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The advantages of orthogonal I~gendre polynomials for representing the excess thermodynamic 
properties of binary solutions are presented. It is shown by means of examples that, in searching for 
empirical correlations among the coefficients of series expansions of several solutions, it is essential 
to start with a set of coefficients of an orthogonal series. Simple relationships are derived which permit 
the partial excess properties of each component to be expressed in terms of the same set of Legendre 
coefficients used for expressing the corresponding integral excess property. The Legendre polynomials 
are reformulated and the most accurate and convenient means of calculating them via a simple 
recursion relationship is described. Explicit conversion formulae from the coefficients of simple power 
series or Redlich-Kister polynomials to Legendre coefficients are given. 

I. INTRODUCTION 

SEVERAL years ago, in this journal we proposed the use 
of orthogonal Legendre polynomials for the representation 
of excess thermodynamic properties of binary solutions. ~ 
Although Legendre series have since been adopted by a 
number of authors, their widespread use has been hindered 
by the fact that some of the mathematical relationships given 
in the original article were unnecessarily complex. In par- 
ticular, it was not shown how partial excess properties could 
easily be expressed with the same set of coefficients as was 
used for the integral excess property. In the present article, 
the advantages of Legendre series are reiterated. In par- 
ticular, it is shown how the use of Legendre series can 
aid in the search for empirical correlations among the 
thermodynamic properties of groups of similar systems. The 
Legendre series are reformulated, and simple relation- 
ships permitting partial and integral properties to be calcu- 
lated from one single set of coefficients are presented. The 
calculation of Legendre polynomials via a simple recursion 
relationship is also described in detail. Finally, explicit re- 
lationships permitting conversion from simple power series 
or Redlich-Kister series to Legendre series are given. 

II. ADVANTAGES OF 
LEGENDRE POLYNOMIALS 

In a binary system with components A and B, let w e be 
any integral excess thermodynamic property (such as excess 
Gibbs energy, G e, excess enthalpy, H E, or excess entropy, 
Se). It is customary to express co e as a simple empirical 
power series expansion in the mole fractions XA and XB: 

A. Simple Power  Series 

w E =XaXs(qo  + qIXB + q2X 2 + . . . )  [1] 

The disadvantage of a simple power series representation is 
the interdependence (correlation) of the coefficients q,. In 
Eq. [1], all the terms q, Xg  have a maximum absolute value 
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at X~ = 1.0 and all are zero at XB = 0. Therefore, as n 
becomes progressively larger, the terms q ,X~ become very 
small near XB = 0, but are many orders of magnitude larger 
in absolute value near X8 = 1.0. The result is that, as n 
increases, the absolute value of q, must become very large 
in order that this term can contribute to the total summation 
when XB is close to zero. As the total number of coefficients 
is increased, the absolute values of q, increase dramatically. 
This necessitates the storage and manipulation of variables 
to a large number of significant digits, since the total sum- 
mation involves taking small differences between very large 
numbers. 

It is also clear that no significance, either mathematical or 
physical, can be attached to the numerical values of the 
coefficients. Because of the high interdependence (cor- 
relation) between coefficients, simply adding one more term 
to the series will completely change the numerical values of 
all the previous coefficients. 

Hence, if o~ E has been represented by, say, a 5-coefficient 
series and we wish to obtain an approximate expression by 
reducing the number of coefficients to three, we cannot 
simply truncate the last two terms. 

Furthermore, with a simple power series representation, 
one is limited in practice to about 8 terms. Beyond this, the 
coefficients become so huge and the number of significant 
digits which must be maintained becomes so large as to be 
completely unwieldy. 

The correlation among coefficients can be reduced if co E 
is expressed as a Redlich-Kister expansion: 2'3 

B. Redlich-Kister Expansion 

= X,~XB(ko + klzB + k2z~ + k3z~ + . . . )  [2] 

where: 

Z B = X B - X A = 2XB - 1 [3] 

(Alternatively, the expansion could be in terms of the vari- 
able ZA : 

ZA = XA -- XB [4] 

In this case, the coefficients k, remain unchanged if n is 
even and simply change sign if  n is odd. By contrast, con- 
verting a simple power series in XB as in Eq. [1] to a series 
in Xa is not so trivial.) 
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The use o f  the Redl ich-Lis te r  expansion decreases  the 
correlat ion among  coeff ic ients  s ince now the terms z" are all 
zero at Xa = XB = 0.5 and the terms do not all have  their  
m a x i m u m  absolute  va lues  at the same composi t ion .  Hence ,  
with a Red l i ch -Kis te r  expans ion ,  the coeff ic ients  do not 
become so large so rapidly  and the values are less dependent  
upon the total number  o f  terms used in the series. 

However ,  in order  for the coeff ic ients  to be comple te ly  
uncorrelated,  we should be expanded  in terms of  a set o f  
or thogonal  funct ions such as the Legendre  polynomials :  

C. Legendre  Expans ion  

o) e = XaXB[PoPo(XB) + p,  P,(XB) + p2P2(Xs) 

+ p3P3(X~) + . . . ]  

= XaXn[po + pl(2XB -- 1) 

+ p2(6Xn 2 - 6Xn + 1) 

+ p3(20X~ - 30X~ + 12XB - 1) 

+ . . . ]  [51 

where  the P~(XB) are the Legendre  po lynomia ls  which  form 
a c o m p l e t e  o r t hogona l  set o f  func t ions  in the in terval  
0 -< Xs -< 1. That  is: 

f '  P,(Xn) " P~(XB)dXs  = 0 (n ~- m) [6] 
XB=O 

This or thogonal i ty  condi t ion  ensures  that the coeff ic ients  p ,  
are uncorrelated.  The  first few Legendre  po lynomia ls  P,(XB) 
are listed in Table  I. 

As a first example  to i l lustrate the advantages  o f  an 
o r t h o g o n a l  se r ies  r e p r e s e n t a t i o n ,  c o n s i d e r  the  e x c e s s  
e n t h a l p i e s  o f  m o l t e n  C s B r - C a B r 2  s o l u t i o n s  m e a s u r e d  
ca lor imetr ica l ly  at 810 ~ These  were  fit ted by Os tvo ld  4 to 

a four -membered  s imple  power  series o f  the form of  Eq.  [1]. 
T h e  c o e f f i c i e n t s  are  l i s ted  in Tab l e  I I ,  and the four -  
coef f ic ien t  fit is compared  to the exper imenta l  points in 
Figure  l(a) .  Since the Redl ich-Kis te r  and Legendre  series 
are also polynomia l  expans ions ,  the s imple  power  series can 
be rearranged into a four-coeff ic ient  Redl ich-Kis te r  or  a 
four-coeff ic ient  Legendre  expansion.  Expl ic i t  relat ionships 
for the coeff ic ient  convers ions  will  be g iven  in a later sec- 
tion. The  Redl ich-Kis te r  and Legendre  coeff ic ients  obtained 
by such rear rangement  are also l is ted in Table II. All  three 
representat ions,  o f  course,  g ive  identical  curves  when  all 
four  coeff ic ients  are used as in Figures  l (a)  through (c). 

Table II. Coefficients (kcal/mol)* of 
Series Expansions for the Excess Enthalpy 

of Molten CsBr-CaBr2 (A-B) Solutions at 810 *C 4 

Simple power series: H e = XaXn(qo + 

qo = - 9.143 
ql = -16 .757  
q2 = 29.082 
q3 = -14 .426  

Redlich-Kister series: H t = XAXn(ko + 

ko = - 12.054 
kL = 0.753 
k2 ---- 1.861 
k3 = - 1.803 

Legendre series: 
H E = XAXB[po + 

= XAXB[po + 

q, Xn + qzX~ + q3X~) 

klZn + k2Z2n + k3Z~) 

Pt Pt(Xn) + p2P2(Xa) + p3P3(Xn)] 
p,P,(Za) + p2P2(Za) + P3P3(Za)] 

Po = -11-436  
pl = - 0.331 
Pz = 1.241 
p3 = - 0.721 

*1 kcal = 4184 joules  

Table I. The First Few Legendre Polynomials P.(XB) and P.(Zs) Where Zn = XB -- Xa 
and the Polynomials for the Expansions of the Partial Properties in Equations [12] and [13] 

P,(ZB) + (Zn - I)P',(ZB) P,(ZB) + (Zt + 1)P'(ZB) 
Legendre Polynomial Legendre Polynomial (Polynomials for w,~ (Polynomials for on e 

n P,(Xn) P,(Zn) Expansion from Eq. [11]) Expansion from Eq. [12]) 

0 1 1 1 ! 

1 2 X B -  1 ZB 2 Z s -  1 2ZB + I 

2 6X~ - 6XB + i 1/2(3Z~ - I) 1/2(9Z~ - 6Zn - 1) 1/2(9Z~ + 6ZB - 1) 

3 20X~ - 30X~ 1/2(5Z 3 - 3ZB) I/2(20Z~ - 15Z 2 1/2(20Z] + 15Z~ 
+ 12XB - 1 - 6ZB 4- 3) -- 6Zn - 3) 

4 70X~ - 140X~ 1/8(35Z~ - 30Z2n + 3) 1/8(175Z~ - 140Z 3 - 90Z~ 1/8(175Z~ + 140Z 3 - 90Z~ 
+ 90X2n - 20Xn + 1 + 60ZB + 3) - 60Z8 + 3 

5 252X~ - 630X,~ 1/8(63Z~ - 70Z~ 1/8(378Z~ - 315Z~ - 280Z 3 1/8(378Z~ + 315Z~ - 280Z~ 
+ 560X 3 - 210X~ + 15ZB) + 210Z~ + 30ZB - 15) - 210Z~ + 30Zn + 15) 
+ 30Xn - 1 

6 924X 6 - 2772X~ 1/16(231Z 6 - 315Z 4 1/16(1617Z 6 - 1386Z~ 1/16(1617Z 6 + 1386Z~, 
+ 3150X 4 - 1680x 3 + 105z~] - 5) - 1575z~ + 1260z 3 - 1575z~ - 1260z~ 
+ 420x~ - 42xn + I + 315z~ - 210ZB - 5) + 315z~ + 210zn - 5) 

7 3432xTn - 12012x 6 1/16(429z 7 - 693z~ 1/16(3432z~ - 3003z 6 1/16(3432z 7 + 3003Z 6 
+16632X~ - 11550X~ + 315z 3 - 35zn) - 4158z~ + 3465z 4 - 4158zSn - 3465z~ 
+ 4200X~ - 756x$ + 1260Z 3 - 945z]~ + 1260Z~ + 945z~ 
+ 56x~ - 1 - 70zn + 35) - 70zn - 35) 
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Fig. 1 - - ( a )  Excess enthalpy parameter, H E / X c , , , X c ~ . r 2 ,  for CsBr-CaBr2 
solutions at 810 ~ Points are experimental.' Heavy line is 4-coefficient 
simple power series expansion from Table II. Light lines are functions 
obtained by successively truncating terms of this expansion (1 kcal 
= 4184 joules). (b) Excess enthalpy parameter, H E/Xc~. ,XcaB,2,  for CsBr- 
CaBr2 solutions at 810 ~ Points are experimental)  Heavy line is 
4-coefficient Redlich-Kister expansion from Table II. Light lines are func- 
tions obtained by successively truncating terms of this expansion. 
(1 kcal = 4184 joules). (c) Excess enthalpy parameter, H E / X c , n r X c . . r ~ ,  
for CsBr-CaBr2 solutions at 810 ~ Points are experimental) Heavy line 
is 4-coefficient Legendre expansion from Table II. Light lines are func- 
tions obtained by success ively  truncating terms of this expansion 
(1 kcal = 4184 joules). 

However, if terms are truncated from these series the situa- 
tion is very different. In Figure l(a) is shown the result of  
successive truncations of the final terms of  the simple power 
series. Clearly, one cannot truncate such a series. In Fig- 
ure l(b) is shown the result of  successive truncations of the 
final terms of the Redlich-Kister series. Acceptable approxi- 
mations are obtained. However, the best approximations 
result from truncating the orthogonal Legendre expansion as 
can be seen from Figure l(c). 

As a second example to illustrate the advantages of  an 
orthogonal series representation, we consider the eight bina- 
ry molten salt solutions listed in Table III. Calorimetrically 
measured excess enthalpies have been fitted by Ostvold 4 to 
simple power series expansions of the form of Eq. [1]. The 
coefficients q, are listed in Table III. Most systems were 
well fitted with three coefficients. The two systems with 
cesium halides required four coefficients. A general ten- 
dency for the first coefficient, q0, to become more negative 
as one descends in each group from the sodium halide to the 
cesium halide is observed. However, no obvious trends are 
observed in the other coefficients. Furthermore, we see that 
the higher coefficients can assume large numerical values. 
For CsBr-SrBr2, q2 and q3 are as large as qo. 

These simple power series have been rearranged to the 
form of Legendre series as in Eq. [5] by means of the 
coefficient conversion relationships of  Table IV which are 
discussed in a later section. The Legendre coefficients pn are 
listed in Table III. It is evident that for any binary system the 
absolute value of the coefficients Pn tends to decrease as n 
increases. Also, a general tendency forp~ to increase as one 
descends in each group from the Na halide to the Cs halide 
is evident. Although such a simple trend in the values of  p2 
is not observed, all p2 values are of the same sign and 
approximately of the same magnitude. It has been pointed 
out 4'5 that the change in Coulomb repulsion energy of next 
nearest neighbor cations for the mixing of an alkali halide 
MeX and an alkaline earth halide MX should vary approxi- 
matley as: 

1 2(dMex --  dMx) 
(~ - - -  I71 

2dMe x dMx(dMx "4- dMeX) 

where dMex and dMx are the interionic distances. In Figure 2 
are plotted the Legendre coefficients P0 and Pn from Table III 
vs ~ calculated from Pauling's 6 ionic radii. 
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Fig. 2--Coeff ic ients  po and p~ of the Legendre expansions for the excess 
enthalpies of the molten salt solutions in Table III plotted vs  the ionic size 
parameter 3 defined in Eq. [7] (I kcal = 4184 joules). 
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Table III. Coefficients q,, of Simple Power Series Expansions in Xa, Equation [1], and of Legendre 
Expansions in P.(XB) or P~(Zn), Equations [5] or [8], for the Excess Enthalpy of Some Molten Salt Solutions* 

Simple Power Series 
Coefficients (kcal/mol) .4 

Legendre Coefficients 
(kcal/mol) ~ 

System A-B qo ql q2 qa po pl P2 p3 

NaBr-SrBr2 - ! .599 1.480 -0.790 - 1.122 0.345 -0.132 
KBr-SrBr~ -5 .969 5. 125 -2.719 -4.313 1.203 -0.453 
RbBr-SrBr2 -7 .718 5.641 -2.536 -5.743 1.553 -0.423 
CsBr-SrBr2 -8 .730 0.115 10.389 -7.701 -7.135 1.786 -0.194 -0.385 

NaCI-SrC12 - 1.505 1.554 -0.792 -0.992 0.381 -0.132 
KCI-SrC12 -5 .716 5.066 -2.499 -4 .016 1.284 -0.417 
RbC1-SrC12 -7.045 5.281 -2.198 -5.138 1.542 -0.366 
CsC1-SrC12 -7.463 1.939 4.471 -3.721 -5.934 !.530 -0.185 -0.186 

*Bromide systems at 760 ~ 
Chloride systems at 894 ~ 

'1 kcal = 4184 joules 

Table IV. Conversion Formulae to Calculate 
Legendre Coefficients p. of Equations [5] or [8] from 
Redlich-Kister Coefficients k. of Equation [2] or from 

Simple Power Series Coefficients q. of Equation [1] 

p7 : 16/429 k7 
P6 = 16/231 k~ 
p~ = 8/63 k5 + 8/39 k7 
p4 = 8/35 k~ + 24/77 k6 
P3 = 2/5 k3 + 4/9 k5 + 14/33 k7 
p2 = 2/3 k2 + 4/7 k4 + 10/21 k6 
Pt = kl + 3/5 k3 + 3/7 k5 + 1/3 k7 
Po = ko + 1/3k2 + I /5k4 + 1/7k6 

p7 = 1/3432 q7 
p6 = 1/924 q6 + 1/264 q7 
P5 = 1/252 q.~ + 1/84 q6 + 7/312 q7 
p, = 1/70 q, + 1/28 q~ + 9/154 q6 + 7/88 q7 
P3 = 1/20 q3 + 1/10 q, + 5/36 q5 + 1/6 q6 + 49/264 q7 
P2 = 1/6 q2 + 1/4 q3 q'- 2/7 q, + 25/84 q~ + 25/84 q6 

+ 7/24 q7 
p~ = 1/2 q. + 1/2 q2 + 9/20 q3 + 2/5 q4 + 5/14 q5 

+ 9/28 q6 + 7/24 q7 
Po = qo + 1/2 q~ + 1/3 q2 h- 1/4 q3 + 1/5 q, + 1/6 q~ 

+ 1/7 q6 + 1/8 q7 

Approximately  linear correlations are observed. (The two 
lines also pass through zero at approximately the same value 
of 6.) Such correlations are, of  course, purely empirical,  and 
not all groups of systems yield such satisfying correlations. 
Nevertheless,  in searching for such empirical  correlations it 
is essential to start with a set of  coefficients of  an orthog- 
onal series. 

Another advantage of  the Legendre expression was point- 
ed out by Hillert. 7 When the coefficients are evaluated from 
experimental information they can, in principle,  be deter- 
mined one after the other due to the orthogonality. That is, 
the data could be first fitted to a one-coefficient series, then 
to a two-coefficient series, etc. In this way, the standard 
deviation for each parameter  could be calculated and judged 
separately. 

Finally, with Legendre expansions the number of  terms 
which can be employed in practice is unlimited since round- 
off errors never arise because the coefficients never become 
large. In our previous article ~ it was shown that 50-co- 

efficient expansions can be performed via least-squares 
regress ion  with  on ly  e igh t - s i gn i f i c a n t  d ig i t  prec is ion  
(FORTRAN "single-precision").  

I I I .  L E G E N D R E  EXPANSION IN z8 = XB - XA 

A simplification may be effected by replacing XB in the 
Legendre polynomia ls  P.(XB)  in Table l by (zn + 1)/2 
(taken from Eq. [3]). Doing this, we obtain the (identical) 
Legendre polynomials  P.(zn)  which are now orthogonal 
over the interval - 1  -< z~ -< 1. These are also listed in 
Table I. We may now write: 

tO E = XAXB[PoPo(zB) + p,  PI(zB) + P2P2(zB) + , . . ]  

= XaXn[po  + p,zn + p2(3z~ - 1)/2 

+ p2(5z 3 - 3 z , ) / 2  + . . . ]  [ 8] 

Eq. [8] is identical to Eq. [5], and the coefficients p ,  of  the 
two series are identical. For example,  for the CsBr-CaBr2 
system given in Table II we may write: 

H L = X a X n [ - l l . 4 3 6  - 0.331 (2)(8 - 1) 

+ 1.241(6X~ - 6XB + 1) 

- 0 .721(20X 3 - 30X~] + IZXB - 1)] [9] 

or alternatively: 

H E = X A X n [ - - I I . 4 3 6  -- 0.331zB 

+ 1.241(3z~ -- 1) /2  -- 0.721(5z 3 -- 3zn) /2]  

[101 

whereXA = XCaBr2 and zB = XB - XA. Eqs. [9] and [10] are 
completely identical and the use of  Legendre polynomials  in 
XB, Po(XB), or in zB, P,(zB), is a matter of choice. However, 
the use of  P,(zB) yields some simplification because, as can 
be seen in Table I, the Legendre polynomials  P~(zB) contain 
only odd powers of  zB when n is odd and only even powers 
when zB is even. The polynomials  P,(zA) thus contain fewer 
terms than the polynomials  P,(X~) .  It is also now evident 
that replacing zB by ZA = --ZA leaves the coefficient p ,  un- 
changed when n is even and changes the sign of  P,  when n 
is odd. Hence, just  as in the case of  the Redlich-Kister  
expansion, we can convert a Legendre expansion in P,(zB) 
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to an expansion in P,(za) simply by changing the signs of the 
odd-numbered coefficients p, .  (Similarly, of course, a se- 
ries in P, (Xs )  as in Eq. [61 can be converted to a series in 
P , ( X D  in the same way.) 

It is also now immediately clear from Table I that a two- 
coefficient Legendre expansion and a two-coefficient 
Redlich-Kister expansion are identical. 

Another advantage to the use of P.(zn)  over that of P. (Xs )  
was pointed out by Rand s and Hillert. 7 Although Legendre 
series in P . ( X s )  and P,(zB) are identical in the binary 
system A-B, they are no longer identical in a ternary system 
A-B-C where (Xa + Xn)  4: 1. The expansion in terms of 
P,(zn) has been shown 7'8 to be preferable in certain cases for 
purposes of estimating thermodynamic properties of ter- 
nary solutions from properties of the constituent binary 
subsystems. 

IV. E X P R E S S I O N S  FOR  PARTIAL P R O P E R T I E S  

In the original article,I expressions for the partial excess 
properties of components A and B, toe and toe, were intro- 
duced which were unnecessarily complex and which were 
criticized by Howald and Eliezer 3 for this reason. See also 
References 9 and 10. A new and simpler set of expressions 
will now be derived. 

The integral and partial properties are related by the 
expression: 

to~ = toe  _ X d t o r  toe _ (ZB + 1) dtoE 
a dXn = dzn [11] 

Substituting Eq. [8] into Eq. [11] and collecting terms 
yields: 

to~ = XZn E p.EP.(zB) + (za - 1)P'(zn)] 
n=0 

= X~[po + pt(2z, - 1) 

+ pz(9zZn - 6zn - 1)/2 + ". "] 

where P'(zB) = dP,(zn)/dzB. 
Similarly: 

[121 

to~ = XZa ~ p.[P.(za) + (zn + 1)P'(zB)] 
n=0 

= X2a[po + p,(2zn + 1) 

+ p2(9Z 2 + 6Z, -- 1)/2 + "" "] [131 

The first few terms of these series are listed in Table I. Gen- 
eral recursion relationships are presented in a later section. 

For example, consider the CsBr-CaBr2 system. Legendre 
coefficients for the integral excess enthalpy were listed in 
Table II, and the series was written out explicitly in 
Eq. [10]. The partial excess enthalpies of the components 
are given by Eqs. [12, 13] as: 

E HcsBr = X2ar2[ - 11.436 - 0.331(2zB - 1) 

+ 1.241(9zs:-  6 z B -  1)/2 

- 0.721(20z 3 - 15zB 2 - 6zB + 3)/2] 

[141 

E Hc~r2 = X 2 s B r [  - 11.436 - 0.331(2za + 1) 

+ 1.241(9z 2 - 6 z n -  1)/2 

- 0.721(20z 3 + 15z 2 - 6za - 3)/2] 

[151 

where zB = Xc~r2 - XCsBr. 
The series for the integral property, Eq. [81, and the series 

for the partial properties, Eqs. [12, 13], are all expressed in 
terms of the one single set of coefficients, p~, thereby re- 
sponding to Howald and Eliezer's s principal objection to the 
earlier I formulation. 

Since the integral and partial properties are now ex- 
pressed in terms of one single set of coefficients, Legendre 
expansions may be used directly in least-squares optimi- 
zation procedures ~1'~2 for the simultaneous optimization of 
experimental data for integral and partial thermodynamic 
properties. 

V. CALCULATION OF 
L E G E N D R E  P O L Y N O M I A L S  

The general recursion relationship for the calculation of 
Legendre polynomials is: 

(2n - l )z  (n - 1) 
e , ( z )  = P,_,(z)  - ~ " P,-2(z) [16] 

n n 

where z = zB or za. Given that Po(z) = 1 and P,(z) = z, 
Eq. [16] can be used to calculate P,(z)  for any n. It is from 
this relationship that the polynomials P,(z) in Table I were 
calculated. 

In order now to calculate a numerical value of P,(z) for a 
given n and a given z, one can substitute the value of z into 
the appropriate polynomial expression in Table I. However, 
such a procedure is neither necessary nor desirable. It 
is simpler and more precise to perform the calculation di- 
rectly from Eq. [16] each time. In Appendix 1 is a short 
FORTRAN subroutine to calculate P,(z) for any n and z via 
Eq. [16]. Besides the fact that this method of calculation 
is completely general and does not require the storage of a 
large number of polynomials in the computer memory, it is 
also faster and more precise when n is large. Substituting z 
directly into a polynomial in Table I involves evaluating z", 
z ~-~, z ~-~, etc. and then taking sums and differences of 
several terms. When n is large, round-off errors can accu- 
mulate. Calculation directly via Eq. [16] minimizes round- 
off errors. 

The recursion relationship for P ' ( z )  is obtained by differ- 
entiating Eq. [16]: 

P ' ( z )  = (2n - l ) Z p . _ , ( z  ) 
n 

(n - 1) (2n - 1) 
- - P ' . - 2 ( z )  + P,_,(z)  [17] 

n n 

A short FORTRAN subroutine to calculate P ' ( z )  for any n 
and z is given in Appendix 2. The subroutines of Appen- 
dices 1 and 2 may be combined to calculate the polynomials 
[P.(zB) + (zB - I)P~(zD] and [P.(zs) + (zB + 1)P'(zs)] of 
Eqs. [12, 13] for the partial properties. 

METALLURGICAL T R A N S A C T I O N S  A V O L U M E  17A, JUNE 1956--1061 



VI. CONVERTING SIMPLE 
POWER SERIES AND REDLICH-KISTER 

SERIES TO LEGENDRE SERIES 

If data have already been fitted to a simple power series 
as in Eq. [ 1 ], or to a Redlich-Kister series as in Eq. [2], then 
it is clearly possible to convert the series into a l~gendre 
expansion with the same number of coefficients, since all 
three types of series are polynomial expansions. The re- 
lationships permitting the Legendre coefficients Pn to be 
calculated from the coefficients qn of a simple power series 
or from the coefficients kn of a Redlich-Kister series are 
given for the first few terms in Table IV. The relationships 
for the conversion between the Redlich-Kister and Legendre 
coefficients were given previously by Hillert. 7 

The use of the relationships in Table IV can be illustrated 
by converting from the qn or kn coefficients to the p~ coeffi- 
cients for the CsBr-CaBr2 system in Table II. 

VII. CONCLUSIONS 

Orthogonal Legendre polynomials present several advan- 
tages over simple nonorthogonal power series for repre- 
senting excess binary solution properties as functions of 
composition. Because the series is orthogonai, the terms are 
independent (uncorrelated). As a result, terms may be trun- 
cated from such a series in order to yield acceptable approxi- 
mations. An example has been given. Also, since the value 
of any given coefficient is essentially independent of the 
number of terms used in the representation, coefficients of 
Legendre expansions of the properties of different solutions 
may be compared directly in searches for empirical cor- 
relations among solutions. An example has been given for 
the binary SrBr2-alkali bromide and SrCl2-alkali chloride 
systems. Furthermore, with Legendre expansions the num- 
ber of terms which can be employed in practice is unlimited 
since the number of significant digits which must be retained 
in each coefficient does not increase as the number of coef- 
ficients increases. 

Equations have been derived which permit the partial 
excess properties of each component in a binary solution to 
be expressed in terms of the same set of Legendre coeffi- 
cients which are used for expressing the corresponding inte- 
gral property. This represents a significant simplification 
over the earlier ~ formulation, and responds to the principal 
criticism of this earlier formulation. 

The Legendre polynomials have been reformulated in 
terms of the composition variable zB = XB - XA. This 
results in a reduction in the number of terms in each 
polynomial without affecting the numerical values of the 
Legendre coefficients. 

The general recursion relationships for calculating 
Legendre polynomials as well as the functions for express- 
ing the corresponding partial properties have been 
presented, and computer subroutines have been given for 
each case. The advantages of computing Legendre poly- 
nomials directly from these recursion relationships rather 
than by substitution into the explicit Legendre polynomial 
expressions have been discussed. 

Sets of coefficient relationships up to the eighth term 
permitting conversion from simple power series or Redlich- 

Kister coefficients to Legendre coefficients have been 
given. 
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APPENDIX 1 

FORTRAN subroutine to calculate 
the Legendre polynomial Pn(z) 

FUNCTION P(N,Z) 
REAL*8 P,Z,PDUM,PHOLD 
INTEGER K,N 
P=I  
IF(N.EQ.0)RETURN 
P=Z 
IF(N. EQ. 1)RETURN 
PDUM = 1 
DO 10 K=2,N 

PHOLD=P 
P=(2*K-  1)*Z'P/K- ( K -  1)*PDUM/K 
PDUM=PHOLD 

CONTINUE 
RETURN 
END 

APPENDIX 2 
FORTRAN subroutine to calculate the 

derivative P'~(z) of a Legendre polynomial 

FUNCTION DP(N,Z) 
REAL*8 DP, Z,DPHOLD, DPDUM,P 
INTEGER K,N 
DP=0 
IF(N.EQ.0)RETURN 
DP = 1 
IF(N.EQ. 1 )RETURN 
DPDUM=0 
DO 20 K=2,N 

DPHOLD = DP 
DP=(2*K-  I)*Z*DP/K-(K- I)*DPDUM/K 

* + (2 * K -  I)*P(K- 1 ,Z)/K 
DPDUM=DPHOLD 

20 CONTINUE 
RETURN 
END 

NOTE: This subroutine calls the subroutine of Appendix 1. 
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