a t Y-axis,

i.e., Z = x/~ 2 - 1 X, Z = - 4 ~ 2 - 1 X, they divide the space into four par ts which contain
positive Z-axis, negative Z-axis, positive X-axis, negative X-axis, separately.
When both X and Z are not zero, Eq.(5) represents an one sheet hyperboloid located in
certain region o f four parts. The integral curve is the intersection line o f hyperboloid and
sphere. No mat ter how close two points (which are situated at two sides o f a plane) may be,
(for example, the l~recision o f modern compute r is 10-15, the initial location difference is ~;),
if these two points o f e<< 10 -~5 are in different regions, then the integral curve o f one po in t is
a closed curve around Z - a x i s .and a n o t h e r is a r o u n d X-axis. Their distance will be
sufficiently far sooner or later. It is seen directly that a deterministic system changes to an
undeterministic one at a certain time, due to the fact that the initial values are not known ex-
actly. In addition, one can assume that the init ial values are known in the way o f absolutely
accurate a n d are near the plane, but the parameter ~ in the equation cannot be known abso-
lutely accurately and has an extremely small error. This will lead to the change o f intersection
angle between the planes and the region which init ial value belongs to, and also the change o f
a deterministic system to an undeterministic one at a certain time. This characteristic is differ-
ent from the former, the reason o f the difference is caused either by initial e r ror (equation is
accurate ), o r by the parameterer ror in equation (initial values are accurate). In fact, both er-
rors exist at the same time. Fo r the real world , we have nothing that can be known absolutely
exactly.

Nevertheless, the above situation solely occurs near particular points, i.e., near the points
on plane. All o f the points on the whole p lane are set zero a b o u t their measure. The atmos-
pheric sensitivity to initial values is much more common. It is concerned with non-per iodic
solution o f dissipative system ra the r than periodic solution o f conservative system.

2. The Sensitive System to Initial Values: Chaos and Turbulence

When Lorenz (1963) studied finite-amplitude convection, he proposed 3-order ordinary
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differential equations and gave the first example o f the strange attractor which is the strictly
non-per iodic special solution o f the equations. The mot ions outside a t t r ac to r are all close to
it. The whole is stable. When the orbits go into attractor, they are separated exponentially and
become a sensitive system to initial values. Just because o f the sensitivity to init ial values, it
makes the mean values on strange a t t r ac to r o f the physical variable be contrarily no longer
sensitive to initial values. The motk-ns on the strange a t t r ac to r are not only ergodic but also
mixing. One can introduce a stable distribution function and make statistical description.
Ruelle and Takens (1971) connected the strange attractor with turbulence behaviors, thus, the
predictability is physically the problem o f turbulence ou t -g rowth .

There are conditions for the production o f predictability. Fo r a forced dissipative
nonlinear system, the conditions leading to its sensitivity to initial value are:

1. There is a strange attractor in the system and the init ial values are on the attractor.
2. There are many attractors in the system and initial values on dividing line o f domains

o f attraction.
3. The system parameters are o f small errors and lead to instability.
If initial values are not on attractors or there is no strange attractor, the init ial errors do

not increase rapidly.
All mentioned above, o f course, are idealized, the real atmosphere is close to one o f these

only in some time and some aspects.
Since the above discussions are based on a low orde rmodel it is naturally to ask whether

they are tenable for real complex atmospheric system. In recent years, the a u t h o r and his
collaborator did a series o f studies, and showed that the above results o f low orde r model are
o f universal significance. The summary is given as follows.

3. The Global Asymptotic Behaviorsq['the PartialDifferentialEquationsfor
the Atmospheric System

After introducing Hibert space which consists o f the vector functions, Chou (1983)
proved that the large-scale atmospheric dynamic equations can be written as the following
operator equation.

B ~ + N(~p)~p + L~p = ~ (6)

Bq~=Bg0, when t = to, (7)

B, L are self-adjoint and positive definite operators; N, ant i -adjoint operator,where
i.e.,

((,o I , Bqo2) = ((P 2, B ( P 1 )

((,o I , L q ~ 2 ) = ( q o 2 , Bq)n )

(¢p. B¢p) ~>O, (¢p, Lop) >~ 0
(~o,, N(q~)~02) = -- (q~2, N(~p)q~l )"

By using the above-mentioned properties o f the operators, we have discussed the characteris-
tic o f the global asymptotic behaviors o f the par t ia l differential equations o f the atmospheric
system. Wang, Huang and the a u t h o r (1988) have proved that the large-scale atmospheric
dynamic equations exist in a bounded g loba l absorbing set Bx. In addition, they estimated a
definite critical time to, and proved that if
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the orbits which start from rp0 must go into BK , and remain in BK. Based on this proving
they further proved the existence o f invariant set in BK and revealed that the system is
nonlinearly adjusted to exterior sources.

On the o t h e r h a n d , Folas and Temem (1979) f i r s t proved that the attractor fo r the
Navier-Stokes equations is finite-dimensional, while Constantin et al. (1985) have derived
sharp estimates o f the fractional dimension fo r nonconvection turbulent flow. More recently,
Ghidaglia (1986) proved that attractors to various equations o f viscous incompressible fluid
flows, such as thermo-hydraulic equations and magnetohydrodynamic equations, have finite
fractional dimension and lie in the set o f C~. Folas et a1.(1987) have obtained bounds for
the dimension o f attractors which have physical interest (i.e., in terms o f nondimensional
physical numbers) in case o f convection equations

Po\~-t +(u " V)u - p o v a u - k V p = p o g 1-kc¢(7', -- T0) , (9)

)PoCv i?t + ( u " V ) T - P o C K V T = O , (10)

where u = ( u l , u2) o r u=(ul, u2, u3) is the velocity o f the fluid, p is the pressure, g is
the gravity, Po > 0 is the constant mean density, ~t is the volume expansion coefficient o f

the fluid, C,, is the specific heat a t constant volume and v and k are the (constant)
coefficients o f kinematic viscosity and thermometric conductivity, respectively. T0 and
T~ are the temperature at lower and upper plates. We introduce the usual nondimensional
numbers, i.e. Grashof (G,.), Prandtl(P,.) and Rayleigh (R,):

where

2 U " - I
G r = ( v ' ) , Pr = k ; ' R =(v'k') ,

kv' = - - v k' =
I ' I

h 3ga(7"o -- g~(To 7"t
2 h 3 - )2

7' I

They proved the existence o f functional invariant sets in dimensions 2 and 3. The fractional
dimension o f the attractor is fbund by 2 m. In the two-dimensional case,

m <~C

In the three-dimensional case,

m ~<C 2 { ( Ra

where

{ ' }t G ~ ( I + P r ) + G r ( I + P )2 .

3, , ),
+ G ~ ) 2 + \ I d ) I + P , .

11 =(v 3 / c ) ' ' 4

is the Kolmogoroff dissipation length (the dissipation rate o f the energy per unit mass and
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time averaged on the attractor), l0 is a (dimensional) typical macroscopic length.
Based on the works mentioned above, W a n g , t t u a n g and the a u t h o r (1988) made use o f

the similar method under suitable widespread conditions, and proved that large-scale atmos-
pheric system o f equations has finite fractional dimension, a n d obtained bounds fo r the di-
mension o f attractors. They showed that the global asymptotic behaviors o f the par t ia l
differential equations o f atmospheric dynamics which have infinite freedoms can be described
by finite ordinary differential equations in idea l stable surrounding conditions.

4. In Space R"

The replacement o f partial differential equations by ordinary differential equations is
equivalent to the change from state space H to state space R". The operator equation
in H space must also be changed to that in space R', correspondingly. It is suggested
that the properties o f the equation operators must be kept unchanged during such transfor-
mation (Chou , 1983), Chou (1986) proved that a lmos t all curves asymptotically approach to a
special set having zero volume-- the attractor by only using the properties o f the ope ra to r like
Eq. (6) in R'z space. A few attractors can exis t a t the same time and have respective region o f
attraction. Lyapunov's characteristic exponent is an important numerical figure which des-
cribes the stability and randomness o f the motion orbits. If a t least one exponent is positive,
then the attractor is "strange", and consists o f an infinite complex o f manifolds o f degree less
than n. The motion on strange attractor is locally unstable. This is the source from
deterministic to undeterministic. The existence o f attractors (including strange attractor) re-
flects the global stability o f the orbits in phase space. This is the source from undeterministic
to deterministic.

The system tends to an attractor state spontaneously if the environmental conditions do
not change with time. It is a limitation o f idealization. In reality, it is unavoidable that the
environmental conditions change with time, and it leads to the change o f the attractor struc-
tu re . Especially, when the external parameter passes a bifurcation value, the attractor will be
runaway. It leads to fully undeterministic o f another kind o f mot ion . The predictability study
with respect to this kind o f motion is still not satisfactory.

III. APPLICATION

1. The Prediction o f Predictive Skill

The key o f the classical predictability is the variation o f initial errors with time. If the sys-
tem has only an attractor and the attractor is a constant solution, init ialerrors decrease with
time. If the attractor is a period solution, initial errors may not change with time. If the
attractor is a strange attractor and initial values are on the attractor, initial errors increase
rapidly.

The real atmosphere is among these three situations. U n d e r different init ial fields, the
evolution o f initial errors with time is different.

Zeng (1979) showed that the evolution o f some flow fields is stable, and the effect o f ini-
tial errors is not strong, so the limit o f predictability fo r these processes may be well above the
mean value. Identification o f these processes is very useful for actual forecast.

Palmer (1987) found from an assessment o f a small set o f extended range forecasts which
are from two centres, and from a much large set o f medium range forecasts which are from
one centre, that the variability in predictive skill is strongly related to fluctuations in the Paci-
fic / Nor th American (PNA) mode o f low frequency variability. A physical hypothesis is p u t
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forward that the growth o f analysis errors o r short range forecast errors depends on the
barotropic stability o f the forecast flow. The hypothesis is tested in a barotropic model, using
basic states, composite skillful and unskillful forecasts from a set o f 500 wintertime medium
range forecasts. It is found that the degree o f instability strongly depends on the ampli tude o f
the PNA mode .

Discussing o f the evolution o f init ial errors is only limited in theory, the stability o f the
forecast flow. Hydrodynamic instability including the instability o f atmospheric motions is a
classical but difficult problem. It is noteworthy that Zeng (1987) developed a generalized
variational method which is universal fo r obtaining criteria o f instability in all models with all
possible basic flows, i.e., the model can be barotropic or baroclinic, quasi-geostrophic o r
nongeostrophic; and the basic flow can be zona l o r nonzonal, steady o r unsteady. T o analyse
actual flow by using this theory and to compare it with the time evolution o f numerical
weather forecast accuracy will help us in getting a deeper understanding on the mechanism o f
the time evolution o f predictability. This is the work which needs to be done.

2. A Possible Physical Mechanism about a Few Very Bad Predictive Skill

As the improving o f our understanding o f physical processes in the atmosphere and the
developing o f compute r technique in treating d a t a , numerical weather forecasts have become
more and more skillful. Despite this, forecasts still show considerable variability in predictive
skill. Analyses o f the skill o f numerical weather forecast in the main forecasting centres
showed that although the average scores o f pre(iictions were very good, some unsatisfactory
episodes i.e. a few very bad forecasts still took place qui te often (Lange and Hellsten, 1984;
Bengtsson, 1985; Wash and Bogle, 1986). What caused these extremely unsuccessful forecast?
How can we improve the forecast in these cases? Qiu and the a u t h o r (1987) discussed these
problems in detail. The foundamental idea is that the errors o f the parameters in the models
exis t inevitably and give rise to forecast errors which depend on the init ial values. Generally
the forecasts are not sensitive to small errors o f the model parameters, but fo r certain particu-
lar init ial values the forecasts are highly sensitive. This is probably one o f the reasons to bring
about serious failures to the forecast. An example o f numerical experiments shows that for
certain'particular initial fields, the errors in the parameters, though they are very small, may
bring about serious consequence. It is suggested that drawing support from the invertion
method one can modify the parameters in the models with the aid o f the information provided
by the observational data o f the recent atmospheric evolution. The simulation experiments
with the simple barotropic model show that the improvement over the forecast by this method
is obvious. It isfeasible that this method can be applied to the realistic operational models.

3. Predictability o f Mesoseale Circulation

The increasing o f initial errors is the source o f producing inherent predictability. In theo-
ry, the rate o f er ror increasing o f three-dimensiOnal turbulence is larger than that o f
two-dimensional turbulence. Since the mesoscale spans scales o f motion from the synoptic
scale, which behaves as two-dimensional turbulence (for the microscale, which behaves as
three-dimensional turbulence) one would expect that mesoscale atmospheric systems, espec-
ially at the smaller scales, would have considerably less inherent predictability than synoptic
scale system (Tennekes, 1978). An obvious difficulty is the lower resolution o f the routine me-
teorological observational network, so the errors o f init ial fields are very large. However, it is
quite expensive and impossible a t least today to maintain a high resolution observational
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network similar to operational forecast ones. This leads to pessimistic conclusions concerning
mesoscale predictability. However lower boundary forcing can strongly affect the behaviors
o f many atmospheric mesoscale phenomena and make them differ from those in turbulence
model. Boundary forcing on the synoptic and planetary scale associated with land-sea con-
trasts and orography appears to be the reason o f the more predictable o f these scales o f mo-
tion in the Northern Hemisphere than in the Southern Hemisphere (Shukla , 1984). In
mesoscale problems, surface inhomogeneities including elevation and surface characteristics
(albedo, heat capacity, moisture availability) generate many phenomena (such as mountain
waves, sea breezes, convection, orographic precipitation, coastal fronts) and modula te their
behaviors. Such surface inhomogeneities, if incorporated properly with numerical models, are
likely to increase the predictability o f motions they force.

Anthes (1984) classified the development o f mesoscale wea the r systems into two types:
(1) those resulting from forcing by surface inhomogeneities and (2) those resulting from inter-
nal modifications o f large-scale flow patterns. On his opinion, a subset o f the second class o f
phenomena are those mesoscale features that develop in regions o f instability
produced by large-scale flows; an example is the isolated thunderstorm which develops in a
region o f large-scale convective instability. Such individual phenomena are likely to have
little predictability, even though the development o f the large-scale area o f instability may
have signiticant predictability. An optimistic hypothesis is that many significant mesoscate
atmospheric phenomena evolve from an interaction between large-scale flow and known o r
predictable surface inhomogeneities. In that case there is hope for skillful forecasts over peri-
od o f 1-3 days using deterministic methods, and provided the synoptic-scale motions are
predicted correctly.

Anthes et al. (1985), in some cases studies with a regional-scale numerical model,
indicate that 72h simulations are not sensitive to random uncertainty errors in init ial wind ,
temperature, and mo'isture fields. It is not like the behavior o f global models. In contrast, the
simulations are more sensitive to large variations in lateral boundary conditions. The most
important practical result suggested by these experiments is that meso-~-scale models de-
pend critically on accurate specification o f the large-scale atmospheric variables a t lateral
boundaries.

It is possible that the above-mentioned mathematical theory provided a key for under-
standing the difference between global models and regional-scale models in the growth o f ini-
tial errors. In global models initial values are always on the attractor and the attractor is a
strange one, but in regional-scale models initial values are not on attractor and the attractor
may not be a strange.

4. Predictability o f Monthly Mean Ocean / Atmosphere Variables

It is inevitable to make some approximations and simplifications in the atmospheric gov-
erning equations in developing a numerical weather prediction model, because o f two de-
mands: (1) the governing equation must be closed: (2) the variables required for the definite
conditions o f solving the equations must be known. Different k inds o f approximations and
simplifications will result in different models and br ing a b o u t different forecasting accuracies.
In fact, the different definite conditions may be employed for the same predictand, and the
different forecast schemes may also be developed by using the same definite conditions. That
is often the case in developing a long- range weather forecasting model. Is it possible to com-
pare the potential predictability among difl)rent schemes in advance?
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There are two basic factors determining the forecast accuracy o f a dynamical model, i.e.
how much information a b o u t predictands is included in the difinite conditions and how
efficiently the model picks up the information. In o rde r to improve the forecasting accuracy,
f i r s twe must try to select some definite conditions which include the information as much as
possible, and then to develop an available model.

As well known, it is difficult to extend the daily forecasting up to two o r three weeks.
Therefore, the long- range numerical forecast turns into predicting the mean values o f the va-
riables in a definite period, such as the monthly averaged anomalies o f geopotential height
and temperature. In recent years, a few forecast schemes have been presented, which can be
divided into two kinds. One is getting the monthly averaged values o f the daily forecasts com-
puted by the GCM (General Circulation Model) and the o t h e r is making out monthly aver-
aged forecast directly by using the governing equations fo r the mean variables. The definite
conditions required in the above two kinds o f models are different, although their eventual
objects are the same. The former requires the instantaneous values o f the atmosphere / ocean
variables at a certain time but the la t te r requires the monthly averaged ones.

Qiu and the a u t h o r (1987) studied the potential predictability levels o f forecasting the
monthly mean ocean /a tmosphere variables, which are only based on the monthly averaged
data o f sea surface temperature and geopotential height. Using the analysis o f naturally oc-
curring analogues, which is qu i te alike the method used to study the atmospheric
predictability o f daily weather forecast by Lorenz (1969), they f o u n d that in the ocean -a t -
mosphere system the forecast o f geopotential height may be more difficult than SST, and that
the predictability level o f monthly mean geopotential height anomaly calculated from the
corresponding monthly mean SST appears relatively poor , but it can be improved
by using the past observational data o f monthly mean SST / geopotential field.

5. Change over to New Ways

Assuming that the atmosphere is expressed in n real parameters and wri t ten by
X = ( X ~ , X2," ..... X,,), thespace R" is its state space. T h e s t a t e X~+A~ at t+ht moment

can be solely determined by the state X~, at t moment . This is a deterministic model
which numerical weather forecast is seemingly like. From mathematical viewpoint, this is

equal to determining a po in t mapping in R" space

X + l = G ( X , , ) n = 0 , 1 , 2 .......

where X,, is the value o f X in t+nAt moment . So, we can demonstrate the X,, value
based on init ial value, X0. This is the deterministic forecast. The problem is that init ial
observational errors are not completely negligible, even if one assumes that the point mapping
has no errors (in reality unlike this). It is inevitable to be limited by computer word length
when we do the numerical computation by using computer, Assuming that h is the
observational er ror (o r rounding error o f computer), the initial states between a - h / 2 < x
< a + h / 2 are expressed by a and in turn the state a might be the state between a
- h / 2 < x < a + h / 2 . Thus the state space is not really continuous, and is discretized.
Through a process ol~ discretization the po in t mapping in R" should be replaced by a
cell-to-cell mapping (Chou , 1987). The po in t mapping is that a po in t maps a point; the cell
mapping is the point mapping o f all points in cell, its result is usually scattered in a few cells
and is not correspondence one by one. Hsu (1981) pointed out such a cell mapping can be
identified with a Markov chain and the well-developed mathematical theory can be immedi-
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ately applied. So, for an ordinary deterministic model, it becomes that the probability is I at
only one cell and is 0 at all the others at the init ial moment , with the evolution o f time, the
probability a t a group o f cells is not O. When the number o f these cells is increased to certain
degree, it happens that the instantaneous state cannot be determined in reality. However, the
states display on a certain group o f cells based on certain probability distribution; there are
some deterministics, i.e., the weather is not determinant and the climate is determinant. The
characteristics o f underlying surface (for examples, sea-surface temperature, soil moisture, ice
cap and snow cover and so on) changed more slowly than the atmosphere. Assuming that this
external forcing is idealized to be stable, we know, because o f the turbulent properties o f at-
mosphere, the asymptotic behaviour is non-periodic, we can determine the probability distri-
bution only fo r some states in phase space. When we fur the r consider the evolution o f
underlying surface, the atmosphere is changed to a random input (the atmospheric exact state
cannot be determined, only a probability distribution is determined). It is better to change
from deterministic forecast to probability forecast for long- term forecast o r shor t - te rm cli-
matic forecast.

IV. DISCUSSION

The predictability problem refers to those sources o f uncertainty as "model uncertainty"
and "initial uncertainty", respectively. Assuming that the model is accurate, to discuss "initial
uncertainty" is much easier than its opposite. So, most theoretical studies o f atmospheric
predictability tend to focus on the initial uncertainty and its propagation forwards in time
through the integration o f an otherwise deterministic flow model. The atmospheric
phenomena studied by us are numerous and varied, such as, mesoscale and small-scale
phenomena, synoptic and planetary scale phenomena, monthly and seasonal mean fields, and
so on. Models built for different phenomena are different, so the predictability o f the different
mathematical models are different. But objectively existing physical systems have the
determinant predictability. Ini t ial e r ror has its certain characteristic with respect to time, in-
cluding rapid growth o f small errors and the disappearance o f prominent differences with
time. Naturally, it should be required to keep these characteristics agreement between
mathematical model and the real system described by mathematical model. Not ice that
vonlinear effects make the predictability decrease and the forcing and dissipative effects make
the predictability increase. Therefore, it is suggested that the relative intensity o f nonlinearity,
forcing and dissipation in a mathematical model must be kept in agreement with those in real
situation. H o w available are models in these respects? Discussions on these respects are not
sufficient and fur the rstudies are required.

As to " m o d e l uncertainty", it is not enough that only discuss the possible effect o f the
small difference in physical parameters in a model (whether this effect really exists in reality is
still unclear). This requires further study as well.
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