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Metalorganic Chemical Vapor Deposition CdTe
Passivation of HgCdTe

Y. NEMIROVSKY, N. A M I R , and L. DJALOSHINSKI

K i d r o n Microelectronics Research Center, D e p a r t m e n t of Electrical
Engineering, Technion, H a i f a 32000, I s r a e l

CdTe epilayers are g r o w n by metalorganic chemicalv a p o r deposition (MOCVD)
on bulk H g C d T e crystals with x N 0.22 g r o w n by the traveling h e a t e r m e t h o d
(THM). The THM H g C d T e substrates are (111) oriented and the CdTe is g r o w n
on the Te face . The metalorganic sources are DMCd and DETe, and the g r o w t h
is performed a t subatmospheric pressure. Ultraviolet (UV) photon-assisted
hydrogen radicals pretreatment p l a y s a d o m i n a n t role in the electrical proper-
ties of the r e s u l t i n g heterostructures. The requirements of a good passivation for
H g C d T e photodiodes vis-a-vis the passivation features of CdTe/HgCdTe het-
erostructures are discussed. The effect of valence band offset and interface
charges on the band diagrams of p-isotype CdTe/HgCdTe heterostructures, for
typical d o p i n g levels of the bulk HgCdTe substrates and the MOCVD g r o w n
CdTe, is presented. Electrical properties of the CdTe/HgCdTe passivation are
determined by capacitance-voltage and current-voltage characteristics of metal-
insulator-semiconductor test devices, w h e r e the M O C V D CdTe is the insulator.
It is f o u n d t h a t the HgCdTe surface is strongly inverted and the interface charge
d e n s i t y is of the o r d e r of 1012cm-2 when the CdTe epilayer is g r o w n w i t h o u t the
UV pretreatment. With the i n - s i tu UV photon-assisted hydrogen radicals pre-
treatment, the H g C d T e surface is accumulated and the interface charge d e n s i t y
is - 4 • 1011 cm-2.

K e y w o r d s : CdTe, HgCdTe, infrared detectors, metalorganic chemical v a p o r
deposition (MOCVD), surface passivation

I N T R O D U C T I O N

Second generation infrared focalp l a n e arrays b a s e d
on H g C d T e photodiodes coupled to silicon s i g n a lpro-
cessors, have led to increased i n t e r e s t in CdTe passi-
r a t i o n 2-3 Clearly, CdTe has become the preferred
passivation technology for HgCdTe photodiodes, but
the published work i n the open literature addressing
this passivation is r a t h e r l i m i t e d (Refs. 4 and 5 and
references therin).

The CdTe l a y e r s are deposited by different tech-
n i q u e s (liquid p h a s e epitaxy [LPE], molecular beam
epitaxy [MBE], metalorganic chemicalv a p o r depositon
[MOCVD], hot wall epitaxy, sputtering, e-beam evapo-
ration, and electrodeposition). In addition to the depo-
s i t i o n process, t h e r e are several m a j o r issues t h a t
determine the passivation properties of the r e s u l t i n g
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CdTe/HgCdTe heterostructures. These include the
H g C d T e surface preparation and i n - s i tu pretreat-
m e n t , deposition-induced surface damage, interface
charges, CdTe film stoichiometry, and electricalp r o p -
erties. Additional issues are related to adherence,
s tep coverage, and t h e r m a l stability. 1,4

The surface and interface pretreatments are a very
i m p o r t a n t part of the M O C V D CdTe deposition tech-
nology. In principle, heterostructures t h a t are g r o w n
in a single r u n in the well controlled environment of
M O C V D (or MBE) systems s h o u l d yield high q u a l i t y
interfaces with reduced interface charges. However,
in the currently used device designs and architec-
t u r e s ,1 the CdTe passivation is deposited a f t e r the
required processing steps. The HgCdTe surface is
necessarily nonstoichiometric, contaminated ( w i t h
foreign impurities and oxides) and damaged (in crys-
tallinity). The chemical, structural, and electronic
defects i n d u c e high d e n s i t y of fixed, fast, and slow
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Table I . Requirements of a Good Passivation and Passivation Featurs of CdTe/HgCdTe Heterostructure

Requirements of a Good Passivation Passivation Featurs of CdTe/HgCdTe

Interface Properties

Surface Potential: near flat band Band diagram depends on:
CdTe and HgCdTe doping, valence band offset,
interface charges and traps c a n be engineeredto
near flat band

Fixed,fast, slow states: low density Determinedby in-situ pretreatment
Surface Recombination Velocity: low Barriers to electrons and holes are formed

Dielectric, Insulat ing, and Mechano-Chemical Propeties

Good Insulator
Excellent Adhesion
Chemical and Mechanical Stability

Thermal Stability
Optically Transparent
Exhibits Radiation Hardening

Low Temperature Nondamaging

Compensated or fully depleted
Similar chemistries
LatticeMatching (0.3%)
Matching in thermal expansion
Adequate mechanical hardness
Stable up to 150°C
Above 0.8 ~m
High Z materials (48, 52), efficient
absorber of high energy radiation

Deposition Technology

MOCVD, MBE, LPE, hot wall epitaxy
Sputtering, evaporation, electrodeposition.

interface t r a p s . Hence , a n i n - s i tu p r e t r e a t m e n t t h a t
f o r m s a reproducible and well-behaved hetero-inter-
face , is a crucial part of the deposition process. Fi-
nally, it is i m p o r t a n t to develop a deposition process
t h a t will not introduce a deposition damage a t the
interface.

In this s t u d y , we grow CdTe epilayers (by the
M O C V D g r o w t h technique) on bulk H g C d T e sub-
s t r a t e s and characterize the r e s u l t i n g interfaces.
Metal-insulator-semiconductor test structures are
processed and measured by capacitance-voltage and
current-voltage characteristics. The ultraviolet (UV)
photon-assisted hydrogen radicals p r e t r e a t m e n t is
s t u d i e d and reported. 6,7

T H E R E Q U I R E M E N T S O F A G O O D
P A S S I V A T I O N A N D T H E C O R R E S P O N D I N G

F E A T U R E S O F C d T e / H g C d T e
H E T E R O S T R U C T U R E

The requirements of a good passivation for H g C d T e
photodiodes and the passivation features of the CdTe/
H g C d T e heterostructure are summarized in Table I.
The r e q u i r e d interface properties must be achieved
w i t h o u t any compromise. These include: a well con-
trolled and close to flat band surface potential and
hence a low d e n s i t y of fixed surface charges to reduce
t u n n e l i n g c u r r e n t s (accumulated surfaces impose
t u n n e l i n g a t the periphery of the j u n c t i o n and in-
v e r t e d surfaces impose t u n n e l i n g to the substrate); a
low d e n s i t y of fast and slow surface s t a t e s to reduce
low frequency n o i s e c u r r e n t s ; a low surface re-

combination velocity to reduce surface generated dark
currents.

The r e q u i r e d dielectric, insulation, and mechano-
chemical properties are also h i g h l y s t r i n g e n t so t h a t
the passivation will be f u l l y compatible with device
processing, b o n d i n g and packaging, prolonged out-
gassing, storage, and exposure to h a r s h environ-
m e n t s . Finally, a low temperature nondamaging depo-
s i t i o n technology is a must in the case ofa passivation
film for HgCdTe.

The m a j o r passivation features of the CdTe/HgCdTe
heterostructure that are summarized in Table I i n d i -
cate why CdTe has recently become the industry-
favored passivation technology for HgCdTe photo-
diodes. 1 The calculated band d i a g r a m (and thus the
surface potential a t the H g C d T e side of the hetero-
interface) depends on the valence band offset, d o p i n g
levels of CdTe and HgCdTe, surface charges and t r a p s
a t the hetero-interface and deep t r a p s in the CdTe.
Precise control of the electrical properties of the CdTe
and the interface charges must be achieved to o b t a i n
the required interface properties. A low surface re-
combination velocity is readily achieved because po-
t e n t i a l barriers for electrons and holes are formed. I n
particular, the large conduction band offset forms a
l a r g eb a r r i e rfor electrons. The band d i a g r a mofC d T e /
H g C d T e a b r u p t heterostructure is calculated and
f u r t h e r evaluated in the following section.

CdTe is not hygroscopic (like ZnS), it is mechanically
h a r d e r t h a n HgCdTe, the heterostructure is n e a r l y
lattice matched ( w i t h i n 0.3%), the t h e r m a l coeffi-
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cients of expansion of both materials are n e a r l y the
same and the chemistries are similar. Hence , CdTe
f i l m s are negligibly stressed and adhesion is excellent
(between CdTe and HgCdTe, CdTe, and subsequent
metallization lines, CdTe and anti-reflection coatings
for front-illuminated photodiodes). Chemical, me-
chanical, and t h e r m a l stability (up to 150°C) is re -
ported. The high average atomic n u m b e r of CdTe (Zca
= 48, ZTo = 52) r e n d e r s this material a n efficient
absorber of high e n e r g y radiation and efficient for
radiation hardening.

A l a r g e n u m b e rof low temperature deposition tech-
nologies are available for epitaxial CdTe (including
MOCVD, MBE, LPE, hot wall epitaxy) as well as
polycrystalline CdTe films (including e-beam evapo-
r a t i o n , sputtering, electrodeposition). 4

The preferred CdTe technology for passivation
s h o u l d be determined and tailored to the specific
device design and architecture. The p r e s e n t s t u d y
focuses on M O C V D CdTe because it is a dry process
with high t h r o u g h p u t and energetic species are not
incorporated in the deposition process. The MOCVD
process yields reproducible hetero-interfaces as well
as CdTe epilayers w h i c h c a n be engineered to the
exacting requirements discussed above. In addition,
excellent s tep coverages are obtained and the morphol-
ogy is m i r r o r like. Surface recombination velocity of
less t h a n 5000 cm/s, obtained with M O C V D CdTe, is
the lowest reported v a l u e for p-type long wavelength
infrared (LWIR) HgCdTe.~

B A N D D I A G R A M O F A C d T e / H g C d T e
A B R U P T H E T E R O S T R U C T U R E

Two equations govern the interface potentials in
the two sides of the hetero-interface. These two e q u a -
t i o n s enable us to calculate the t o t a l band b e n d i n g
(relative to the b u l k ) of each material, and t h u s the
interface potentials ofH g C d T e and CdTe (denoted by
(~o,HRCdTe' ~)o,CdTe' respectively).

The f i r s t e q u a t i o n is b a s e d on the l i n e u p con-
siderations of the b a n d s of the two materials across
the common F e r m i level, as s h o w n in Fig. 1.

EFVcdTe- - E F V ~ c d T e -- AEv = q(~)o,HgCdTe -- q)o,CdTe) (1)

w h e r e AEv is the valence band offset and EFVc,To,
EFV.~,T °are s h o w n in Fig 1.

The second equation is b a s e d on the n e u t r a l i t y
condition

Qcdwe((~o,CdWe) + QHgcdWe(~)o.HgCdWe) + qa = 0 (2)
w h e r e QCdTe and QugqdTe are the t o t a l charge per unit
area i n the CdTe and HgCdTe, respectively and c is
the interface charge density.

These two charges c a n be expressed by the t o t a l
band b e n d i n g in each material (relative to the bulk of
each material). Therefore, we have two equations and
two variables, ~)oHgCdTe,~)oCdTe, t h a t c a n be obtained
provided AEv a n d ' ~ are gi~;en. In practice, the valence
band offset and the interface charges are not deter-
m i n e d with the required accuracy. Measured values
of the valence band offset AEvr a n g e from 0 to 0.35 eV
b u t t h e r e is more or less a consensus a r o u n d 0.1 eV.8,9
The interface charge d e n s i t y ~ is p a r t l y fundamental
(due to the difference in chemical b o n d i n g and 0.3%
lattice mismatch across the hetero-interface) and
p a r t l y technological (due to mechanical damage, non-
stoichiometric surface, surface oxides and adsorbed
impurities). It s t r o n g l y depends on processing, pre-
t r e a t m e n t and deposition technology. Accordingly,
c a n vary by several orders of magnitude.

Following the methodology previously developed
for the calculation of a HgTe-CdTe a b r u p t hetero-
structure, 1°,11 we p r e s e n t the calculated interface po-
t e n t i a l s of CdTe and HgCdTe, with AEv and ~ t a k e n
as parameters. This approach enables us to calculate
the band d i a g r a m of the hetero-interface and to con-
s i d e r quantitatively the effects of AEv and a on the
t o t a l band b e n d i n g i n each material. The detailed
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Fig. 1. Schemat ic energy band diagram of an abrupt CdTe/HgCdTe
heterostructure.
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Fig. 2. Calculated band diagrams and surface potentials, (¢o) at 77K, of p-CdTe (Na= 1013cm -~ and Ea= 0.15 eV/p-HgCdTe (x = 0.225 and Na =
1016cm ~ ) heterostructures with the valence band offset a s a parameter (a) AEv = 0; (b) AEv = 0.1 eV; (c) AEv = 0.2 eV; (d) AEv = 0.3 V. The interface
charge density a i s taken a s zero.
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calculation of the band diagram of a n a b r u p t CdTe-
H g C d T e heterojunction are reported elsewhere.TM

The calculated band d i a g r a m and the surface po-
tentials of HgCdTe and CdTe, a t 77K, with the va-
lence band offset as a parameter, are s h o w n in Fig. 2.
The HgCdTe and CdTe d o p i n g levels and parameters
are indicated in Fig. 2. We a s s u m e that the acceptor
level of the MOCVD CdTe is 0.15 eV, corresponding to
d o u b l y ionized c a d m i u m vacancy. The calculations
take into account the freezeout in the CdTe as deter-
m i n e d by the energy of the acceptor level. The i n t e r -
face charge d e n s i t y is a s s u m e dto be zero. In the wide
r a n g e of the a s s u m e d valence band offset values ( 0 -

[Volt]
/

0.3 CdTe /
/

NA=5 - l O l 3 c m ~ . ' f
Z~ 0.2 E A = ~
O~L

.~u 0.1 / H g C d T e

/ N A = 5 . 1 0 t S c m - ao~

x:0.  5 \

l 01 [o ' '

AEv[eV]
Fig. 3. Thedependenceof the calculated surface potentials of H g C d T e
and CdTe, at 77K, upon the va lenceband offset. The interface charge
dens i t y is taken as zero.

0.3 eV), the H g C d T e surface is practically a t flat b a n d .
Only a t zero offset, the surface is depleted and the
band b e n d i n g is 30 mV. The effect of the valence band
offset on the surface potentials of H g C d T e and CdTe
is exhibited in Fig. 3.

The band diagrams and surface potentials of CdTe
and HgCdTe are h a r d l y affected by v a r y i n g the dop-
ing levels, as s h o w n in Fig. 4. Depletion or close to flat
band conditions are predicted, as long as the interface
charge d e n s i t y is zero, even when the d o p i n g level of
H g C d T e changes by a n o r d e r of m a g n i t u d e and the
d o p i n g level of CdTe changes by two orders of m a g n i -
t u d e . The drastic effect of the interface charges upon
the band diagrams and surface potentials is s h o w n in
Fig. 5 and Fig. 6. Negative interface charges i n d u c e
accumulation i n the H g C d T e side w h i l e positive in-
terface charges induce inversion. F i g u r e 6 exhibits
that interface charge d e n s i t y of thc o r d e r of 5 • 1011
cm-2 causes l a r g e deviations from flat band condi-
tions.

The calculated band diagrams and surface poten-
t i a l s of F i g s . 2-6 indicate t h a t near flat band condi-
t i o n s c a n be obtained on p-type HgCdTe, provided
t h a t the electrical properties of the hetero-interface
and the CdTe are carefully engineered and controlled.
The theoretical and experimental u n c e r t a i n t y in the
valence band offset introduces a variance in the sur-
face potential of H g C d T e of the o r d e r of 30 mV.
However, positive interface charges of even moderate
d e n s i t y of the o r d e r of 1011 cm-2 induce s t r o n g in-
version in p - t y p eH g C d T e and s t r o n g accumulation in
n-type HgCdTe and r e n d e r the heterostructure use-

2
EbV]

i - HgCdTe CdTe
is - [NA=10*ecm -a NA=I0 cm

0 ...........................

r#O=27mV I ~ ° = - 5 7 m V
- t o [~m]

2
sbv]

I - HgCdT~e CdTe
NA= i015cm-3 NA= 10*Scm-s

0 ...........................

¢po= 2 7 m Y ~ 0 = - 4 2 m V
-I-i 0 b m ]

2
E[~v]

1

0

"HgCdTe CdTe
NA=I0~%m-3 NA=10~%rn-3

~ o = - l . l m V ~o=22mV

-L1 o bm]

2
shY]

r
i-HgCdT__~e ~ CdTe

NA= 10 ZScm-3 ]NA= 10 *Scrn-~

0

--I ~°=-3"6mVl ~o=27mV

- o [~m]

a b c d
Fig. 4. Calculated band d iagrams and surface potentials, (¢o) at 77K, of p-CdTe/p-HgCdTe heterostructures fo r different doping levels of H g C d T e
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are t h o s e of (c). The interface charge dens i t y ~ is taken as zero and the va lence band offset is e i ther zero or 0.1 eV, as indicated.
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less for passivation. Similarly, negative interface
charges of the o r d e r of 101~ cm-2 induce accumulation
in p-type H g C d T e and s t r o n g inversion in n - t y p e
HgCdTe. Hence , it c a n be concluded that the valence
band offset and the exact v a l u e s of the d o p i n g levels
of CdTe and H g C d T e play a m i n o r role in determining
the exact v a l u e s of the surface potentials. For the p-
isotype heterostructure discussed here , close to flat
band conditions are achieved for a wide r a n g e of
d o p i n g levels and valence band offsets. However, the
effect of the interface charge is drastic, and it is the
most d o m i n a n t parameter t h a t controls the surface
potentials.

MOCVD GROWTH OF CdTe ON HgCdTe

Substrates
Two t y p e s of (111) oriented (_+2°), bulk p-type

Hgl_xCdxTe wafers (x_=0.225), were used in this study:
single crystals g r o w n by modified s l u s h recrystalliza-
tion and single crystals g r o w n by t r a v e l i n g h e a t e d
m e t h o d (THM)}TM The electrical characteristics of
typical wafers are : N = 10TM cm-3, pp_=_ 600 cm2V-~ s-1
and ~n -= (5--20) ns, a t 77K. The H:gCdTe substrates
were mechanically polished with 0.3 pm a l u m i n a
p o w d e r and subsequently chemically etched for 30 s
with 10% bromine in m e t h a n o l solution. The CdTe
epilayers were g r o w n on the Te face of the Hg~_xCd Te
substrates and the face was determined with the
Polisar etch.

MOCVD System and CdTe Growth Process
The M O C V Ds y s t e m was manufactured by Thomas

Swan Inc., England, and has a horizontal q u a r t z
reactor. The g r a p h i t e susceptor is h e a t e d with infra-
red l a m p s . The metalorganic sources, DETe and
D M C d , supplied by Morton, are kept a t 25°C. Palla-
dium diffused hydrogen serves as the carr ier gas.
G r o w t h r u n s , a t 430°C, are performed a t a subatmo-
spheric p r e s s u r e of 300 Torr and the t o t a l flow rate is
1.21/min. The p a r t i a l pressures of DETe and DMCd in
the reactor are i and 0.26 T o r r , respectively.

The H g C d T e wafers are exposed to the following
temperature cycle: the susceptor is h e a t e d to 430°C
w i t h i n 7 min. The susceptor temperature is stabilized
a t 430°C for additional 5 min. At 430°C, approxi-
m a t e l y 0.4 #m CdTe are g r o w n i n 3 min (the exact
thickness depends on the pretreatment). A f t e rgrowth,
the susceptor is cooled to 2 6 0 ° C in 6 min by flowing
hydrogen (130 cc/min a t 300 Torr) and a f t e r a d d i -
t i o n a l 15 min the susceptor t e m p e r a t u r e d r o p s below
50°C. U n d e rt h e s e conditions, 3000-5000A CdTe are
g r o w n in 2 . 5 - 4 min. With the UV p r e t r e a t m e n t de-
scribed below, -4000-6000,& are g r o w n in 2 . 5 - 4 min.
Mirror-like epilayers, with excellent morphology and
no hillocks are observed on the Te face of (111)
oriented substrates. The effect of the M O C V D g r o w t h
parameters, including deposition temperature, d u r a -
t i o n , p a r t i a l pressures of the metalorganic sources,
and Hg and misorientation of HgCdTe substrates,
will be reported elsewhere.15
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Fig. 6. The dependenceof the calculated surface potentials of H g C d T e
and CdTe, at 77K, upon the interface charge density: (a) positive
charges, and (b) nega t i ve charges. The va lence band offset is taken
as 0.1 eV.

UV Photon Assisted Hydrogen Radicals
Pretreatment

Ultraviolet radiation for a n in-situ p r e t r e a t m e n t
p r i o r to the g r o w t h of the epilayers is provided by a
high pressure Hg lamp o p e r a t i n g a t 450 W, with a
wide emission spectrum between 190 and 300 nm. In
this pretreatment, the HgCdTe substrate, a t 50°C, is
irradiated by the UV lamp for 1 h w h i l e the reactor
and the H g C d T e substrates are flushed in hydrogen,
flowing a t 250 cc/min, a t a t o l a l pressure of 300 Torr.
P r i o r to the subsequent g r o w t h of CdTe, the UV
p h o t o n s are shut off.

E L E C T R I C A L C H A R A C T E R I Z A T I O N

MIS Test Devices

Metal-insulator-semiconductor devices were fabri-
ca ted on p - t y p e H g C d T e and used to characterize the
electrical properties of the interface. The i n s u l a t o r of
the MIS device consisted of the M O C V Dg r o w n CdTe
epilayer, approximately 0.4 ~m thick. The combina-
tion of evaporated t i t a n i u m (500A) and gold (1 ~tm)
was used for bulk and gate metallization. The gate
electrodes of ~500 ~m d i a m e t e r were evaporated
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Fig. 7 . Measured capacitance-voltage (sol id l ine) and equivalent par-
a l l e l conductance (dashed l ine) characteristics of MIS d e v i c e that was
not exposed to U V pretreatment. The measurement temperature is 7 7 K
and the measurement frequency is 100 kHz. Gate area is 0 . 0 0 2 c m2.
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Dot ted line is the theoretical C - V c u r v e .

through a m e t a l mask and the bulk contact was
evaporated on the rear s ide of the HgCdTe substrate .
T h e devices were bonded and sealed with a cold shield
at 77K, in a dewar. T h e devices were subject to
annealing cycles in v a c u u m in the temperature r a n g e
70-140°C and were characterized repeatedly at sev-
eral temperatures.

Capacitance and conductance were measured as a
function of gate voltage, with frequency as a param-
eter, with an H P 4 1 9 2 A impedance analyzer. T h e DC
gate current was measured as a function of gate
voltage with HP signal parameter analyzer. Simple
MIS theory neglecting modifications d u e to the Kane
model was applied for the analysis .

C a p a c i t a n c e - V o l t a g e a n d C o n d u c t a n c e -
V o l t a g e C h a r a c t e r i s t i c s

T h e surfaces of the CdTe/HgCdTe heterostructures
are determined with measured capacitancevoltage
and equivalent parallel conductance-voltage charac-
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Fig. 9 . Measured capacitance-voltage (solid l ine) and equiva lent
para l le l conductance (dashed l ine) characteristics of MIS d e v i c e that
was exposed to U V pretreatment. The measurement temperature is
7 7 K and the measurement f requence is 1 MHz. Gate a r e a is 0 . 0 0 2 c m2.
Dot ted line is the theoretical C - V c u r v e .

teristics of MIS devices, as s h o w n in Figs. 7-9.
T h e drastic effect of the positive interface charges,

observed when the M O C V D CdTe is g r o w n without an
in -s i tu UV pretreatment, is shown in Fig. 7. At zero
gate bias , the H g C d T e surface is inverted. T h e mea-
sured fiat band voltage is -3.3 V and the fixed inter-
face charge density is Q,, = 6.4 • 1011 cm-2.

T h e C-V characteristic is analyzed with the fol-
l o w i n g inputs:

Cinsulator (from Fig. 7) = 62 p F
C m i n i m u m (from Fig. 7) = 49 p F
Gate area (measured) = 2 • 10-3 cm2
Relative dielectric constant of CdTe = 10.6
Relative dielectric constant of H g C d T e = 18

T h e following MIS parameters are derived from
simple MOS theory:

H g C d T e effective doping concentration = 9.7 • 1015
a m - 3

CdTe thickness = 3000J,
Flat band capacitance = 59 p F
Flat band voltage (from Fig. 7) = - 3 . 3 V

Metal-semiconductor (titanium-HgCdTe) work func-
tion difference OMS = 0V based on: OMS = OMO-- (OS + E ~
2 + %) w h e r e the work functions of titanium and
HgCdTe are OMO = 4.3 e V and Os = 4.23 eV, respec-
tively36 From VFB = OMS -- Qss/Cox, w e obtain Qss =
6.4 • 1011 electrons/cm2.

T h e interface is very stable with respect to tem-
perature cycles. T h e devices were repeatedly an-
nealed at temperatures u p to 140°C, for 24 h at each
cycle. T h e annealing temperature did not e x c e e d
140°C because of the packaging g l u e s and the experi-
m e n t a l d e w a r and not because of even the sl ightest
interface degradation.

Capacitance-voltage measurements on THM de-
vices often yielded stronger inversion manifested by
more negative flat band voltages (of the order o f - 5 V)
and the calculated Qss is of the order of 1 • 1012 cm-2.
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However, the same general features of the character-
istic s h o w n in Fig. 7 and the same high t h e r m a l
stability were observed. These features include low
frequency behavior with l i t t l e dependence on mea-
s u r e m e n t frequency (in the r a n g e of 100 k H z - 1 MHz),
and low equivalent parallel conductance (3.10-Tmho)
a r o u n d zero gate bias. The equivalent parallel con-
d u c t a n c e is m e a s u r e d i n p a r a l l e l to the capaci-
t a n c e .

The C-V characteristic of Fig. 7 exhibits corre-
spondence between the calculated and measured char-
acteristics and a s m a l l hysteresis a t depletion. The
a p p a r e n t hysteresis a r o u n d zero gate voltage may be
a t t r i b u t e d to variation in the response time of the
m i n o r i t y carriers in inversion. However, C-V charac-
teristics measured on different contacts exhibited a
s p r e a d in the flat band voltage and hence in the fixed
interface charge density, Q~. This is attributed to
s m a l l variations in orientations of subgrains in the
bulk substrates. 13,14

The i n - s i tu U V photon-assisted h y d r o g e n radicals
pretreatment exhibits a significant effecton the hetero-
interface, as s h o w n in Fig. 8. At zero gate bias, the
HgCdTe surface is accumulated. The measured flat
band voltage is +3 V and the fixed interface charge
d e n s i t y is Qss = - 3 . 7 - 1011 cm-2. At zero gate bias, the
equivalent parallel conductance is low and the i n s u -
l a t o r capacitance exhibits very s m a l l hysteresis. At
depletion, the conductance increases by t h r e e orders
of m a g n i t u d e and 0.2-0.3 V hysteresis is observed,
implying slow surface s t a t e d e n s i t y of 2.5.101° cm-2.
At s t r o n g inversion, the conductance saturates and
the hysteresis disappears. The excellent t h e r m a l sta-
b i l i t y is a g a i n observed and the C-V and G-V charac-
teristics do not exhibit any shifts even a f t e r repeated
t h e r m a lcycles up to 140°C, w h e r e we stopped because
of the experimental dewar.

The effective d o p i n g level derived from the m i n i -
m u m capacitance is 2- 1014 cm-3 and this is n e a r l y two
orders of m a g n i t u d e l o w e r t h a n the original d o p i n g
level of the HgCdTe substrate. Such a reduction in
s u b s t r a t e d o p i n g level was previously observed dur-
ing M O C V Dg r o w t h of CdTe on CdTe substrates, a f t e r
a p p l y i n g the UV pretreatment2 However, not all the
MIS devices exhibited this behavior, as s h o w n in Fig.
9. The characteristics of Fig. 9 are similar to t h o s e of
Fig. 8: the H g C d T e surface is accumulated, the mea-
s u r e d flat band voltage is 2.8 V and the fixed interface
charge d e n s i t y is Qss = -4.1 • 1011 cm-2. A s m a l l
h y s t e r e s i s is o b s e r v e d a t d e p l e t i o n w h e r e the
condutance increases. Again, excellent t h e r m a l sta-
b i l i t y is observed. Analysis of the d o p i n g level accord-
ing to C m i n i m u m yields a v a l u e close to the original
d o p i n g level of the HgCdTe substrate. At this stage, it
is not c lear if this behavior is also related to different
subgrains in the bulk substrates.

In summary, the interface properties of the p-
i s o t y p e CdTe/HgCdTe h e t e r o s t r u c t u r e are very
promising. F u r t h e r o p t i m i z a t i o n of t h e i n - s i tu pre-
t r e a t m e n t is r e q u i r e d to o b t a i n near flat band
conditions.

D C Gate C u r r e n t - V o l t a g e a n d D i f f e r e n t i a l
R e s i s t a n c e C h a r a c t e r i s t i c s

The DC gate current-voltage and differential resis-
tance-voltage characteristics of two MIS devices,w i t h -
out and with UV pretreatment, are s h o w n in Fig. 10
and Fig. 11. These curves demonstrate the insulation
properties of the M O C V D CdTe a t 77K. High values
of dynamic resistance are observed a t MIS devices
g r o w n with the UV pretreatment. The values are two
orders of magnitude h i g h e r t h a n t h o s e observed a t
MIS devices w i t h o u t UV pretreatment (1011~2 in Fig.
11 compared to 109~ in Fig. 10).

The DC characteristics of Fig. 11 and the AC char-
acteristics of Fig. 8 are measured on the same gate.
The DC conductivity increases a t positive gate volt-
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Fig. 10. Measured, at 77K, DC gate current-voltage and differential
resistance-voltage characteristics ofMIS device thatwas not exposed
to UVpretreatment.
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ages inducing inversion due to t u n n e l i n g between the
n ÷ inversion l a y e r and the substrate ( a r o u n d 0.5 V
gate voltage for the u n t r e a t e d device of Fig. 10 and
a r o u n d 3.5 V for the UV pretreated device of Fig. 11).
The DC conductivity also increases a t s t r o n g accumu-
l a t i o n (-2V for the device of Fig. 10 and a r o u n d - 1 V
for the device of Fig. 11).

The estimated dielectric breakdown field is of the
o r d e r of 105V/cm.

S U M M A R Y AND C O N C L U S I O N

This p a p e r s t u d i e s the passivation properties of
M O C V D CdTe epilayers g r o w n on the Te face of(111)
oriented, bulk H g C d T e wafers. I n general, the passi-
r a t i o n properties of a specific technology are h i g h l y
dependent on the orientation, the history, and the
origin of the HgCdTe wafers. The p r e s e n t s t u d y i n d i -
cates the potential passivation properties ofM O C V D
CdTe g r o w n on p-type HgCdTe.

CdTe passivation of HgCdTe in general, and MOCVD
CdTe in particular, has been h a r d l y s t u d i e d in the
open literature. 17,18 Bulk H g C d T e wafers are used
here since this is a well characterized and reproduc-
ible HgCdTe material and it was a s s u m e d t h a t a new
passivation s h o u l d be characterized on a n estab-
lished m a t e r i a l . L a t e r on the r e s u l t s c a n be extended
to HgCdTe of different sources and g r o w t h tech-
niques. The (111) orientation corresponds to LPE
HgCdTe epilayers currently used in production of
focal p l a n e arrays.

The s t u d y focuses on CdTe passivation t h a t corre-
s p o n d s to the requirements of a wide r a n g e of device
designs and architectures. Namely, the CdTe passi-
v a t i o n is applied d u r i n g a n advanced s t a g e of the
processing of the devices and not necessarily as a n
integral part of the g r o w t h of the epilayers. The
reported r e s u l t s indicate t h a tM O C V Dg r o w n CdTe is
a promising passivation technology, provided it is
combined with appropriate HgCdTe surface and in-
terface pretreatments. Otherwise, interface charges
dominate the surface potential, imposing s t r o n g in-
version on p-type substrates. With the reported UV
photon-assisted hydrogen radicals pretreatment, accu-
mulated interfaces are obtained on the p-type substrates.

It is believed t h a t UV-induced heterogeneous disso-
ciation of hydrogen, on the surface of the HgCdTe
substrates, produces h i g h l y reactive hydrogen radi-
cals.~,7 The h y d r o g e n radicals form volatile hydrides
with Te atoms. In addition, the hydrogen radicals
reduce n a t i v e oxides that are formed on the surface
and remove w a t e r molecules t h a t are easily adsorbed
on TeO2 and on the p o l a r surface of (111) HgCdTe.
Possibly, additional volatile hydrides are formed of
i m p u r i t y a t o m s t h a t reside on the HgCdTe surface
a f t e r exposure to processing. The h i g h l y reactive
n a t u r e of the hydrogen radicals and the photosen-
sitized reaction a t the surface, have the potential to
form reproducible and controlled hetero-interfaces.
The i n - s i tu UV photon-assisted p r e t r e a t m e n ts h o u l d
be optimized to o b t a i n slightly accumulated or slightly
depleted interfaces.

A carefully controlled g r o w t h process as well as
interface and surface pretreatment tailored to the
specific material is required in o r d e r to o b t a i n near
flat band conditions on p - t y p e as well as on n - t y p e
material. The effect of the M O C V D g r o w t h p a r a m -
e t e r s (deposition temperature, p a r t i a l pressures of
the metalorganic sources and p a r t i a l pressure of Hg)
in a d d i t i o n to UV p h o t o n s and pretreatments will be
reported elsewhere.15 S t u d i e s of CdTe passivation
and 1/f noise as well as CdTe passivation and gate
controlled diodes are also essential before this prom-
i s i n g technology c a n be f u l l y assessed. Finally, it
s h o u l d be n o t e d t h a t M O C V D CdZnTe (Zn = 4%)
epilayers c a n provide even superior passivation for
Hgl_xCd Te with x -- 0.22, because of perfect lattice
m a t c h i n g between the epilayer and substrate and
because of the l a r g e rb a n d g a p of CdZnTe.
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