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Both casting and quenching are processes during which several physical phenomena like heat 
transfer, fluid flow, phase transformation, etc. interact in a complex manner. To obtain a nu- 
merical model which is capable of accurately simulating the actual process, one has to be able 
to quantify all the parameters affecting the process. One parameter which substantially influ- 
ences heat transfer in these processes is the heat transfer coefficient at the interface between 
the mold and the metal in casting and that between the metal and the quenchant in quenching. 
The heat transfer coefficient could vary on the surface of a casting or a quench metal both 
spatially and with time. Its accurate determination is imperative for a realistic simulation of 
these processes. In this work, an algorithm based on the boundary element technique is proposed 
to solve for the interface heat transfer coefficient. The problem is cast as one of inverse heat 
conduction in two dimensions where some of the boundary conditions, namely, the previously 
mentioned heat transfer coefficients, are unknowns. Since it is the boundary properties that are 
being determined, the boundary element method (BEM) is the most suitable technique to use. 
The algorithm uses experimentally measured temperature data inside the domain to determine 
the interface heat transfer coefficient. The technique is outlined in detail and some casting and 
quenching examples are presented to demonstrate its capability. 

I. I N T R O D U C T I O N  

F O R  any casting simulation model to be successful 
in predicting the solidification rate and time, it is im- 
portant that the overall heat transfer coefficient at the 
metal-mold interface be known accurately. The resis- 
tance to heat transfer at the metal-mold interface signif- 
icantly influences the solidification rate and the total 
solidification time, especial ly  i~ permanent mold, in- 
vestment, and die castings. There are several factors 
which cause this resistance and affect the heat flux at the 
interface. These include (a) imperfect contact at the 
interface resulting in a discontinuity of  temperature 
there, (b) effect of releasing agents, often sprayed on the 
die walls to ensure proper release of the solidified cast- 
ing from the die, and (c) formation of air gaps between 
the interfaces due to contraction of the casting during 
solidification. Thus, the overall heat transfer coefficient 
at the interface can be defined as a function of the con- 
tact, gap, and spray resistance. It is very difficult, and 
probably not feasible, to determine the exact contribu- 
tion of each of these factors. It is important, however, 
to determine the overall heat transfer coefficient, or in 
other words, the combined effect of  all the different fac- 
tors affecting the heat transfer at the interface. This heat 
transfer coefficient may vary from one point to another 
on the casting surface and also change with time as the 
air gap thickness changes. 

Quenching, an important component of  metal heat 
treatment, comprises of  rapid cooling of components 
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from a high temperature when the hot metal is dipped 
into a bath of cold fluid. The phase transformation that 
occurs in a quenched part is dependent on the local cool- 
ing rate at any point in the quenched metal. This local 
cooling rate is dependent on the rate at which heat is 
transferred from the surface of the metal to the surround- 
ing quenchant. There are three stages of this heat transfer 
process listed in the order of their occurrence as (a) ra- 
diation and conduction through the vapor layer formed 
on the metal surface, (b) boiling, and (c) natural con- 
vection. Of  these three stages of the cooling process, the 
maximum amount of  heat transfer occurs during the boil- 
ing phase. The overall heat transfer coefficient changes 
from a low value during the vaporization stage to a very 
high value in the boiling stage and comes down to a 
comparatively lower value in the convection regime. 
This variation of the overall heat transfer coefficient at 
the interface is quite complex in nature and is strongly 
dependent on time, surface temperature, and spatial 
coordinates. 

The problem of determining the interface heat transfer 
coefficient can be posed as the inverse problem of de- 
termining a boundary condition, as will be discussed in 
more detail in Section II. Thus, the determination of the 
interface heat transfer coefficient is equivalent to the de- 
termination of the heat flux through the interface. This 
problem belongs to the larger class of problems better 
known as inverse heat conduction problems (IHCP). In- 
verse heat conduction problems have generated a lot of 
interest in the last decade and substantial work has been 
d o n e  in this area. Since inverse problems are often ill- 
posed, obtaining analytical solutions of  these problems 
is quite difficult. Thus, numerical techniques have usu- 
ally been employed. Beck et al. I~1 have made a signifi- 
cant contribution to the area of  IHCP. They published a 
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monograph containing an exhaustive bibliography and 
significant details of past research. Similar work has 
been done by Alifanov and Egorov. 121 Lazuchenkov and 
Shmukin, TM Alifanov and Kerov, I41 Hensel and Hills, TM 

Blackwell, I6~ Imber, 17,8~ and many others. In the specific 
area of  interface heat transfer coefficient determination 
in casting and quenching, contributions have been made 
by Ho and Pehlke, 19J Beck, I~~ Mahapatra et al.,t~21 and 
others. 

The most common technique that has been used in the 
solution of these problems is based on the finite differ- 
ence method and was first proposed by Beck et al. m 
Most of  the previously mentioned researchers have used 
Beck's  method, or some variation of it, to investigate 
the problem of determination of the heat flux at a bound- 
ary where none of the boundary conditions are known 
a priori .  This method is based on optimization, and for 
regularization purposes, temperature data from future 
time steps are required to calculate the heat flux at the 
present time step. However,  use of too many future time 
steps introduces errors in the results calculated. L~I In 
most of  these efforts, the unknown heat transfer coef- 
ficient has been assumed to be a function of time but 
independent of space variables. In the few studies where 
space variation has been considered, 1~3j the calculation 
algorithm is quite primitive and cumbersome. Locally, 
at any particular point in space and at any time step, the 
problem is solved assuming space independence. Space 
dependency of the solution at several such points is then 
determined iteratively using the initially calculated 
space-independent solution at all the locations. This it- 
eration process continues until the solution converges at 
all the points. At the next time step, this cumbersome 
and time consuming process is carried out all over again. 

The approach mentioned earlier, based on optimiza- 
tion, is necessary for many inverse problems. However,  
for the class of inverse problems that are being studied 
in this work, this approach is not necessary. In the in- 
verse problem of interface heat transfer coefficient de- 
termination, the unknowns to be calculated are boundary 
unknowns. It is, therefore, natural that a boundary 
method will be more suited for the problem. Thus, the 
boundary element method (BEM) has been chosen in the 
present analysis. In this technique, the boundary flux 
and temperature are represented as primary unknowns 
and, unlike finite differences, are calculated separately 
from a set of  linear equations requiring no iterative min- 
imization techniques. The restriction of the flux being 
independent of spatial variables, imposed by some of the 
previous investigators, is also removed. Further, tem- 
perature data for future time steps is not necessary tbr 
the current time step calculations since regularization 
techniques are not being used. The use of boundary in- 
tegral equation technique for solving inverse problems is 
not new. Zabaras et al. j~4j have used this technique to 
determine the location of the freezing front in a solidi- 
fying liquid using temperatures measured at the 
boundary. 

II. THE P R O B L E M  

The problem of interface heat transfer coefficient de- 
termination in casting is quite similar to that in quench- 
ing. The casting problem in which two domains are 

considered namely, the metal and the mold, is presented 
first. It is followed by the quenching problem where only 
one domain, the metal, is considered. 

The schematic shown in Figure l(a) represents the 
problem of metal-mold interracial heat transfer for cast- 
ings. Heat transfer in both the metal and the mold is 
represented by the Fourier law. The differential equa- 
tions for heat transfer in the mold and the solidifying 
metal can be written as 

0Tmold 
(pCp)mold --  kmold 72Tmold [1] 

Ot 

0Hmeta| 
Pmetal - -  --  kmetal ~72Tmetal [2]  

Ot 

respectively, where p is density, Cp is specific heat, k is 
thermal conductivity, T is temperature, H is enthalpy, 
and t is time. The energy equation for the metal has been 
written in terms of enthalpy rather than temperature to 
incorporate the latent heat release during solidifica- 
tion. i151 The boundary conditions on the surfaces AB, 
AD, CD, EF, EH, and HG are assumed to be specified 
(namely, isothermal, adiabatic, or a combination). At 
the interface ( i .e . ,  BC and FG), such conditions are un- 
known. The only relation that holds at this interface is 

OT OT 
- - k m o l d -  = - k m e t a l -  = h(Trnetal - Trnold) [3]  

On On 

where O/On represents the normal derivative of the tem- 
perature. Equation [3] ensures that the entire heat lost 
by the metal is transferred to the mold. Figure 1 (b) rep- 
resents the problem of heat transfer from hot metal in a 
quenchant. Heat conduction within the metal is governed 
by the Fourier law (Eq. [2]). 

The boundary conditions on the surfaces of the metal 
(IJ, JK, KL, LI) may or may not be known in a given 
situation. However,  the relation that holds at all these 
interfaces is 

OT 
- k m e t a l -  = h ( Z m e t a l -  Tbulk) [3'] 

On 

The goal of this work is to determine the interface heat 
transfer coefficient h which controls the heat flux at the 
interface. Toward this end, the casting problem is bro- 
ken up into two domains, the mold and the metal. The 
governing differential equation for each of these do- 
mains is written in the boundary integral form. The heat 
transfer problem in the mold is posed as an inverse prob- 
lem where some of the boundary conditions (namely, the 
flux and temperature at the interface) are unknown. The 
solution of this inverse heat transfer problem provides 
the flux at the interface and also the temperature in the 
mold at the mold/metal  interface. In contrast, the heat 
transfer problem in the metal is posed as a direct prob- 
lem where the heat flux at the interface, already known 
from the solution of the mold heat transfer problem, is 
used as the interface boundary condition. At every time 
step, thus, the heat transfer problem in the mold is 
solved and the heat flux at the interface is determined. 
This heat flux is then used as a boundary condition for 
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Fig. 1 - - ( a )  Schematic for (a) the metal-mold interface and (b) hot- 
metal--quenchant  heat transfer. 

the heat transfer problem in the metal. This solution pro- 
vides the temperature on the metal surface at the inter- 
face. The interface heat transfer coefficient is then 
calculated using Eq. [3]. 

Determining the heat transfer coefficient in the case 
of  quenching is even simpler. The problem does not 
have to be broken into two domains. The inverse prob- 
lem is solved for the metal that is being quenched. Tem- 
perature values measured at several points in the metal 
are used in this solution procedure to calculate the sur- 
face heat flux anywhere on the surface of the quenched 
specimen. This heat flux and the bulk temperature of the 
quenchant is used in Eq. [3'] to calculate the heat trans- 
fer coefficient. The details of the boundary integral rep- 
resentation and the solution strategy is presented in the 
next section. 

III. THE BOUNDARY 
INTEGRAL REPRESENTATION 

In this section, the solution strategy for the inverse 
problem is described in detail. The procedure is very 
similar for the direct problem with some differences. At 
the end of this description, the main differences will be 

highlighted. For the purpose of convenience, the bound- 
aries where some of the conditions are known (e .g . ,  AB, 
AD, and CD on the mold in Figure l(a)) will be referred 
to as natural boundaries and the interface (where none 
of the boundary conditions are known) will be referred 
to as an unnatural boundary. Using the fundamental so- 
lution of the Laplace equation and Green's  second iden- 
tity, t~61 the equation for heat transfer can be converted 
into the integral equation 

f~ fOT(q) k 
"qT(p) = (G 'T(q)  - GT ' (q) )ds  + pCp GdD 

[4] 

which relates the temperature at any point p with the 
boundary and internal data. The variable D is the do- 
main, enclosed by the boundary S, in which this equa- 
tion is valid. Points p and q are known as the source and 
the field points, respectively, and the (') denotes the par- 
tial derivative O/C3nq at point q. The coefficient ~7 is 
given in the following: 

= 0, i f p  lies outside D + S; 

27r, i f p  lies inside domain D; 

a,  i f p  lies on S [5] 

where ~ is the included angle between two adjacent tan- 
gents at p. The function G is the fundamental solution 
of the Laplace equation in two dimensions, and is given 
by In ~p - ql- Using the simple backward-difference rep- 
resentation for the time derivative t~7~ in Eq. [4], we can 
write the following: 

rlT"(P) = I (G'T"(q) - 
3s 

fo - T  "-~ k GT' "(q))ds + �9 GdD 

[6] 

where the superscript n denotes the nth time step. Thus, 
the variables on the boundary are temperature and its 
normal derivative (the heat flux). Inside the domain, the 
variable is temperature. 

The integral equation (Eq. [6]) is discretized by ap- 
proximating the boundary S by straight-boundary ele- 
ments. On each such boundary element, the variables 
( i .e . ,  temperature and flux) are approximated by a qua- 
dratic function as 

= yb(n) 82 + x3b(n) 83 [7] X X ~  ") $1 + ..2 

where X br") denotes the value of the variable (tempera- 
ture or flux) at a boundary node and at the nth time step, 
and S 's  denote the Lagrangian polynomials. The details 
of such a discretization can be found in any standard text 
on BEM. ~161 

There are N number of equations that can be written 
for N number of boundary nodes. For every node on the 
natural boundary, one of the variables (temperature or 
the flux) is known and the other unknown. However,  for 
all the nodes on the unnatural boundary, both the vari- 
ables are unknown. As a result, for C number of  nodes 
on the unnatural boundary, the total number of un- 
knowns is N + C. 

The domain D is approximated by constant triangular 
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elements. On the j th  domain element, the temperature 
at the nth time step is 

T7 = xj  ~"~ [81 

It should be noted from Eqs. [7] and [8] that the sub- 
scripts of X denote the node number, the superscript n 
denotes the nth time step, the superscript b signifies that 
X belongs to a boundary node, and the superscript i sig- 
nifies that X belongs to a domain or internal node. 

After inserting the boundary and domain approxima- 
tions given in Eqs. [7] and [8] into Eq. [6], performing 
the integrations analytically over each boundary and do- 
main element, the N equations for the N boundary nodes 
can be written in matrix form as 

[a]{ xb(n)} + [O]{ xi(n)} = [C]{ x'(n-l)} + {P} 19] 

The known boundary data is included in vector {P} 
after appropriate matrix multiplications. The vector 
{X b~")} contains N + C unknowns from the nodes on the 
natural and unnatural boundaries. If  the number of in- 
terior nodes is M, the vector {X i~")} contains M unknowns 
from the interior nodes. The vector {X i~"- ~} is also a vec- 
tor of  length M, but it is known from the initial condition 
or from the calculations performed in the previous time 
step. 

By writing the discretized form of Eq. [6] for M num- 
ber of  interior nodes, one gets M number of equations 
of the following type: 

[D]{X b(")} + [E]{X i(n)} -~- [F]{X i("-')} + {Q} [10] 

where the known boundary data is included in the vector 
{Q}. 

Thus, one could write a set of M + N equations re- 
lating M + N + C unknowns by writing the boundary 
integral equation for all the boundary and interior nodes. 
Since the total number of unknowns is greater than the 
number of equations, this set is not sufficient to solve 
for all the unknowns. 

The extra conditions that are required for the solution 
are provided as measured temperature data at a set of 
interior points; Eq. [6] can be written for all these points 
as 

[j]{xb(n)) _~_ [T]{xi(n)} = [W]{xi(n - I)} + {R} [1 1] 

where all the known boundary data and the measured 
data for the interior points are included in the vector {R}. 
Equations [9] through [1 1] can now be solved simulta- 
neously for M + N + C number of unknowns. 

The coefficient matrices on the left-hand side of the 
linear Eqs. [9] through [1 1] are dependent only on the 
geometry of the problem and are all constant with re- 
spect to time. Thus, they have to be formed only once 
and can be stored in an LU decomposed form. The vec- 
tors on the right-hand side have to be updated at every 
time step. Thus, the solution algorithm at every time step 
merely comprises of  some matrix vector multiplications, 
vector additions, and back substitutions. 

The solution strategy for the quenching problem is 
quite simple. The heat flux and temperature that is cal- 
culated in the inverse problem and the bulk temperature 
of  the liquid is directly used in Eq. [3'] to calculate the 
heat transfer coefficient. 

For the casting problem, the differential equation for 
heat transfer in the metal can be written in the boundary 
integral form in a manner very similar to Eq. [6] using 
the enthalpy formulation instead of temperature. The do- 
main and the boundaries are discretized and the integral 
equations for their nodes are written in a manner similar 
to the mold. In this problem, however, if the number of 
boundary nodes are N* and the number of domain nodes 
are M*, the number of unknowns is N* + M*. The extra 
unknowns (the heat flux) at the interface have already 
been calculated from the inverse problem and are part 
of the known boundary conditions for the direct prob- 
lem. The set of  N* + M* equations (which are similar 
to Eqs. [9] and [10]) can thus be solved to determine the 
enthalpy and, thus, the temperature t j51 on the boundary 
and inside the freezing metal at all time steps. The tem- 
peratures calculated at the metal mold interface can then 
be used to calculate the interfacial heat transfer coeffi- 
cient from the relation 

q 
h - [12] 

Tmetal -- Tmold 

Thus, the solution strategy is as follows. The inverse 
problem of heat conduction in the mold is solved first. 
The extra conditions needed come from the experimen- 
tally measured values of temperature at some preselected 
points within the mold. The number of points at which 
the temperature has to be measured should be equal to 
C, the number of nodes on the unnatural boundary. 
However,  if the flux is known to be independent of spa- 
tial coordinates, only a single measuring point is nec- 
essary. The heat flux at the interface and the temperature 
on the mold at the interface is obtained as part of the 
solution. The heat flux is used in the direct problem of 
heat transfer in the metal as a known boundary condi- 
tion. The solution of the direct problem provides the 
temperature on the metal surface at the interface in ad- 
dition to temperatures everywhere else in the metal. The 
two temperatures at the interface and the interface heat 
flux are used to calculate the heat transfer coefficient. 
This solution strategy is applied to several problems in 
the next section. 

IV. EXAMPLES 

Several example problems have been chosen to dem- 
onstrate the capabilities of the algorithm. The first prob- 
lem is a model problem, with a known analytical 
solution to validate the accuracy of the numerical 
scheme. The second is a comparison of the heat flux 
calculated by the present method with that published in 
the literature using a different scheme. The third and the 
fourth examples demonstrate the applicability of the 
present method for realistic situations where thermo- 
couple data is available from experiments. Also, in these 
two examples, the effect of gravity in the formation of 
air gaps is highlighted. The last example is a quenching 
example where the inverse technique is used to calculate 
heat transfer coefficients that vary spatially as well as 
temporally. 
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A. Example 1 

In this example, a simple geometry for the mold and 
the casting are chosen. Both are represented by a unit 
square (Figure 2(a)). 

The temperature variation in the mold is assumed to 
be given by 

T = I -  e-~r2'/4 COS ( - ~ )  [13] 

whereas in the metal, the variation of the enthalpy is 
assumed to be given by 

H = I  + X -  e-Trzt/4 cos (~--~) [14] 

where X and Y represent the horizontal and vertical di- 
rections in a cartesian coordinate system. The previously 
mentioned expressions have been chosen since they be- 
long to a class of functions that satisfy the thermal dif- 
fusion equation. The boundary conditions on all the 
boundaries except the interface are determined from 
these relationships and are used in the calculations. Both 

the temperature and the flux at the interface can be de- 
termined from the same relationships. However, these 
values are only used for testing the accuracy of the nu- 
merical scheme. The temperature values of the five 
points located 0.1 units inside the mold as measured 
from the surface (Figure 2(a)) are used in the inverse 
algorithm to calculate the flux and the temperature at the 
interface. For the sake of convenience, the material 
properties like the coefficient of thermal conductivity, 
density, specific heat, etc. are assumed to be unity in 
both the regions. Each side of the two square boundaries 
are divided into two quadratic boundary elements and 
the domain is divided into 32 triangular interior elements 
(Figure 2(a)). On each of these elements, temperature is 
assumed to be constant. As outlined in the previous sec- 
tion, the inverse technique is used in the mold to solve 
for the heat flux and temperatures at the interface. The 
interface flux value is then used in the metal to solve for 
temperatures everywhere inside and also at the interface 
on the metal. Analytical value of the flux at the interface 
and the numerically obtained values with two boundary 
elements per side and with one boundary element per 
side are compared in Figure 2(b). The distribution ob- 
tained using one boundary element per side has been in- 
cluded here to show how the calculated flux distribution 
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Fig. 2--(a) Schematic for Example 1. Comparison of numerically and analytically calculated values of (b) heat flux at the interface and (c) the 
heat transfer coefficient at two points on the interface. 
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approaches the analytical value from the higher side as 
the number of boundary elements are increased. The 
temperatures calculated on the metal-mold interface can 
be used to calculate the heat transfer coefficient at the 
interface. A comparison of the numerical and the ana- 
lytical values of  the heat transfer coefficient as calcu- 
lated at two different points (marked as a and b on 
Figure 2(a)) on the interface is shown in Figure 2(c). 
From these comparisons, it is quite clear that the tech- 
nique outlined in this article can compute both the inter- 
face heat flux and the interface temperatures and, thus 
the heat transfer coefficient, very accurately. The com- 
parison in Figure 2(c) shows that the algorithm can eas- 
ily handle both the spatial and temporal dependencies�9 

B. Example 2 

In this example, the proposed BEM solution technique 
is compared with the technique proposed by Beck 
et al. t l]A simple problem has been chosen from pub- 
lished literature. Ilq Figure 3(a) shows a schematic of the 
problem. A triangular heat flux is introduced on one sur- 
face of the plate. The other three surfaces are insulated. 
Using the temperature history recorded by a probe within 
the plate, the heat flux introduced is calculated using the 
inverse technique. 
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Fig. 3 - - ( a )  Schematic for Example 2. (b) Comparison of BEM so- 
lution and Beck and Osman's  solution rH~ for a triangular heat flux. 

The results obtained using a time step of 0.06 are 
compared with the published results. The BEM solution 
matches identically with the actual flux. Figure 3(b) 
shows a comparison of the actual flux: the BEM solution 
and the solution from Beck and Osman's  work. tl'l Beck 
and Osman calculated this flux using two future time 
steps. 

C. Example 3 

In this example, thermocouple data obtained from ac- 
tual experiments are used to calculate the heat transfer 
coefficient at the interface. These data are taken from 
the work of Ho and Pehlke. L9j A schematic for the ex- 
perimental setup is shown in Figure 4(a). 

The casting is made of aluminum with a water-cooled 
copper chill. Constant material properties have been as- 
sumed for both the materials. The water-cooled bound- 
ary of the chill is assumed to have a constant temperature 
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Fig. 4 - - ( a )  Schematic for Example 3. (b) Interface heat transfer 
coefficients calculated by BEM and by Ho and Pehlke. tgJ 
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boundary condition. The other two sides of  the chill are 
insulated. Three of the four surfaces of  the casting are 
insulated. Heat loss occurs in the casting only through 
the chill. The heat transfer problem here is, thus, a one- 
dimensional problem and only temporal variations of 
heat transfer coefficient at the interface are expected. 
Thus, temperature data from one thermocouple located 
inside the chill are enough to determine the heat transfer 
coefficient. The location of this thermocouple is shown 
in Figure 4(a). It should be pointed out that Beck 's  
method, Iq which Ho and Pehlke t9j used, requires tem- 
perature readings from two thermocouples, one each in 
the mold and the metal to determine the heat transfer 
coefficient. 

As in the previous example, a similar calculation is 
done to determine the heat flux and, thus, the interface 
heat transfer coefficient at the metal-chill interface. The 
interface heat transfer coefficients, as calculated by the 
present algorithm and that calculated by Ho and Pehlke t91 
are shown in Figure 4(b). The two sets of data compare 
very well. In the initial stage of the cooling process, the 
heat transfer coefficient has a high value. After a while, 
there is a sharp drop in its magnitude, induced by the 
contraction in the casting. The drop in the coefficient 
after that is slow. 

D. Example 4 

This is also an example where actual experimental 
data are used to calculate the heat transfer coefficient at 
the interface. These data were obtained in an experiment 
conducted for a separate study. A schematic for the ex- 
perimental setup is shown in Figure 5(a). The metal that 
was used in the casting experiment is a copper alloy 
(C95800). Cement-bonded sand was used as the mold 
material. As shown in the figure, thermocouples were 
used to measure the temperature at five different points. 
During solidification, the shrinkage in the metal creates 
a gap between the upper surface of the casting and the 
sand mold. This is shown, although in an exaggerated 
way, in the figure. Due to gravity effects, the bottom 
surface of the casting and the adjacent mold surface re- 
main in near-perfect contact. These differences in the 
contact resistances between the upper and the lower sur- 
faces of the casting are reflected in the temperature val- 
ues recorded by the thermocouples in the sand above the 
casting and the corresponding ones in the sand below it. 

As in the previous example, the inverse problem is 
first solved in the two mold regions (the upper and the 
lower) to obtain the heat flux escaping from the casting 
surfaces. The dimensions of the casting are such that the 
heat transfer problem is primarily a one-dimensional 
one. The thermal data from the thermocouple B are used 
in the calculation of the heat flux into the mold above 
the casting, and data from thermocouple D are used for 
the sand below the casting. The heat flux data obtained 
as a solution of the two inverse problems are then used 
in the direct problem of metal solidification as known 
boundary conditions. The solution of the direct problem 
provides temperature data everywhere in the casting at 
all time steps. 

The calculated temperature at the center of the casting 

has been compared with the values recorded by thermo- 
couple C in Figure 5(b). Even though the trends shown 
by the two curves are identical, there is some discrep- 
ancy between the two sets of  values. This can be attrib- 
uted to the fact that constant thermophysical properties 
have been used in the calculations, the latent heat release 
has been assumed to be varying linearly in the region 
between the solidus and the liquidus, and the solidus and 
the liquidus temperature assumed in the calculation may 
be slightly higher than the ones actually observed. 

The temperatures obtained for the outer surface of the 
casting is used in Eq. [12] to calculate the interfacial 
heat transfer coefficient at the top and the bottom of the 
casting (Figure 5(c)). The two curves clearly show the 
influence of the large air gap at the top and the absence 
of such a gap at the bottom. The heat transfer coefficient 
at the top increases at the early stages of cooling. How- 
ever, as freezing occurs, the contraction in the metal cre- 
ates a large air gap. The formation of this gap is reflected 
by the sharp drop in the heat transfer coefficient. At the 
bottom surface no such change is observed. The heat 
transfer coefficient remains high throughout the cool 
down period and starts decreasing only toward the end 
when the total amount of heat released decreases. 

E. Example 5 

This is an example of heat transfer coefficient calcu- 
lation for a quench specimen. For the lack of suitable 
experimental data, temperature data were generated by 
solving a direct problem of quenching of  a hollow cyl- 
inder. Figure 6(a) shows a rectangular geometry that rep- 
resents a slice taken from the hollow cylinder. For 
convenience, the top and the bottom surfaces (BC and 
AD) are assumed to be insulated. Heat transfer occurs 
from the outer and the inner surface. The heat transfer 
coefficient variation for the outer surface (AB) is as- 
sumed to be 

h = 25,000Yt, t<--3 

25,000 Y 
- - - ,  t > 3 [ 1 5 ]  

t 

and for the inner surface (CD) it is assumed to be 

h = 2 5 , 0 0 0 Y t ,  t <~ 7 

25,000 Y 
- - - ,  t > 7 [ 1 6 ]  

t 

where Y is the distance measured in the vertical direction 
from the origin located at the bottom-left comer of the 
section. 

Using the previously mentioned parameters and the 
material properties for steel, the direct problem is solved 
using the commercial finite element code ABAQUS.* 

*ABAQUS is a trademark of Hibbitt, Karlsson and Sorensen, Inc., 
Providence, RI. 

Temperature history obtained at 10 predefined points 
(Figure 6(a)) is then used in the inverse solver to cal- 
culate the heat transfer coefficient. Two boundary ele- 
ments per side and 32 interior elements are used in the 
calculation. Some of the results obtained are shown in 
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Figures 6(b) through (d). Figure 6(b) shows the variation 
of the heat transfer coefficient with time at the top-right 
corner of the section (marked A in Figure 6(a)). 

The calculated value matches quite closely with the 
applied heat transfer coefficient�9 Beyond 3 seconds, the 
heat transfer coefficient drops to a much lower value. In 
this region, the calculated value shows some fluctuations 
from the applied heat transfer coefficient. Probably, a 
smaller time step is necessary in this region to calculate 
the value accurately. Figure 6(c) compares the calculated 
and the applied heat transfer coefficient on the outer sur- 
face at t = 3 seconds. This is the time when the heat 
transfer coefficient at the outer surface reaches the max- 
imum value. Figure 6(d) compares the calculated and the 
applied value of the coefficient on the inner surface at 
t = 7 seconds. This is the time when the heat transfer 
coefficient reaches the maximum on the inner surface. 

V. DISCUSSION AND C O N C L U S I O N  

A numerical technique, based on the BEM, for ob- 
taining the interface heat transfer coefficient in castings 
has been described. Even though only rectangular 
boundaries have been used in the examples presented 
here, the algorithm is valid for any shape of the 
boundary. 

Over the last decade, Beck et  al .  In have been respon- 
sible for developing, testing, and implementing algo- 
rithms for inverse heat conduction problems. Through 
their pioneering contribution in the field of IHCP they 
have successfully raised the general awareness about the 
importance of inverse problems among the scientific 
community. There are a number of drawbacks to the fi- 
nite difference based technique proposed by Beck et  al .  

The heat flux at the interface and thus the interface heat 
transfer coefficient has to depend only on time and be 
independent of spatial coordinates. Since this technique 
is based on finite differences, heat flux is calculated in- 
directly from temperature data. Experimental data from 
the future time step are needed to regularize the flux at 
the present time. The heat flux at the interface has to be 
calculated by some iterative minimization technique�9 

Some of the disadvantages of Beck 's  technique In can 
be overcome by using the boundary element represen- 
tation of the problem. The heat flux at the interface is 
treated as a primary variable in the boundary integral 
representation and is calculated by simple matrix oper- 
ations. This algorithm accounts for both space and time 
dependencies of the interface heat transfer coefficient. 
For castings, experimental measurement of temperature 
is required only inside the mold which is much easier to 
obtain than temperatures inside the solidifying metal. I f  
only time dependency is assumed, the temperature value 
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is needed only at one point inside the mold for all cal- 
culations. This method will still work if the heat transfer 
formulation for the solidifying metal is made more rig- 
orous by including fluid flow etc. In that case, the in- 
verse problem will be tackled in a manner identical to 
the earlier description. The direct problem solution strat- 
egy will be replaced by a more involved strategy but the 
calculated flux at the interface can still be used as a 
boundary condition for the direct problem. 

However, there are some disadvantages of the pro- 
posed method and several of the inherent difficulties that 
arise from the nature of the inverse problem still remain. 
In the present formulation it has been assumed that all 
the material properties are constant. This, of course, is 
far from reality. The material properties both in the mold 
and the metal change with temperature. The present for- 
mulation can be easily altered to accommodate the vari- 
ation of material properties with temperature. The extra 

terms that arise in the differential equation due to the 
variation of material properties can be treated as domain 
integrals in the same way as the term on the right-hand 
side of Eq. [4]. The proposed technique is as susceptible 
to experimental errors as any other technique. If the 
measurement error masks the actual change in the vari- 
ables, the difficulties involved in solving the inverse 
problem is the same no matter what technique is used. 
This issue has been addressed, albeit indirectly, in ex- 
amples 3 and 4 where actual thermocouple data have 
been used to solve for the heat transfer coefficient. 

In all the examples presented here, the number of  
boundary elements used in the solution procedure has 
been quite low (usually two per straight edge). The ra- 
tionale for doing this rests on the fact that the number 
of boundary unknowns are equal to the number of 
boundary nodes. So, in an inverse algorithm, to solve 
for x number of boundary unknowns, x number of 
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thermocouples have to be used. In most practical situ- 
ations, the number of  thermocouples that can be used 
will not be very large. In this work, it has been shown 
that the proposed algorithm works very well even with 
a few thermocouples. The algorithm presented will in 
fact provide more accurate results if the number of  
thermocouples and thus the number of  boundary ele- 
ments is increased. Two sets of  interesting problems, 
however,  arise when the number of  thermocouples is un- 
equal to the number of  boundary nodes. If the number 
of  thermocouples is greater than the number of  boundary 
unknowns,  the system of  equations become over- 
determined. This system can be solved using a least- 
squares technique. If the number of  unknowns is less 
than the thermocouples (which is a more realistic situ- 
ation), the system of  equations become under- 
determined. This set can be approximately solved for by 
regularizing the matrix, l~Sj 

In the near future, this method will be applied to solve 
for the heat transfer coefficients of  more complex geo- 
metries. A study can be performed to record the varia- 
tion of  the interface heat transfer coefficient with the 
variation of  the shape of  the casting. This will create an 
useful information base containing realistic values of  the 
heat transfer coefficients for different combinations of  
materials and for different geometrical shapes. 
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