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The formation of porosity during solidification is of great commercial importance and scientific 
interest. This is particularly so for the question of the "feeding length" of a riser. In this work, 
a number of theoretical models are derived and their predictions are compared to experimental 
observations. The comparisons show that in directional solidification, a "thermodynamic" model 
is useful in predicting when porosity may form. The amount of porosity predicted is too high, 
however, since it ignores the nucleation of the pore and growth by diffusion of dissolved gas 
to growing pores. A surprising conclusion of this study is that Darcy's law does not appear to 
be a controlling factor in porosity distribution or formation. In particular, Darcy's law cannot 
explain feeding length measurements made in steel castings. A simple "geometrical" criterion 
is presented instead to describe when shrinkage porosity will occur. This new model suggests 
a number of interesting experiments, which are proposed in discussion. 

I. INTRODUCTION 

CASTINGS are an important industrial raw material, 
and the properties of a casting determine, to a large ex- 
tent, the quality of the final commercial product. In par- 
ticular, porosity or shrinkage voids are usually undesirable. 
From our commercial experience, it appears that one half 
to three quarters of scrap castings are lost because of 
porosity and shrinkage. 

From a scientific point of view, the problem of po- 
rosity formation is complex and most interesting. The 
thermal properties of the alloy being cast (latent heat of 
fusion and thermal conductivity), the composition of the 
alloy (freezing range and dissolved gas content), the mold 
properties, and the geometry of the casting are all im- 
portant to the properties of the final cast product. How- 
ever, we do not know the relative effect of these variables, 
except in the qualitative way which comes from years of 
producing castings. The problem has been studied in de- 
tail for nearly 50 years, but there appears to be no clear 
agreement as to which mechanisms control the formation 
of porosity and shrinkage. 

In the absence of a clear scientific understanding, 
foundrymen have used empirical rules to design their 
molds. Chvorinov's rule is used to calculate the correct 
size of the riser, and it is well known that the riser can 
only feed a certain characteristic distance, called the 
feeding length. These rules were first observed and cod- 
ified in the pioneering studies of Pellini, 11,21 and they are 
still valid and useful today. 

Since Pellini's observations are of some importance to 
the theoretical analysis proposed in this study, it is useful 
to consider them briefly in detail. The feeding length of 
a riser is best considered by examination of Figure 1, 
taken from Pellini's original article. 12t The data presented 
are for a steel bar cast in green sand. The distance from 
the riser to the end of the casting is sufficiently long that 
there is a central section which is "semi-infinite." In this 
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region, the solidification proceeds as if the bar had no 
ends and were infinitely long. In other words, the tem- 
perature in this region is uniform along its length, so the 
entire section freezes at the same time. Consider the ex- 
perimental freezing velocity curve at the lower right-hand 
section of the figure. Five minutes after pouring, a shell 
1.5-inches (40-mm) thick from the end has formed at the 
centerline of the bar. At 10 minutes, there is a region 
3-inches (80-mm) thick which is completely solid. At 16 
minutes, this shell has reached the right-hand end of the 
semi-infinite region, whose entire section now freezes. 
The freezing "wave" then slows down as it approaches 
the hot riser. 

Pellini 11"21 observed centerline shrinkage in these cen- 
tral "semi-infinite" sections of  plate and bar castings and 
in regions adjoining the semi-infinite region. An analysis 
of his cooling curves showed that in 2-inch- (50-mm-) 
thick plates, shrinkage porosity occurred in areas where 
the temperature gradient* was less than 1 to 2 F/in.  
(20 ~ to 40 ~ In 4-inch (100-mm) bars, a higher 
gradient* was required to prevent centerline shrinkage: 

*The gradient referred to here is the component of  the temperature 
gradient in the feeding direction. In this article, the feeding direction 
is always labeled by the x-axis, which runs from the end of the casting 
to the riser. In Figure 1, the solidification of the casting is predom- 
inantly in a direction perdendicular to the feeding direction and nor- 
mal to the top and bottom sidewalls of  the mold. Thus,  Figure 1 
represents a case of "nondirectional" solidification, where freezing 
and feeding are not in the same direction. Shrinkage porosity only 
occurs in nondirectional solidification and is different from the dis- 
persed microporosity found in "directionally" solidified castings, where 
freezing and feeding occur in the same direction. 

6 to 12 F/in.  (120 ~ to 240 ~ Pellini made a num- 
ber of steel plate castings whose length from riser to end 
varied. He found that the total length of the plate could 
be as much as 4.5 times the thickness of the plate. Longer 
plate sections developed centerline shrinkage. In bar 
castings, the total feeding length was equal to six times 
the square root of the thickess. 

Niyama e t  a l .  131 examined a number of commercial 
castings and proposed that the temperature gradient (as 
predicted from computer models of the solidifying cast- 
ings) could be used to predict the formation of shrinkage 
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Fig. 1 --Solidification of a bar casting whose length is sufficient for 
the appearance of a semi-infinite region devoid of end effects. (So- 
lidification times are measured by thermocouples.t20 

porosity. Unfortunately, as these researchers clearly rec- 
ognized, the gradient required to avoid porosity depends 
on the geometry and size of a particular casting and could 
not be predicted a p r i o r i .  As their study continued, 
Niyama et  al. laI discovered that both the scale of the po- 
rosity and the dendritic structure varied in proportion to 
the size of the casting. This led them to consider in detail 
the effect of  casting size and resulted in the observation 
that the critical temperature gradient (required to avoid 
shrinkage porosity) is related to the time of solidifica- 
tion. Their data for cylindrical steel sand castings are 
given in Figure 2. 

Other researchers have studied the formation of 
shrinkage porosity by offering theoretical models or em- 
pirical prediction criteria ( G / R  and G / X / - R  and are two 
common themes), but a review of the literature 151 shows 
that no consensus has emerged. Consequently, further 
study appears to be warranted. 

When there is directional solidification, no shrinkage 
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Fig. 2 - -Re la t ion  between the critical temperature gradient and the 
total solidification time. (The solid curve is the calculated gradient in 
fully solid region as originally reported. The dashed line is the average 
gradient in the solid-liquid region)n0 

porosity forms, but undesirable micropososity often oc- 
curs. Experimental evidence shows that the size and 
amount of porosity formed are strongly dependent on the 
freezing rate and the amount of dissolved gas in the metal. 
It appears from computer calculations that the "thermo- 
dynamic" model offered by Kubo and Pehlke I61 and Poir- 
ier and co-workers 17,81 may be used to describe the 
formation of microporosity. It is worthwhile to examine 
these models, for simple castings, by integrating the ap- 
propriate differential equations exactly instead of nu- 
merically. It is also useful to reconsider the 
"thermodynamic" model in light of  the excellent ex- 
perimental data given to us recently by Fang and 
co-workers.19,1~ 

II. THEORY OF POROSITY FORMATION 
A .  D i r e c t i o n a l  S o l i d i f i c a t i o n  

In many respects, the situation easiest to consider the- 
oretically is the directional solidification of a casting. 
Consider the plate shown in Figure 3. The top and bot- 
tom walls of the mold are perfect insulators. (This can 
be produced experimentally by heating these surfaces.) 
Consequently, solidification proceeds in one direction, 
parallel to the feeding direction. A detailed schematic 
view of the solid-liquid region is shown in Figure 4. The 
total length of the two-phase region is 1. This length is 
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Fig.  3 - - S c h e m a t i c  i l lus t ra t ion o f  the un id i rec t iona l  sol id i f ica t ion o f  
a plate.  
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Fig. 4--Detail of the solid-liquid region in Fig. 3. 
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divided into the portion A = al ,  where liquid must "filter 
through" a coherent network of solid dendrites, and a 
portion where mass feeding may occur (and where little 
problem with feeding is expected). The experimental 
evidence available suggests that solid coherency begins 
to occur at a fraction solidified, 3~, equal to about 0.2 
or 0.3 in large-grained aluminum alloys. Ill-141 Grain re- 
finement increases this to about 0.4 to 0.6. Correspond- 
ing values reported for y'~ in large-grained and refined 
Cu-10 pct Sn alloys are 0.5 and 0.7. Ill~ 

In the following analysis, the continuity equation is 
first used to establish the flow of metal needed to feed 
the solidification shrinkage. Then Darcy 's  law is applied 
to calculate the pressure drop required to drive the liquid 
flow. Mathematical calculations show that this pressure 
drop is very small and may be ignored without error. 
Then the "thermodynamic" model is considered. That 
is, porosity is assumed to form when the "chemical" 
pressure of  dissolved gas (as given by standard segre- 
gation equations) balances the sum of the surface tension 
pressure inside the pore and the local hydrostatic or "me- 
chanical" pressure. The nucleation of  the pore and the 
subsequent growth of the pore by diffusion of dissolved 
gas are both ignored. 

To simplify the mathematical analysis, we assume that 
the volume fraction of liquid is linear in the two-phase 
region. That is, 

gt = x / l  = x ( G / A T )  [ 1 ] 

From the conservation of mass, from the fact that the 
solid is unable to move in the region of coherency, and 
when no gas porosity is formed, we have 

Op 
V ' (p t &V , )  + - -  = 0 [2] 

Ot 

where 

P = &Pt + gsPs = Ps( 1 - 8)gt  + gsPs 

and 

p, = p s O  - 8 )  

Therefore, 

3p = 3g___j 

at p A  l - 8 )  a t  

PS -- Pl 
and/3 = - -  

Ps 

Ogs Og.._2 [3] 
+P'77 = ps8  o, 

The derivative of fraction solidified with time may be 
determined from the growth rate as follows: 

Ox Og, 
R, - - 1 14] 

Ot Ot 

From Eqs. [1] through [3], we obtain 

- f l  Og, - / 3  R 
V ' ( g l V l )  . . . . .  [ 5 ]  

1 - / 3 0 t  1 - / 3  1 

The product g~Vt is numerically equal to the volumetric 
flow rate of  liquid passing through a planar section of 
unit area normal to the x-axis. Equation [5] therefore de- 
scribes the rate of  change of the liquid volume flow, 
caused by solidification shrinkage, as we move through 

the mushy zone. At the point where g, = l ,  this term is 
zero. Hence, at any distance, x, from the advancing solid 
interface, we have 

-/3R x - 8 R  
gtVt - _ _  _g~ 

1 - / 3 l  1 - 

o r  

- S R  
V ,  = - -  [ 6 ]  

1 - 1 3  

The result is surprising, until the geometry of the situ- 
ation is considered. Although the total volumetric flow 
increases as we move in the positive x-direction, the 
fraction of liquid also increases in proportion, so that the 
velocity remains constant for this case of  directional 
solidification. 

We now consider the application of Darcy's  law to the 
flow of liquid through the semisolid dendritic region: 

- K  OP 
Vx - - -  [71 

tx& Ox 

where V~ = the linear flow velocity of liquid at any dis- 
tance, x, from the riser; 

K = the specific permeability of the solid 
dendrites; 

/x = the viscosity of  the liquid; and 
gt = volume fraction liquid at the point under 

consideration. 

The permeability may be estimated by applying the Hagen- 
Poiseulle equation: 

g~ 
K - [8] 

8mrr  3 

where n = the number of flow channels per unit area; 
and 

r = the tortuosity of the flow channels. 

Equation [8] is valid when & is less than about 0 . 3 f  5'1< 
which is the region of interest. (The restriction to flow 
will be the greatest at the end of solidification.) Com- 
bining Eqs. [1], [5], [7], and [8] and rearranging, we 
find that 

- 8ncrr 3 [9J A P  = -  ~VlOx ( ) Ja gl 

Notice that we are integrating from the point where mass 
feeding stops to a point somewhere deep inside the two- 
phase mushy zone. From Eq. [1], we have O& = ( G /  
AT)Ox; hence, 

s ATff'Og, AT ~ 
- - I n  - -  [ 1 0 ]  

g/ G gt G 1 - g, 

Consequently, the pressure drop with distance is given 
by 

8nzrr3 R A T  a AP = P ~ f l  I n - -  [11] 
( 1  - r )  G ~  1 - g ,  

The tortuosity is generally not dependent on the rate 
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of solidification, I16~ but as noted by Lee e t  a l . ,  U71 the 
number of flow channels is inversely proportional to the 
square of the primary dendrite arm spacing, which is it- 
self a function of the local solidification time: 

d I = y ( t f )  I / 3  

Consequently, Eq. ]l l] becomes 

Ixfl 8"n"r 3 RxAT c~ 
AP = - -  - -  In - -  [ l la ]  

(1 - /3) T 2 Gx(tf) z/3 1 - g~ 

The grouping R/G(t f )  2/3 was proposed by Lee et al. t171 
to describe the porosity observed in plate castings of A356 
alloy. Note that subscripts are used in Eq. [11] to in- 
dicate the directional component of G and R. 

At this point, it is useful to consider the validity of 
the mathematical model. Two assumptions were used to 
derive Eq. [ 11 ]. They are 

(1) steady-state flow of liquid is assumed by Darcy's 
law, and 
(2) the fraction solid is a linear function of distance. 

If one calculates the force of acceleration on the inter- 
dendritic liquid, the first assumption is seen to be valid 
under normal casting conditions. Regarding the second 
assumption, we would generally not find the fraction of 
solid to be a linear function of distance in the mushy 
zone. However, it is a simple matter to account for any 
nonlinearity by introducing a dimensionless constant in 
Eq. [1] for the region of interest (0 -< x -< A). That is, 

X 
gz= ~ -  

l 

For this case, it follows that Eq. [11] becomes 

z~P = /~/3~ 8n-'B"r 3 RxAT In a - -  [ l ib]  
(I -/3) G~ I -g, 

We now shall calculate the effect of dissolved gas by 
considering the thermodynamic arguments proposed by 
Poirier et al. t71 and by developing a modified model for 
this case. The results will then be compared to the data 
provided by Fang and Granger. tgl 

When there is complete diffusion of hydrogen in the 
solid, the liquid composition during solidification is given 
by the equation 

C, = C0/[1 -f~(1 - k)] [12] 

where Ct = the concentration of hydrogen in the liquid; 
Co = the initial concentration of hydrogen in the 

liquid, prior to solidification; 
f~ = the fraction of solid, by weight, in the 

mushy region; and 
k = the distribution coefficient of hydrogen be- 

tween solid and liquid. 

It will be convenient to convert Eq. [12] to one which 
uses volume fraction of solid by using the conversion 
relationship 

Psgs g~ 
L - - = gs l~: ,  

Psgs + Pzgt figs + 1 - / 3  

We also need to know the partial pressure of hydrogen 

gas which is in equilibrium with liquid metal having a 
dissolved hydrogen content, 6"1. This is given to us by 
Sieverts' law and by published solubility data: t~8~ 

(f~_2)2 ( 1 )2 
[13] 

= C p  1 - g , ( 1 - k )  

where Cp = a conversion constant (1 • 105 N" m-2/atm); 
f .  = the activity coefficient of hydrogen; and 
S = the hydrogen solubility (cm3/100 g 

�9 atmt/2). 

In pure aluminum, the solubility constant is given by the 
equation 

In (S) = - 5 8 7 2 / T  + 6.033 [14] 

where T is the thermodynamic (absolute) temperature in 
degrees Kelvin. 

Now we may calculate and compare the hydro- 
dynamic and chemical pressures during the solidification 
process. Consider how these two pressures change as we 
move from the riser to the fully solid part of the casting. 
In the riser, the dissolved gas gives rise to a small chem- 
ical pressure, typically on the order of 0.02 to 0.1 atm, 
and the mechanical pressure is close to 1 atm. (The 
metallostatic head becomes appreciable in aluminum only 
in large castings: a height of 1 m produces a head of 
0.24 atm.) As we move through the mushy region, the 
chemical pressure increases because of rejection of gas 
into the liquid (Eq. [13]), and the mechanical pressure 
drops because of the flow of liquid through the dendrites 
(Eq. [11]). It will be thermodynamically possible for po- 
rosity to form when the chemical pressure is equal to the 
mechanical pressure, or when 

2 ( ' )  
? o  ~/3~ 8rr~ R~/SAr 

= - -  - -  In 
(1 --/3) y2 G~/3 1 - g 5  

OL 
= pO _ B l n - -  [151 

1 - g5 

where P~ = Cp(f .Co/S)  2 (the initial gas pressure in the 
liquid, prior to freezing); 

pO = the mechanical pressure in the riser; and 
I~fl~ 8"n'r 3 R~/3AT 

B - -  - -  - -  
( 1 - / 3 )  y2 G{/3 

If we divide by pO in Eq. [15], two dimensionless num- 
bers arise which are of interest, namely, 

2 ( , o 
1 - g ) - I  - k )  P-~H p-~ln - 1  gs [16] 

The first is the ratio of the mechanical to chemical pres- 
sures at the beginning of solidification. The second is 
the ratio of the B group given by Darcy's law to the 
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initial chemical (or gas) pressure. When numerical val- 
ues are placed in this equation (Table I), we find that 
the chemical pressure of hydrogen overwhelms the B term 
which arises from Darcy's law. To help visualize this 
effect, Eqs. [11] and [13] have been plotted together in 
Figure 5 for A356 (A1-7 pct Si-0.3 pct Mg) alloy. The 
mechanical pressure is given by the nearly horizontal line 
at the top of the figure and varies little: from 1.1 arm at 
the beginning of solidification to 1.04 atm at gs --- 0.99, 
or 99 pct solidified. This small change arises from the 
fact that B is equal to 900 N / m  2 (or 0.009 atm). On the 
other hand, the pressures arising from dissolved hydro- 
gen become substantial, even at low gas contents. From 
these results, we must conclude that the small changes 
in mechanical pressure, arising from the flow of liquid 
through the dendritic semisolid region, do not contribute 
significantly to porosity. The overriding factor in direc- 
tional solidification is dissolved gas content. 

Before continuing, it is necessary to note a number of 
factors concerning the calculations shown in Figure 5. 
The activity coefficient of hydrogen, fH, increases from 
1.48 to 1.78 as silicon increases to the eutectic com- 
position during solidification. There is also a tempera- 
ture drop of 60 ~ which lowers the gas solubility, S, 
from 0.54 to 0.4. For gas contents normally found in 
practice, porosity would evolve in or near the eutectic 
portion of solidification, and consequently, the values of 
fH and S at this point are used in the calculations. 

The intersection of the curves for mechanical pressure 
and the chemical pressure of dissolved gas in Figure 5 
indicate the point at which porosity formation becomes 
thermodynamically stable. In other words, the pressure 
of gas inside a pore must be at least as large as the me- 
chanical pressure of the system; otherwise, the walls of 
the pore (which is present in liquid) will collapse. It is 
evident that the fraction solidified at which porosity may 
form is a direct function of  the amount of dissolved gas 
present at the start of solidification. If the gas content is 
varied continuously, the intersection of the two curves 
in Figure 5 generates another curve, which is shown as 

[ 
1 I . g  t / g 

0.01 011 . . . . . . .  1 0.1 0.01 

] 
Fig. 5 - -P lo t  of the mechanical and chemical pressures during the 
directional solidification of A356 alloy. 

the baseline in Figure 6. The results are plotted as a 
function of the dimensionless group, P~ Taken by 
itself, this curve suggests that porosity depends only on 
the amount of gas present. 

Unfortunately, this simple conclusion is not borne out 
in practice. The amount of porosity formed in directional 
solidification experiments and in commercial castings 
decreases with faster solidification rates. The reason for 
this discrepancy is that we have heretofore ignored the 
surface tension of the gas-metal interface. The impor- 
tance of this phenomenon may be illustrated by a simple 
calculation: The equilibrium surface tension pressure in- 
side a spherical pore, 10 /~m in diameter and in liquid 
aluminum, is 3.6 atm! 

We introduce surface tension effects by using the 
thermodynamic and geometric arguments proposed by 
Poirier et al. tT] The surface tension pressure existing in- 
side small gas bubbles will be 

Pg - P = o ' ( l / r l  + l/r2) [171 

Table I. Values of Constants Used for Calculations (A356 Alloy Containing 7 Pct Si) 

Constant Value Used in the Calculations Note 

fH 1.78 (logfH = 0.03-pct Si - 0.0008. (pct Si) 2) Ref. 18 
S 0.40 (cc/100 g. atm ~/2) ire = 845 K 
pO 1.1 atm (1.1-105 N.m -2) - -  
/x 1.2.10 3 kg/m.s  Ref. 19 
/3 0.058 Ref. 8 
s c 1.2 Ref. 13 
8rr~ 2700 Ref. 16 
y 1.15. 10 -4 m / s  1/3 Ref. 20* 
AT 60 ~ Ref. 13 
a 0.7 (c~ = 1 - f ' )  Refs. 12, 13 
G, 400 ~ Ref. 17"* 
Rr 8.3" l0 4 ITI//S Ref. 17"* 
Ps 2550 k g / m  3 Ref. 8 
H 433,000 J / k g  Ref. 11 
KM 184 W / m .  K Ref. i I  
CM 1200 J/kg. K Ref. 21 
ce 6" 10 -5 m2/s 

*The primary dendrite arm spacing is assumed to be 2.5 times the secondary arm spacing, as in AI-Cu atloys37~ 
**These values are for a location 2 cm from the end of the plate, where solidification should be directional. 
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where Pg = pressure inside the gas containing pore; 
P = the pressure within the mushy zone; 
o- = the surface tension of the liquid; and 

rj, r2 = the principal radii of curvature of the pore. 

For a spherical bubble, 

Pg - P = 2 t r / r  [18] 

where r is the radius of  the bubble. Poirier et  al. con- 
sidered the conical groove existing between primary 
dendrites and showed that the width of this groove, 6, 
at any point in the mushy region depends on the volume 
fraction of liquid: 

= g~d~/2 [19] 

where d~ is the primary dendrite spacing.* Since rz = 

*Equation 19 has been derived from geometric arguments for a co- 
lumnar grain structure. For equiaxed grains, another equation has been 
derived) 81 The relationship for columnar grains has been employed, 
since the resulting equations are more easily solved. 

6 / 2  and r2 = ~ for a cylindrical pore, it follows that 

Pg - P = 4 t r /g td l  [20] 

Equation [20] is now added to the mechanical pressure 
in the mushy region. The gas porosity becomes thermo- 
dynamically stable when the chemical pressure is equal 
to, or greater than, the sum of the mechanical and sur- 
face tension pressures, namely, 

( 1 )  
Pn~ = pO l - g,(1 - k) 

a 40- 1 
_> pO _ B l n - -  + - - - -  [21] 

1 - gs dl g/ 

As we have seen above, the B term is very small and 
can be ignored without serious error. That means that 
we must solve this equation: 

) 2  0 0 
1 PM __P~ _1 [22] 

1 - g ~ l - k )  = P-~n + P~ 1 gs 

where pO = 4o-/dl .  This represents the additional pres- 
sure, caused by surface tension forces, at the beginning 
of solidification. As the rate of solidification increases, 
the primary dendrite arm spacing, d~, decreases. Con- 
sequently, any porosity that forms must squeeze into a 
smaller space, and the pressure caused by surface ten- 
sion effects, pO, increases. Rapid solidification therefore 
makes it more difficult for porosity to form. 

Equation [21] is quadratic and has two roots, one of 
which is physically significant. The meaningful root rep- 
resents the point at which gas porosity first becomes 
thermodynamically stable and is called g* It is plotted 
in Figure 6 for various values of pO. 

To place the curves in Figure 6 in perspective, it is 
useful to consider the physical meaning of the different 
values of the surface tension pressure, pO. Remembering 
that the primary arm spacing is related to the cooling 
rate, for aluminum-based alloys we may calculate the 
following values: 

1 I \ I I I I I 

' 
g' 

S 

Fig. 6 - - T h e  fraction solid at which gas formation becomes thermo- 
dynamically possible in 356 alloy. 

pO dl (/xm) GR ( d e g / s )  

0 ~ 0 
0.2 180 0.3 
0.4 90 2 
0.8 45 17 
1.6 23 130 

As the cooling rate and pO increase, the fraction so- 
lidified at which gas porosity may form, g*, also in- 
creases. Also note that below a certain small gas content, 
which depends on solidification rate, no porosity occurs. 

0 0 An analysis of Eq. [22] shows that when P J P ~  -> 4, the 
pressure of the gas does not increase sufficiently for po- 
rosity to form. When this theoretical threshold hydrogen 
content is compared to the experimental values measured 
by Fang and Granger 191 (Figure 7), the agreement is seen 
to be excellent. (In their experiments, no samples ex- 
hibited a "zero" porosity, so the threshold hydrogen con- 
tent was plotted at three small constant fractions of 
porosity, fp. ) 

Taking the data in Figure 6 as a basis for calculation, 
we can estimate the amount of porosity which may form. 
Imagine that we have a small volume of solid and liquid, 
equal to I c m  3, which has just reached the point where 
gas formation is possible. The total volume of liquid left 
in this volume element is 1 - g,* and assuming an ideal 
gas, the volume of hydrogen contained in the liquid, if 
it were to evolve at the locally prevailing pressure and 
temperature, is 

V g =  C ~ p' T 1 1 - g* [23] 
100 273 P* l - g~*(1 - k) 

The questions now are these: How much of this gas 
is evolved as porosity, and how much remains trapped 
in the solid? If we assume that all of the hydrogen which 
segregates from the solid manages to diffuse to the pore 
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Fig. 7 - -Threshold  hydrogen contents in grain-refined A356 alloy for 
various porosity levels, from Ref. 9 (solid lines), compared with the 
theoretical value for zero porosity (from Eq. [22], dashed line). 

(which continues to grow at the thermodynamic equilib- 
rium pressure, P*), then a fraction (1 - k) of the gas 
given in Eq. [23] will be evolved as porosity. Also, it 
is desirable to express the porosity formed as a per- 
centage of the total volume of the system. Hence, the 
volume percentage of porosity becomes 

T 1 - k (1 - g*) 

273 P* 1 - g * C l - k )  

7 .8 .C~ 1 - g* 
- -  [24] 

P* 1 - g * ( 1  - k )  

at the A1-Si eutectic temperature and composition. The 
term P* is the pressure inside the gas bubble when it 
first forms. The last term on the right-hand side of 
Eq. [24] represents the fraction of gas which is evolved 
as porosity. (The rest has remained dissolved in the solid.) 

The amount of porosity predicted by Eq. [24] and 
Figure 6 is plotted in Figure 8 with the data provided by 
Fang and Granger I9] for two initial gas contents, 0.11 and 
0.25 cc/100 g. There is a some qualitative agreement 
between the predicted and observed values, since the lines 
are nearly parallel, but the theoretical values are too high. 
This discrepancy may be caused by slow diffusion of 
hydrogen to the pores, as proposed by Fang and Granger. 
Lower gas contents and more rapid solidification rates 
mean that the pores become fewer and further apart, 
making the diffusion process more difficult, and it is ex- 
actly for these cases that the disagreement between the- 
oretical and experimental results (Figure 8) is the worst. 

We must also remember that the "thermodynamic" 
model does not account for gas supersaturation required 
for pore nucleation. From experimental and theoretical 
studies, I22'23,241 it is obvious that homogeneous nucleation 
of a gas bubble in liquid metals is virtually impossible. 
The internal pressure required (by supersaturation of liq- 
uid with dissolved gas) to form the nucleus of critical 
size is extremely high. Pores therefore form by heter- 
ogenous nucleation, usually on oxides. This observation 
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Fig. 8 - - P o r e  volume fraction as a function of cooling rate for di- 
rectionally solidified A356 alloy. (Solid curves are from Ref. 9; dashed 
curves are theoretical values, Eq. [24].) 

explains why it appears to be possible to "filter out" gas 
in castings. 125,26j Nucleation effects would tend to delay 
porosity formation and will have the same effect as in- 
creasing the effective surface tension of the metal or in- 
creasing the solidification rate. In other words, the porosity 
is decreased. 

In spite of its limitations, the "thermodynamic" ap- 
proach is valuable. It does predict when porosity may 
form, and it is possible to account for the pore nucleation 
and the limited diffusion of gas by introducing a con- 
stant, qJ, in Eq. [24]: 

C~ T 1 - k  (1 - g * )  [24a] 
V~gt= ~O 273 P* 1 - g * ( 1  - k )  

From the data provided by Fang and Granger, ml ~O is be- 
tween 3 and 9 in aluminum alloy castings. 

B. Nondirectional Solidification 

We consider next the important question of feeding 
distance. This is modeled by the solidification of the plate 
shown in Figure 9. At the end of the plate, there is no 
extraction of heat. An insulating wall has been placed at 
this location in the figure, but it may be easier to produce 
this situation experimentally by "doubling" the casting. 
We consider the flow of liquid through the central chan- 
nel of the plate. To help in visualizing this, consider a 
slice of unit length taken somewhere from the center of 
this semi-infinite solid (Figure 10). We assume that the 
fraction of liquid is a linear function of the distance from 
the centerline: 
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Fig. 9 - - S c h e m a t i c  illustration of  solidification in a semi-infinite plate. 

z 

-y 

I 
2l 

--{ Ax 
Fig. 1 0 - - V o l u m e  element taken from the central portion of  the plate 
casting shown in Fig, 9, 

where gTis the fraction of liquid at the centerline and can 
be approximated by the relationship 

1 Gyl c 
gt = - - -  [26] 

~: AT 

where ~: is a constant which depends on the alloy being 
cast. Hence, 

g , : ~  1 -  [27] 

From Darcy's law, we know that the pressure drop across 
this volume element is related to the total instantaneous 
flow of liquid through the porous channel. From 
Eqs. [7] and [8] we find that 

Ix" 8n~r~ 
VP - - -  V, [28] 

gt 

From the continuity of mass in the system (Eq. [2]), it 
follows that 

- ~  Og, - [ 3  Gy 
V" (& Vt) = - -  - Ry ]29] 

1 - f l  Ot 1 - [ 3 ~ A T  

From the geometry of the casting, it is reasonable to as- 
sume that R~, is constant and does not depend on the dis- 
tance, x, along the length of the plate. Then from 
Eq. [28] we have 

o r  

- 1  
Vfgl -- - -  g~ VP 

IX. 8nTr~ -3 

- 1  
V . (V~g~) - - -  V(g~VP) 

Ix. 8nTrr 3 

- 1  
-- - -  [g~VZP + 2g~VP.Vg~] [30] 

Ix- 8nrrr 3 

From the shape of the casting, it is obvious that OgJOx 
= 0, and from Eq. [27], 

Therefore, 

V " (&Vt) = 

Ogt - 1 Gy 

Oy ~ AT  

o r  

g~V2P - 2 g t - -  
Ix. ay 

1 G~, R, 

OP1 G~] /3 1 
g2VZP - 2g l -~y - ~ j  = Ix" 8nrr~ 1 --  [3 c ATGk: Ry 

[31] 

Because of symmetry at the centerline, #P/Oy = 0. Hence, 

2fo2e o2p  Ix" 13 1 
g '~oy  - - S (  + ~ x  z J = 8nrrr3 1 - -  /3 ~ATGy-RY [31a] 

This expression will be integrated along the centerline 
to find the liquid pressure as a function of distance from 
the riser. 

02p 02P Ix" 8n~r  3 [3 1 Gy 
+ = Ry 

Oy 2 Ox z (gt) z 1 - [3 ~ AT 

tx/3~ 8nTr'fl RyAT 1 B' 
- - -  - [321 

1 - -  [3 G y  l 2 l 2 

It is of  interest to compare the constant B' with the 
group in Eqs. [11] and [15]. They are the same, except 
the subscripts of the variables G and R have been changed 
(to y instead of x). We now assume that 02p/Oy 2 is zero 
at the centerline. This may be inferred from the fact that 
o V J o y l ~  o = 0 and from Darcy's  law. (The validity of 
this assumption is shown in Appendix A, where an al- 
ternative method of solution is presented for the plate 
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casting under consideration.) Equation [32] is now in- 
tegrated from x = 0 to x = X, which is the distance from 
the end of the casting to the riser. The result is 

B' X 2 
_ _ . _ _  

p = p O _  2 l 2 [33] 

where pO = the mechanical pressure at the base of the 
riser; 

l = one half the thickness of the inner channel; 
and 

B' = t x ~  8nrrr3 RyAT 

1 - / 3  Gy 

It should be obvious from Eq. [33] that the pressure 
will change with time, especially at the end of solidifi- 
cation as the thickness of the inner channel becomes close 
to zero. In fact, three variables, G, R, and l, change with 
time. Consequently, an evaluation of the results is easier 
if we simplify this equation by using a relation given 
by Flemings ~2~ for the solidification of sand castings. 
The thickness of the solidified shell, S, with time is 
given by* 

*We note in passing that Eq. [34] leads to Chvorinov 's  rule, since 
tc er L 2 and L ~ VIA.  Thus,  even though the equation was derived for 
solidification o f  a pure metal having no superheat, it is still a reason- 
able approximation for steel castings and for alloys having a narrow 
freezing range. 

2 ( Z m ~ Y ~  t s = - ~ \  pj4 / 

This means that 

= C ' N / t  [34] 

Ol C' 
l = L - C ' X / t a n d R y =  - - -  [35] 

Ot 2X/tt 

To evaluate the physical significance of the above re- 
lationship, it is useful to place numerical values into the 
equation. We first turn once again to the experimental 
data of Pellini, ttJ as well as the later work by Johnson 
and Loper)  271 The thermal gradient, Gy, was not reported 
directly by Pellini, but it may be calculated from simple 
thermal calculations which are given below. The values 
of the physical constants used are shown in Table II. We 
consider the 4 inch- (10-cm-) thick casting studied by 
Pellini. For this casting, the constant B' is equal to 0.00001 
atm! This is a very small value, 150 times smaller than 
the equivalent term calculated above for the directional 
solidification of A356 alloy. It is interesting to consider 
the reasons for this. The viscosity of iron is higher than 
that of aluminum, but the solidification shrinkage, /3, is 
less and nearly balances out the effect of the viscosity. 
The primary dendrite arm spacing may be estimated from 
measurements made by Suzuki and co-workers, t2~ For 
the same cooling rate, the dendrite arm spacing in iron 
is about 3.5 times that found in aluminum. Conse- 
quently, for our steel plate, n is less by about a factor 
of  10. This is one order of magnitude of the decrease in 
B' .  The rest is found in the solidification rate, R, which 
is nearly a hundred times smaller than before. From the 
X-rays of porosity in Pellini's plate castings, the shrink- 
age is found to be on the order of a few millimeters in 

size. Consequently, the size of the inner liquid channel 
when shrinkage occurs (and when feeding stops) must 
also be a few millimeters. We now consider the follow- 
ing values of feeding length, X, predicted from Eq. [33] 
by assuming that porosity forms (in a gas-free casting) 
at a distance where the pressure, P, becomes zero: 

inner channel size, l feeding length, X 

5 mm 450 cm 
1 mm 90 cm 

The total observed feeding length for this casting is 45 
cm, whereas the theoretical value from Eq. [33] is sev- 
eral times greater. 

We must also consider that Eq. [33] is for the ideal- 
ized case of  the semi-infinite plate, where no thermal 
gradient exists in the feeding (x) direction. Pellini m ob- 
served shrinkage porosity in his castings whenever the 
thermal gradient was less than a small critical value, so 
for all practical purposes, the feeding length in a truly 
semi-infinite region is very small, perhaps 5 or 10 cm 
at most. This means that the feeding length predicted by 
Eq. [33] is too large by 5 to 10 times. 

This is not the only problem with the theoretical re- 
suit. If  Eq. [33] is reduced still further, it is possible to 
estimate how the feeding length changes as we move 
from steel to aluminum alloy castings. (See Appendix 
B.) The predicted trends go in the wrong direction! 

If we cannot apply Darcy 's  law to the case of  solid- 
ification shrinkage, what is the controlling factor? We 
suggest that the important factor is a "geometric" one, 
related to the thermal gradient in the feeding direction. 
In Figure 9, we represented the solidification of a plate 
in a highly idealized fashion. In practice, one could ex- 
pect local variations to exist in the freezing rate. These 
may be caused by 

(1) variations in moisture content or density of  the sand 
mold or variation in coating thickness in metal molds; 
(2) uneven contraction of the casting away from the mold 
wall, which causes uneven heat transfer; or 
(3) normal variations in the morphology of the solid- 
liquid interface (see, for example, Figure 4 of Reference 
28). 

The situation is expressed schematically in Figure 11, 
where uneven solidification has "pinched off" certain 
areas, which solidify without feeding, to exhibit shrink- 
age. The presence of a gradient in the feeding direction 
serves to open up this channel, by effectively providing 
a taper to the inner liquid channel. This situation is il- 
lustrated in Figure 12. 

The tapered channel may be characterized by the angle 
0. Let us assume that feeding will occur as long as this 
angle is greater than a certain critical angle, 0c. This means 
that 

R, 
- -  -> tan 0, [36] 
Rv 

The value of R,. is given by Eq. [35]. Substituting this 
in the above equation, we find 

C' 1 
R, >- - -  tan O , -  

2 
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Table II. Values of Constants Used for Calculations of Feeding Length in a 4-Inch-Thick Steel Casting 

Constant Value Used in the Calculations Note 

pO 1.1 atm (1.1 �9 105 N - m  2) __ 
/.t 6.2" 10 -3 kg/m.  s Ref. 11 
/3 0.038 Ref. 2 

1 - -  
87r'r 3 2700 Ref. 16 
Y 3.8 '  10 -4 m / s  j/3 Ref. 20* 
n 7.1 �9 1 0 6 / m  2 Ref .  20*  

AT 45 ~ (0.3 pct C steel) Ref. 1 
Ps 7500 kg /m"  Ref. 2 
H 270,000 J/kg Ref. 11 
KM 33 W / m .  K Ref. 6 
CM 315 J / k g - K  Ref. 2 
a 1.4' 10 -5 m 2 / s  - -  

GyR~, 0,018 C/s Ref. 1 
Gy 240 C/m Ref. 1 
Ry 7.6" 10 -6 m / s  Eq. [35] 
C' 8.7" 10 -4 m/s ~/2 Ref. 2 
Km 1.58 W / m .  K Ref. 2 
Pm 1490 kg/m 3 Ref. 2 
C,, 530 J /kg-  K Ref. 2 

*The primary dendrite arm spacing is assumed to be 2.5 times the secondary arm spacing. 

2O 

Fig. 1 1 - - C r o s s  section of a plate casting which has no thermal gra- 
dient in the feeding direction on the left side of the casting. Uneven 
freezing has left isolated pools which exhibit shrinkage after freezing. 

Fig. 1 2 - - C r o s s  section of a plate casting where a thermal gradient 
in the feeding direction creates a tapered liquid pool in the center, 
which may feed the casting. No shrinkage occurs. 

It is possible to show (see the discussion leading to the 
derivation o f  Eq. [B5] in Appendix B) that the average 
gradient in the solid-liquid region is 

~HR~ 
G~ ~ [37] 

2KM 

Therefore, 

p ,H C' 1 
G,- -> - -  - -  tan 0,. 

2KM 2 X/~,. 

T , . -  To 1 A 
>- - -  k/K,~p,,Cm" tan 0, - -  - - -  [38] 

By placing the appropriate values of  the physical con- 
stants in this equation (see Table II) and assuming that 
0c is equal to 1 deg, we find that Gx >- 30/X/77, when the 
solidification time, t,., is given in minutes. (Remember  
that G is in units o f  K/ re . )  If  we compare this equation 
with the curve in Figure 2 and ignore for the moment  

the difference in units, we find that it falls exactly on 
top of  the solid line in Figure 2. 

The logic of  Darcy ' s  law has been so compelling that 
it has seduced us for some 20 or more years. Even Niyama 
et alJ 41 tried to make it explain their results. But Darcy ' s  
law does not explain the formation of  shrinkage porosity 
in steel castings, even though it probably applies. The 
apparent explanation, a simple geometric criterion for 
the shape of  the mushy region, was overlooked. 

It is of  interest to examine some of  the logical impli- 
cations of  Eq. [38] and to compare the predictions with 
the available data. As noted above, Pellini t21 found that 
gradients of  0.2 ~ to 0.4 ~  (or 20 to 40 K / m )  were 
required to prevent shrinkage formation in a 5-cm-thick 
plate. The freezing time for this plate was 14 minutes, 
so from Eq. [38] and assuming an angle of  1 deg, the 
predicted gradient is 8 K / m ,  which is reasonably close. 
Or looking at the data in another way, Pellini 's data and 
Eq. [38] suggest that 0,. for steel plates is between 2.5 
and 5 deg. This result is certainly reasonable and lends 
some credence to the approach. 
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Pellini TM also reported that for a 10-cm-thick bar cast- 
ing (for which the solidification time was 17 minutes), 
the critical temperature gradient was between 1.2 ~ and 
2.4 ~ (120 ~ and 240 ~ From this result and 
Eq. [38], the angle of the liquid channel, 0c, is between 
16 and 30 deg. This also appears to be a reasonable re- 
sult and is a prediction that could be easily verified. One 
could cast fairly large steel bars and, after partial solid- 
ification, replace the remaining liquid by pouring lead 
into the casting. A more elegant solution, although 
somewhat more difficult to accomplish experimentally, 
is to quench and "freeze in" the solid-liquid interface. 

It is now possible to reconsider the results of Niyama 
et al. I41 as shown in Figure 2. Their results are for cy- 
lindrical bar castings, which should solidify very much 
like the rectangular bars used by Pellini tL21 in his study. 
For the 10-inch bar casting studied by Pellini, Figure 13 
predicts a gradient of 7 ~ (or 700 ~ which is 
3 to 6 times greater than the value measured by Pellini 
by placing thermocouples in his molds. Part of the rea- 
son for this discrepency is the fact that Niyama et al. 
defined the gradient as that existing in the fully solid 
region. Because latent heat is released in the semisolid 
region, the average thermal gradient in the mushy zone 
will be less by a factor of 2 (see Appendix B). Since 
this is the value measured by Pellini and predicted by 
Eq. [38], this value is drawn in Figure 2 with a dashed 
line. We should also point out that the gradients shown 
in Figure 2 have not been measured but were calculated 
by numerical analysis on a computer. Consequently, the 
absolute values would depend upon the values of phys- 
ical constants used in the calculations (especially the 
thermal properties of the sand). The form of the curve 
vs total solidification time (that is, a straight line vs log 
t~) is not, however, affected by the value of physical 
constants used. 
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Fig. 1 3 - - T e m p e r a t u r e  distribution at various t imes in the slab - 1 < 
x -< 1 with zero initial t empera ture  and surface t empera ture  V. The  
numbers  on the curve  are the values  of  at/12.1~91 

Although Eq. [38] was derived for sand castings, it 
may also apply to metal mold castings. Noting that, for 
a steel mold, the factor K,~o,,Cm will be nearly 100 times 
greater than for sand, the required gradient for feeding 
(which is proportional to the square root of grnPmCm) will 
be about 10 times greater than the same sand casting. 

It is also interesting to consider the feeding of other 
metals. To take an extreme case, consider the gradient 
required for aluminum alloy castings. Because of the lower 
melting point and much higher thermal conductivity, the 
thermal gradient required for feeding (assuming that 0c 
is unchanged) is only 1/12 that for steel castings. This 
is an interesting prediction, one that could be easily tested 
in bar castings. The experimental measurement would 
represent an important test for the "geometric" model. 

The experiments in aluminum would be important for 
another reason. The mode of solidification is quite dif- 
ferent. A well-defined shell of solid is less likely to form 
in aluminum, and the entire casting would quickly fill 
with dendrites and liquid. This is particularly so of alloys 
having a very wide freezing range, such as the 200 series 
of alloys (A1-4.5 pct Cu). Especially in this case, the 
morphology of the mushy dendritic region would be such 
that flow of liquid, as envisioned by Darcy's law, would 
be important for feeding. Consequently, careful exper- 
iments in aluminum alloys would establish whether the 
"geometric" model has a wide range of validity or whether 
it breaks down as the solidifcation structure changes. 

It should also be noted that there is an alternative form 
of Eq. [38], one that would be more convenient for com- 
puter modeling of solidification. 

G,. psH 
- -  _> tan 0c = A' tan Oc [38a] 
R: 2KM 

The constant A' is equal to 3.0 x 10 6 C / m  2. s for alu- 
minum and 3.1 x 10 7 for steel: 10 times greater than 
aluminum. 

A number of rules have been derived from Eq. [38], 
and it will be interesting to test their validity experi- 
mentally in the future. But, for now, let us turn to the 
controlling factor in feeding: the thermal gradient in the 
feeding direction, G,. What is it that controls this gra- 
dient? If the above rules are meaningful, then a predic- 
tion of feeding and feeding length, must be related directly 
to whatever is controlling the gradient. One way to char- 
acterize the situation is to consider the analytical solution 
proposed by Carslaw and Jaeger Izm for a slab - l  ~< x 
-< I with zero initial temperature and surface temperature 
V. The dimensionless temperature, v /V ,  as a function of 
distance in the slab (or plate) is plotted in Figure 13. 
The curves are plotted for different values of dimen- 
sionless time, c~t/l 2, where o~ is the thermal diffusivity 
of the metal (a = KM/psC~). For values of a t / l  2 less 
than about 0.1, the center of the slab does not "see" the 
effect of the ends. This would correspond to a plate cast- 
ing that is so long that the central portion develops a 
central "semi-infinite" section, where shrinkage porosity 
will occur (and where Gx will be zero). In other words, 
if we wish to avoid shrinkage porosity, a t / f  > 0.1 or 
12 <- l Oat. To use this equation, we must decide what 
value is appropriate for the time. It is logical to assume 
that the total solidification time, to, as given by Eq. [35], 
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is the relevant parameter. In other words, the plate cast- 
ing must be short enough so that the end effects are felt 
in the middle of the casting, prior to solidification. It 
therefore follows that 

lOaL 2 l ~ "  a 
12 --< - -  o r -  --< - -  

(C') 2 T C' 
[391 

where l now represents the feeding distance and T 
(=2L) is the thickness of the casting. If Eq. [39] is used 
to calculate the feeding distance, l /T ,  the result for steel 
plates is 7 and for aluminum plates is 18 vs the exper- 
imently determined values of 4.5 to 5 tl,]~.27t and 10 to 
15. l~ L] The calculated values are somewhat too high, but 
when one considers the simplifications made in the above 
analysis, the agreement may be considered to be excel- 
lent. In any event, the purpose is to illustrate what con- 
trois the gradient, Gx, during solidification. It can be seen 
that the geometry of the mold and the thermal diffusivity 
of the metal are most important. 

A more accurate prediction may be made by the use 
of Eq. [38a] and numerical analysis to calculate the tem- 
perature gradient during solidification. This approach also 
becomes necessary when the geometry is complicated. 
Even the analysis of the feeding of a simple bar casting 
is quite complex, and the use of a computer may be eas- 
ier even in this simple case. 

In the above analysis, we assumed that shrinkage oc- 
curred suddenly when the angle of the thermal taper 
reached a critical value, Oc. In practice, the amount of 
shrinkage porosity present could be expected to depend 
on the value of the taper, once the angle is less than 0c. 
This may be illustrated by considering the early exper- 
iments of Campbell, t3~ whose results for cobalt and steel 
bars are reproduced in Figure 14. When the angle of the 
taper is greater than a certain value, the level of porosity 
is constant. This porosity level depends on dissolved gas 
content and freezing rate, as discussed above under the 
"thermodynamic" model. As the angle becomes less than 
the critical value, about 2 to 3 deg in these castings, the 
porosity increases gradually, to a maximum at 0 deg. 
(Please note that the angle of the taper will generally not 
be equal to the angle of the inner feed channel, 0.) A 
similar behavior in A356 alloy castings may be inferred 
from the results of Lee et al. (~7] (Figure 15). As shown 
above, Gx/Ry is proportional to the tangent of the angle 
of the thermal taper. Lee et al. did not specify what G 
and R were plotted in their figure, but from the geometry 
of their plate castings, it is probable that their results 
show the ratio of  Gx/Ry multiplied by the local solidi- 
fication time to the two-thirds power. This latter factor 
can be expected to vary little along the length of their 
plates, so their results are, for all practical purposes, a 
plot of porosity vs Gx/Ry. 

III. CONCLUDING REMARKS 

The theoretical analyses in this article suggest a num- 
ber of useful experiments. It would be particularly in- 
teresting to study the feeding of aluminum alloy castings 
in detail, in order to compare the results to those found 
in steel. Also, a relationship similar to that plotted in 
Figure 2, but for aluminum, would determine the range 
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Fig. 1 4 - - T h e  effect of  taper on porosity in bar castings of (a) iron- 
0.25 pct C and (b) cobalt-based alloys, t3~ 

of validity of the "geometrical" feeding criterion pre- 
sented in Eq. [38]. It would also be of interest to mea- 
sure the angle of the inner feed channel in steel castings 
and compare it to that predicted from the theory. 

It may also be interesting to do experiments at in- 
creased pressures. In the absence of shrinkage, the amount 
of porosity could be expected to depend on pressure, as 
suggested by Eq. [24]. 

Some useful work may also be done by incorporating 
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the models proposed here into existing finite element 
model programs, in order to theoretically predict poros- 
ity levels reported in published work or found in com- 
mercial castings. This would be another way to test the 
validity of the models proposed in this study. 

A 

A, 

B 

B' 

C, 

Ci 
Co 

Cm 
dl 

f .  

L 
L 
f ;  

g 
gt 

gs 

NOMENCLATURE 

T m -- To.  W ~ m p m C  m 

2 ~ K M  
p j4 

2KM 
Izfl~ 87"m "3 Rxs/3AT 

( 1 -  [3) ~ G'/3 
I~fl~ 8nzrr3 RyAT 

1 - f l  G>, 

concentration of hydrogen in the liquid 
initial concentration of hydrogen in the 
liquid, prior to solidification 
specific heat of the mold 
primary dendrite spacing 
secondary dendrite arm spacing 
activity coefficient of hydrogen in liquid 
metal 
volume fraction of porosity, in Figure 7 
fraction solid by weight in the mushy region 
fraction solid at which dendrite coherency 
occurs and where mass feeding stops 
gravitational constant 
volume fraction liquid at the point under 
consideration 
volume fraction solid at the point under 
consideration 
volume fraction solid at which porosity 
becomes thermodynamically stable and may 
form 

G 

H 
k 

K 

Km 
KM 
l 

L 
n 
P 

AP 
Pg 
PH 2 

po 

p, 

po 
po 

r 

FI, F2 
R 
S 

tl 
T 

T, 
7",. 
r0 
L 
AT 
v. 
v y  t 
v, 
V~ 

X 
X 

Y 

thermal gradient at any point inside the 
casting (~ 
latent heat of fusion of the metal or alloy 
distribution coefficient of hydrogen between 
solid and liquid 
specific permeability of the solid dendrites in 
the mushy region 
thermal conductivity of the mold 
thermal conductivity of the metal 
length of the mushy region in the casting; 
also one half the thickness of the liquid 
channel, along the center of a solidifying 
plate casting 
one half the thickness of a plate casting 
number of flow channels per unit area 
mechanical or hydrostatic pressure at any 
point under consideration 
pressure drop along the length of the casting 
pressure inside a gas-containing pore 
effective (chemical) pressure of hydrogen 
dissolved in the liquid metal 
CR(fHCo/S) 2, the initial gas pressure in the 
liquid, prior to solidification 
pressure inside the gas bubble when it first 
forms 
mechanical pressure in the riser 
4~r/d,, the additional pressure, caused by 
surface tension forces, at the beginning of 
solidification 
the radius of curvature of a spherical pore 
the principal radii of curvature of the pore 
solidification velocity in the casting (m/s) 
solubility constant for hydrogen in liquid 
metal; also the thickness of a solidified shell 
in Eq. [34] 
time (s) 
time for the casting to become fully solid at 
the centerline 
local solidification time 
thickness of the plate casting; also the 
temperature 
liquidus temperature of the alloy 
melting point of a (pure) metal in Eq. [34] 
temperature of the mold prior to casting 
solidus temperature of the alloy 
freezing range of the alloy (Tt - Ts) 
volume fraction of gas porosity 
volume percentage of gas porosity 
linear flow velocity of liquid 
linear flow velocity of liquid in the x- 
direction 
distance along the length of a casting 
length of a casting (distance from the end of 
the casting to the riser) 
elevation or height from the centerline of a 
casting 
fraction of the solid-liquid region where 
mass feeding does not occur; also a = KM/ 
p~CM, the thermal diffusivity of the metal 
solidification shrinkage factor, (Ps - Pl)/Ps 
an empirical constant which relates primary 
dendrite arm spacing to local solidification 
time 
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/z 

Pl  

P,, 
Ps 
Or 

T 

% 

4, 

width of the interdendritic groove at any 
point in the mushy region 
angle of  the liquid feeding channel inside a 
casting 
critical angle below which shrinkage porosity 
o c c u r s  

portion of the liquid-solid region where 
liquid must flow between a skeleton of 
interlocking solid dendrites 
viscosity of the liquid 
dimensionless constant which corrects for a 
nonlinear dependence o f f ,  with temperature 
during solidification 
density of liquid metal at its freezing point 
density of  the mold 
density of  the solid metal 
surface tension of  the liquid 
tortuosity of  the flow channels in the 
interdendritic region 
t/t~, a dimensionless solidification time 

- V T s )  1 - 

A P P E N D I X  A 

An alternative derivation 

An alternative solution for the pressure distribution in 
a semi-infinite slab is given below. From the continuity 
equation, we have 

-/3 Og, 
V . ( g ~ f )  = - -  

1 - / 3  o t  

{OVx OV,.~ Ogt Og, 
=gd_-2---- + - ' l  + V , - - +  v , - -  [ a l l  

\ o x  Oy / Ox 0~, 

From our assumed geometry, we find that agt/Ox = O. 
Let us assume that the temperature in the center channel 
( - l  -< y -< l) is of the form 

T - T s = - - -  1 - [A21 
2 

where G O= O~ly~t + 

The fraction liquid will be proportional to T - 7", and 
inversely proportional to the freezing range, or 

o0, I ( )21 g ~ -  ~2AT 1 -  [A3] 

from which 
Ogl G O y 

Oy ~AT l 

Because g, = 1 - gt, we also find from Eq. [A3] that 

- - R - - - R  [ ~ / )  ] 1  + [A4]  
Ot Ot Ol ~2AT 

We now combine Eqs. [All ,  [3], and [4]: 

 oo[ ()] - - R  1 +  y 2  
1 - /3 ~ 2 A r  / = - ~2AT 

( 0~ 0 ~  - G~ I �9 + + v r  

At the centerline, this equation reduces to 

Off O? 0~7 -[3 R 

Ox Oy Ox 1 - fi l 

[A5I 

[A6] 

We now place this value into the differential form of 
Darcy's  law: 

OP tx 8n~rT)V_~ -IX/3~ 8nTrr3 ATRy x [A7] 
Ox gl 1 - fi Go 212 

This may be integrated to yield Eq. [42] and is exactly 
the same result as obtained before, except that the def- 
inition of the gradient, Go, is defined differently and more 
exactly. This means that the result is of general validity 
and is not sensitive to the assumed temperature profile 
or profile of g,. This result is not surprising, since the 
overall driving force for fluid flow is solidification 
shrinkage. As material freezes, it shrinks, and liquid must 
flow for feeding to occur. The pressure drop described 
by Darcy's  law arises from this flow. That this is the 
case should be clearer from the above derivation. 

A P P E N D I X  B 

Calculation of feeding lengths from Darcy 's  law 

It is convenient to define a dimensionless solidifica- 
tion time, z, = t i t  C, where tc is the total time it takes for 
the casting to freeze at the centerline. The pressure at 
the centerline of  the casting (Eq. [33]) now becomes 

m3r ~T 
P = P~ M - - -  8 n ~ @ - -  

1 - 13 G~ 

1 1 
.X  2 [BI] 

From Pellini's experimental results t21 it would appear that 
(7,., = G~ where G o is equal to 1 15 ~ in his steel 
plates. Equation [B 1] becomes 

P = e ~ _ p./3__~ 8nr --AT 
1 - / 3  G o 

(C') 2 X 2 
[B2] 

(1 - C7~)2 4 C ; ,  L 2 

Equation [B2] may be reduced still further by consid- 
ering what controls the temperature gradient in the two- 
phase mushy zone. The heat of  fusion is released 
throughout this region, much as heat would be generated 
by an electric current. This "dispersed" heat of fusion 
must pass through the solid-liquid region by conduction 
to the fully solid shell and then to the mold. If we as- 
sume that the release of  latent heat of fusion is propor- 
tional to the fraction solid and distance in the two-phase 
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region and further assume that the thermal conductivities 
of solid and liquid are equal, then it follows that the 
temperature gradient in the mushy region is 

- -  = - -  1 - psHRy [B3] 
Oy KM 

where KM is the thermal conductivity of  the metal (the 
uppercase M represents the metal; the lowercase m rep- 
resents the mold) and where l represents the total length 
of the mushy zone. The position inside the mushy zone 
is given by y. Integrating Eq. [B3], we find that 

p, H R y (  y2) 
T -  y - + T~ [B4] 

and at the end of the mushy zone, where y = l and T 
T,, 

p, H R y (  l 2) 
- -  - -  l - -  T, Ts KM '2l 

The average gradient in the solid-liquid region is given 
by 

T t -  T, psHRy 
Gy = - -  - [B5] 

l 2KM 

We now find Ry from Eq. [35]. At the end of solidifi- 
cation (that is, at t = t,.), the desired result is 

p,H (Ct)  2 G O 
Gy - - -  - [B6] 

4K M L L 

We may now place Eq. [B6] in Eq. [B2] to obtain 

p = pO _ tx~___~ 8nrrr3AT" 4_KM 
1 - tfl psH 

1 X 2 

(1 - k/~r~) 2 4 ~ s s  L 2 [B7] 

This is the reduced form of the equation for feeding length 
along the centerline of plate castings. From a physical 
point of view, it is reasonable to assume that centerline 
porosity will result when the mechanical pressure, P, as- 
sumes a zero or negative value. In the presence of dis- 
solved gas, porosity may occur at higher pressures, but 
we shall ignore this for the time being and set P equal 
to zero. Also remember that the number of  flow chan- 
nels is inversely proportional to the primary dendrite arm 
spacing. From available data 12~ on dendrite arm spacings 
in aluminum- and iron-based alloys, we find that 

dl ~ T(GR) -1/3 

Substituting in Eq. [B7] and rearranging, we find that 

L •T(GR)- ' /3  OM 1 fl 1 1 psH [B81 
~[3~ 8err 3 •  K,,, 

4 
where 4) = (1 - X/ -~ , )~r  s ~ 1 - ~ 

It would appear from Eq. [B8] that the feeding length, 
X/L,  is a weak function of cooling rate, not a constant 

ratio, as suggested by Pellini. m21 This is the first prob- 
lem with the equation. A second problem is that the 
equation predicts the feeding length will increase with 
the square root of pressure at the base of the riser, whereas 
Pellini observed that there was not an appreciable effect 
of increased pressure. The final and most serious prob- 
lem is revealed by comparing the experimental and the- 
oretical feeding lengths for steel and aluminum plates. It tl 
We could, for example, take X/L  in steel plates to be 9 
to 10, as measured by Pellini and others, I~,~11 and then 
calculate the value of 4~ which falls out of  the equation. 
This can then be treated as an empirical constant. Now 
we place this value for ~b along with the appropriate nu- 
merical values of the physical constants for aluminum 
(Table I) and find that X/L  in an aluminum alloy plate 
should be about 1, or one tenth of the feeding distance 
found in steel. This is because 

(1) y is about 3.5 times smaller. This "tighter" structure 
restricts the flow of liquid. 
(2) The thermal conductivity of A1 is five times, and the 
effective latent heat (p,H) is one half that of steel. 

From the experimental data of Davies, I1~1 we find that 
the feeding length, X/L,  increases to about 20, instead 
of decreasing to about 1, as predicted by Eq. [B8]. In 
other words, Darcy's  law does not apply to the calcu- 
lation of feeding lengths. We must seek another mech- 
anism for the formation of shrinkage porosity. 

Darcy 's  law cannot be invoked to explain feeding 
lengths because the liquid velocities found during solid- 
ification are small. The total volume of liquid shrinkage 
is only a few percent of  the total volume, and in the case 
of our 4-inch- (10-cm-) thick steel plate casting, the flow 
occurs over nearly an hour. The pressure drop associated 
with the liquid flow is consequently much smaller than 
the prevailing atmospheric pressure and cannot be re- 
sponsible for shrinkage porosity. 
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